-
-
Save tahwaru/2fd05915209a29a76363e909e4ddd74c to your computer and use it in GitHub Desktop.
sdc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Anaconda3\python.exeta\Local\JetBrains\PyCharm Community Edition 2020.3\plugins\python-ce\helpers\pydev\pydevconsole.py" --mode=client --port=49739 | |
import sys; print('Python %s on %s' % (sys.version, sys.platform)) | |
sys.path.extend([ystemDesign']) | |
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] | |
Type 'copyright', 'credits' or 'license' for more information | |
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help. | |
PyDev console: using IPython 7.19.0 | |
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] on win32 | |
In[2]: runDocuments/SystemDesign/5refs/CVNNradioML.py', wdir=/Documents/SystemDesign/5refs') | |
2021-02-10 12:19:53.160670: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found | |
2021-02-10 12:19:53.161233: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. | |
2021-02-10 12:19:57.055227: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found | |
2021-02-10 12:19:57.055775: W tensorflow/stream_executor/cuda/cuda_driver.cc:312] failed call to cuInit: UNKNOWN ERROR (303) | |
2021-02-10 12:19:57.059848: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: ip2979 | |
2021-02-10 12:19:57.060548: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: ip2979 | |
2021-02-10 12:19:57.061538: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 | |
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. | |
2021-02-10 12:19:57.073216: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x149bff5ffa0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: | |
2021-02-10 12:19:57.074055: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
complex_conv2d (ComplexConv2 (None, 30, 30, 64) 640 | |
_________________________________________________________________ | |
complex_max_pooling2d (Compl (None, 15, 15, 64) 0 | |
_________________________________________________________________ | |
complex_conv2d_1 (ComplexCon (None, 13, 13, 128) 73856 | |
_________________________________________________________________ | |
complex_max_pooling2d_1 (Com (None, 6, 6, 128) 0 | |
_________________________________________________________________ | |
complex_conv2d_2 (ComplexCon (None, 4, 4, 128) 147584 | |
_________________________________________________________________ | |
complex_flatten (ComplexFlat (None, 2048) 0 | |
_________________________________________________________________ | |
complex_dense (ComplexDense) (None, 128) 262272 | |
_________________________________________________________________ | |
complex_dense_1 (ComplexDens (None, 24) 3096 | |
================================================================= | |
Total params: 487,448 | |
Trainable params: 487,448 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
Epoch 1/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.6356 - accuracy: 0.7037 - val_loss: 2.4896 - val_accuracy: 0.0000e+00 | |
Epoch 2/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.6068 - accuracy: 0.7143 - val_loss: 3.1951 - val_accuracy: 0.0000e+00 | |
Epoch 3/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.6002 - accuracy: 0.7143 - val_loss: 3.2916 - val_accuracy: 0.0000e+00 | |
Epoch 4/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.5977 - accuracy: 0.7143 - val_loss: 2.5750 - val_accuracy: 0.0000e+00 | |
Epoch 5/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.5898 - accuracy: 0.7146 - val_loss: 2.7857 - val_accuracy: 8.5714e-04 | |
Epoch 6/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.5642 - accuracy: 0.7208 - val_loss: 2.6128 - val_accuracy: 0.0331 | |
Epoch 7/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.5101 - accuracy: 0.7554 - val_loss: 2.6816 - val_accuracy: 0.1666 | |
Epoch 8/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.4378 - accuracy: 0.7997 - val_loss: 4.1965 - val_accuracy: 0.1770 | |
Epoch 9/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.3503 - accuracy: 0.8460 - val_loss: 3.4959 - val_accuracy: 0.1911 | |
Epoch 10/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.2657 - accuracy: 0.8907 - val_loss: 4.1059 - val_accuracy: 0.1957 | |
Epoch 11/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.1893 - accuracy: 0.9258 - val_loss: 4.6468 - val_accuracy: 0.2157 | |
