Community
Cheatsheets
- GenServer Cheatsheet by Benjamin Tan Wei Hao
Books
Community
Cheatsheets
Books
/*<?php | |
//*/public class PhpJava { public static void main(String[] args) { System.out.printf("/*%s", | |
//\u000A\u002F\u002A | |
class PhpJava { | |
static function main() { | |
echo(//\u000A\u002A\u002F | |
"Hello World!"); | |
}} | |
//\u000A\u002F\u002A | |
PhpJava::main(); |
import numpy as np | |
import cv2 | |
class BackGroundSubtractor: | |
# When constructing background subtractor, we | |
# take in two arguments: | |
# 1) alpha: The background learning factor, its value should | |
# be between 0 and 1. The higher the value, the more quickly | |
# your program learns the changes in the background. Therefore, |
GNU Octave is a high-level interpreted language, primarily intended for numerical computations.
(via GNU Octave)
~=
&&
sudo su - | |
mkdir -p /opt/bin | |
curl -L https://github.com/docker/compose/releases/download/1.5.1/docker-compose-`uname -s`-`uname -m` > /opt/bin/docker-compose | |
chmod +x /opt/bin/docker-compose |
#!/bin/bash | |
mkdir -p /opt/bin | |
curl -L `curl -s https://api.github.com/repos/docker/compose/releases/latest | jq -r '.assets[].browser_download_url | select(contains("Linux") and contains("x86_64"))'` > /opt/bin/docker-compose | |
chmod +x /opt/bin/docker-compose |
# Cache 10GB for 1 Month | |
proxy_cache_path /var/cache/nginx keys_zone=GS:10m inactive=720h max_size=10240m; | |
upstream gs { | |
server 'storage.googleapis.com:80'; | |
keepalive 100; | |
} | |
server { | |
set $my_domain "yourdomain.com"; |
#!/bin/bash | |
##################################################### | |
# Name: Bash CheatSheet for Mac OSX | |
# | |
# A little overlook of the Bash basics | |
# | |
# Usage: | |
# | |
# Author: J. Le Coupanec | |
# Date: 2014/11/04 |
(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
; Аппликативный и нормальный порядки вычисления | |
; | |
; «полная подстановка, затем редукция» известен под на- | |
; званием нормальный порядок вычислений (normal-order evaluation) | |
; | |
; Пример работы нормального порядка вычисления | |
; Последовательность подстановок | |
; (sum-of-squares (+ 5 1) (* 5 2)) | |
; (+ (square (+ 5 1)) (square (* 5 2)) | |
; (+ (* (+ 5 1) (+ 5 1)) (* (* 5 2) (* 5 2))) |