- OS - High Sierra 10.13
- Tensorflow - 1.4
- Xcode command line tools - 8.2 (Download from here: Xcode - Support - Apple Developer & Switch to different clang version: sudo xcode-select --switch/Library/Developer/CommandLineTools & check version: clang -v)
- Cmake - 3.7
- Bazel - 0.7.0
https://github.com/aancel/admin/wiki/VirtualGL-on-Ubuntu
https://virtualgl.org/About/Introduction
When you use ssh with X forwarding, you might have noticed that you cannot execute programs that require 3D acceleration. That's where VirtualGL comes into play.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
from numpy.random import rand | |
from numpy import pi, arctan | |
def cface(ax, x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18): | |
# x1 = height of upper face | |
# x2 = overlap of lower face |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
try: | |
import pyaudio | |
import numpy as np | |
import pylab | |
import matplotlib.pyplot as plt | |
from scipy.io import wavfile | |
import time | |
import sys | |
import seaborn as sns | |
except: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.autograd import Variable | |
import torch.nn as nn | |
class Bottleneck(nn.Module): | |
cardinality = 32 # the size of the set of transformations | |
def __init__(self, nb_channels_in, nb_channels, nb_channels_out, stride=1): | |
super().__init__() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import layers | |
from keras import models | |
import tensorflow as tf | |
# | |
# generator input params | |
# | |
rand_dim = (1, 1, 2048) # dimension of the generator's input tensor (gaussian noise) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import layers | |
def residual_block(y, nb_channels, _strides=(1, 1), _project_shortcut=False): | |
shortcut = y | |
# down-sampling is performed with a stride of 2 | |
y = layers.Conv2D(nb_channels, kernel_size=(3, 3), strides=_strides, padding='same')(y) | |
y = layers.BatchNormalization()(y) | |
y = layers.LeakyReLU()(y) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Clean and simple Keras implementation of network architectures described in: | |
- (ResNet-50) [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf). | |
- (ResNeXt-50 32x4d) [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/pdf/1611.05431.pdf). | |
Python 3. | |
""" | |
from keras import layers | |
from keras import models |
(from https://www.scivision.co/numpy-image-bgr-to-rgb/)
Conversion between any/all of BGR, RGB, and GBR may be necessary when working with Matplotlib expects M x N x 3 image, where last dimension is RGB.
OpenCV expects M x N x 3 image, where last dimension is BGR.
Scientific Cameras, some of which output an M X N x 3 image, where last dimension is GBR