Epoch 12/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.1431 - accuracy: 0.9434 - val_loss: 4.8431 - val_accuracy: 0.2147 | |
Epoch 13/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.1048 - accuracy: 0.9596 - val_loss: 4.7646 - val_accuracy: 0.2271 | |
Epoch 14/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0877 - accuracy: 0.9666 - val_loss: 6.7164 - val_accuracy: 0.2064 | |
Epoch 15/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0768 - accuracy: 0.9701 - val_loss: 7.4353 - val_accuracy: 0.1923 | |
Epoch 16/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0694 - accuracy: 0.9731 - val_loss: 6.5690 - val_accuracy: 0.1960 | |
Epoch 17/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0567 - accuracy: 0.9791 - val_loss: 6.0207 - val_accuracy: 0.2263 | |
Epoch 18/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0590 - accuracy: 0.9775 - val_loss: 8.1606 - val_accuracy: 0.2220 | |
Epoch 19/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0436 - accuracy: 0.9836 - val_loss: 8.0945 - val_accuracy: 0.1950 | |
Epoch 20/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0545 - accuracy: 0.9782 - val_loss: 6.8986 - val_accuracy: 0.2173 | |
Epoch 21/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0413 - accuracy: 0.9840 - val_loss: 7.1590 - val_accuracy: 0.2464 | |
Epoch 22/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0434 - accuracy: 0.9834 - val_loss: 8.8319 - val_accuracy: 0.2183 | |
Epoch 23/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0461 - accuracy: 0.9818 - val_loss: 6.8165 - val_accuracy: 0.2509 | |
Epoch 24/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0413 - accuracy: 0.9841 - val_loss: 7.8393 - val_accuracy: 0.2547 | |
Epoch 25/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0374 - accuracy: 0.9859 - val_loss: 9.3445 - val_accuracy: 0.2297 | |
Epoch 26/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0407 - accuracy: 0.9836 - val_loss: 8.8371 - val_accuracy: 0.2499 | |
Epoch 27/150 | |
438/438 [==============================] - 60s 137ms/step - loss: 0.0384 - accuracy: 0.9857 - val_loss: 8.7116 - val_accuracy: 0.2203 | |
Epoch 28/150 | |
438/438 [==============================] - 61s 140ms/step - loss: 0.0339 - accuracy: 0.9871 - val_loss: 8.5114 - val_accuracy: 0.2427 | |
Epoch 29/150 | |
438/438 [==============================] - 61s 138ms/step - loss: 0.0386 - accuracy: 0.9853 - val_loss: 8.2025 - val_accuracy: 0.2366 | |
Epoch 30/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0320 - accuracy: 0.9885 - val_loss: 7.4458 - val_accuracy: 0.2506 | |
Epoch 31/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0288 - accuracy: 0.9899 - val_loss: 9.1556 - val_accuracy: 0.2763 | |
Epoch 32/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0342 - accuracy: 0.9867 - val_loss: 9.5841 - val_accuracy: 0.2090 | |
Epoch 33/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0279 - accuracy: 0.9891 - val_loss: 10.3226 - val_accuracy: 0.2169 | |
Epoch 34/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0350 - accuracy: 0.9866 - val_loss: 8.0610 - val_accuracy: 0.2409 | |
Epoch 35/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0303 - accuracy: 0.9898 - val_loss: 10.6924 - val_accuracy: 0.1876 | |
Epoch 36/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0313 - accuracy: 0.9880 - val_loss: 7.6250 - val_accuracy: 0.2739 | |
Epoch 37/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0300 - accuracy: 0.9891 - val_loss: 8.7032 - val_accuracy: 0.2501 | |
Epoch 38/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0236 - accuracy: 0.9922 - val_loss: 9.3688 - val_accuracy: 0.2161 | |
Epoch 39/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0266 - accuracy: 0.9901 - val_loss: 10.3763 - val_accuracy: 0.2259 | |
Epoch 40/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0295 - accuracy: 0.9886 - val_loss: 10.0403 - val_accuracy: 0.2047 | |
Epoch 41/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0262 - accuracy: 0.9914 - val_loss: 11.5816 - val_accuracy: 0.2183 | |
Epoch 42/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0253 - accuracy: 0.9900 - val_loss: 11.5512 - val_accuracy: 0.2084 | |
Epoch 43/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0243 - accuracy: 0.9905 - val_loss: 11.3360 - val_accuracy: 0.2414 | |
Epoch 44/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0265 - accuracy: 0.9906 - val_loss: 10.6310 - val_accuracy: 0.2036 | |
Epoch 45/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0251 - accuracy: 0.9909 - val_loss: 10.9365 - val_accuracy: 0.1851 | |
Epoch 46/150 | |
438/438 [==============================] - 58s 133ms/step - loss: 0.0227 - accuracy: 0.9913 - val_loss: 12.9638 - val_accuracy: 0.1803 | |
Epoch 47/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0240 - accuracy: 0.9917 - val_loss: 10.8335 - val_accuracy: 0.1969 | |
Epoch 48/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0214 - accuracy: 0.9926 - val_loss: 11.2181 - val_accuracy: 0.2333 | |
Epoch 49/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0223 - accuracy: 0.9920 - val_loss: 9.5424 - val_accuracy: 0.2547 | |
Epoch 50/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0231 - accuracy: 0.9918 - val_loss: 12.0902 - val_accuracy: 0.2486 | |
Epoch 51/150 | |
438/438 [==============================] - 58s 132ms/step - loss: 0.0208 - accuracy: 0.9921 - val_loss: 11.5389 - val_accuracy: 0.2084 | |
Epoch 52/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0197 - accuracy: 0.9931 - val_loss: 11.8878 - val_accuracy: 0.2019 | |
Epoch 53/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0263 - accuracy: 0.9904 - val_loss: 10.6926 - val_accuracy: 0.2324 | |
Epoch 54/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0226 - accuracy: 0.9913 - val_loss: 11.7994 - val_accuracy: 0.2243 | |
Epoch 55/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0198 - accuracy: 0.9926 - val_loss: 14.3443 - val_accuracy: 0.1761 | |
Epoch 56/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0202 - accuracy: 0.9921 - val_loss: 12.9387 - val_accuracy: 0.2053 | |
Epoch 57/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0202 - accuracy: 0.9929 - val_loss: 14.1261 - val_accuracy: 0.1956 | |
Epoch 58/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0154 - accuracy: 0.9948 - val_loss: 13.3815 - val_accuracy: 0.2083 | |
Epoch 59/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0182 - accuracy: 0.9934 - val_loss: 14.0329 - val_accuracy: 0.2230 | |
Epoch 60/150 | |
438/438 [==============================] - 58s 131ms/step - loss: 0.0180 - accuracy: 0.9932 - val_loss: 11.8810 - val_accuracy: 0.2419 | |
Epoch 61/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0169 - accuracy: 0.9943 - val_loss: 13.2512 - val_accuracy: 0.2171 | |
Epoch 62/150 | |
438/438 [==============================] - 60s 137ms/step - loss: 0.0185 - accuracy: 0.9927 - val_loss: 11.5766 - val_accuracy: 0.2051 | |
Epoch 63/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0233 - accuracy: 0.9914 - val_loss: 12.9120 - val_accuracy: 0.2009 | |
Epoch 64/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0190 - accuracy: 0.9928 - val_loss: 13.9790 - val_accuracy: 0.2104 | |
Epoch 65/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0170 - accuracy: 0.9940 - val_loss: 12.4601 - val_accuracy: 0.2324 | |
Epoch 66/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0146 - accuracy: 0.9943 - val_loss: 14.6099 - val_accuracy: 0.2337 | |
Epoch 67/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0211 - accuracy: 0.9924 - val_loss: 11.4220 - val_accuracy: 0.2240 | |
Epoch 68/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0158 - accuracy: 0.9943 - val_loss: 13.8769 - val_accuracy: 0.2213 | |
Epoch 69/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0173 - accuracy: 0.9938 - val_loss: 13.1279 - val_accuracy: 0.2226 | |
Epoch 70/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0132 - accuracy: 0.9946 - val_loss: 15.1604 - val_accuracy: 0.2304 | |
Epoch 71/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0196 - accuracy: 0.9926 - val_loss: 14.8120 - val_accuracy: 0.1729 | |
Epoch 72/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0144 - accuracy: 0.9942 - val_loss: 15.0024 - val_accuracy: 0.2073 | |
Epoch 73/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0170 - accuracy: 0.9929 - val_loss: 16.1338 - val_accuracy: 0.1944 | |
Epoch 74/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0186 - accuracy: 0.9931 - val_loss: 16.5254 - val_accuracy: 0.1620 | |
Epoch 75/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0142 - accuracy: 0.9946 - val_loss: 13.4221 - val_accuracy: 0.2271 | |
Epoch 76/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0091 - accuracy: 0.9961 - val_loss: 18.2434 - val_accuracy: 0.2199 | |
Epoch 77/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0153 - accuracy: 0.9946 - val_loss: 14.9888 - val_accuracy: 0.2257 | |
Epoch 78/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0176 - accuracy: 0.9937 - val_loss: 17.1715 - val_accuracy: 0.1831 | |
Epoch 79/150 | |
438/438 [==============================] - 58s 132ms/step - loss: 0.0159 - accuracy: 0.9946 - val_loss: 16.1641 - val_accuracy: 0.2034 | |
Epoch 80/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0147 - accuracy: 0.9954 - val_loss: 14.4854 - val_accuracy: 0.2127 | |
Epoch 81/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0142 - accuracy: 0.9951 - val_loss: 13.7161 - val_accuracy: 0.2221 | |
Epoch 82/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0142 - accuracy: 0.9944 - val_loss: 15.2591 - val_accuracy: 0.2354 | |
Epoch 83/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0124 - accuracy: 0.9952 - val_loss: 16.9211 - val_accuracy: 0.2150 | |
Epoch 84/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0125 - accuracy: 0.9959 - val_loss: 19.0973 - val_accuracy: 0.2104 | |
Epoch 85/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0161 - accuracy: 0.9942 - val_loss: 17.0804 - val_accuracy: 0.2070 | |
Epoch 86/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0141 - accuracy: 0.9950 - val_loss: 16.6664 - val_accuracy: 0.2097 | |
Epoch 87/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0097 - accuracy: 0.9969 - val_loss: 15.5170 - val_accuracy: 0.2294 | |
Epoch 88/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0121 - accuracy: 0.9956 - val_loss: 15.4465 - val_accuracy: 0.2077 | |
Epoch 89/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0151 - accuracy: 0.9947 - val_loss: 17.6339 - val_accuracy: 0.2136 | |
Epoch 90/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0172 - accuracy: 0.9939 - val_loss: 16.6517 - val_accuracy: 0.1921 | |
Epoch 91/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0100 - accuracy: 0.9966 - val_loss: 18.7855 - val_accuracy: 0.1887 | |
Epoch 92/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0120 - accuracy: 0.9959 - val_loss: 15.2049 - val_accuracy: 0.2429 | |
Epoch 93/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0123 - accuracy: 0.9959 - val_loss: 16.9048 - val_accuracy: 0.2156 | |
Epoch 94/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0175 - accuracy: 0.9938 - val_loss: 16.4091 - val_accuracy: 0.1870 | |
Epoch 95/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0132 - accuracy: 0.9956 - val_loss: 16.2724 - val_accuracy: 0.1833 | |
Epoch 96/150 | |
438/438 [==============================] - 61s 139ms/step - loss: 0.0118 - accuracy: 0.9958 - val_loss: 19.6867 - val_accuracy: 0.2124 | |
Epoch 97/150 | |
438/438 [==============================] - 61s 139ms/step - loss: 0.0132 - accuracy: 0.9952 - val_loss: 17.0057 - val_accuracy: 0.2324 | |
Epoch 98/150 | |
438/438 [==============================] - 61s 140ms/step - loss: 0.0100 - accuracy: 0.9964 - val_loss: 17.3581 - val_accuracy: 0.2390 | |
Epoch 99/150 | |
438/438 [==============================] - 60s 137ms/step - loss: 0.0101 - accuracy: 0.9961 - val_loss: 18.7840 - val_accuracy: 0.2347 | |
Epoch 100/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0057 - accuracy: 0.9982 - val_loss: 21.2000 - val_accuracy: 0.2177 | |
Epoch 101/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0142 - accuracy: 0.9946 - val_loss: 21.0848 - val_accuracy: 0.2113 | |
Epoch 102/150 | |
438/438 [==============================] - 60s 137ms/step - loss: 0.0180 - accuracy: 0.9936 - val_loss: 18.7845 - val_accuracy: 0.2086 | |
Epoch 103/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0130 - accuracy: 0.9952 - val_loss: 16.5347 - val_accuracy: 0.2317 | |
Epoch 104/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0053 - accuracy: 0.9980 - val_loss: 19.9523 - val_accuracy: 0.2381 | |
Epoch 105/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0183 - accuracy: 0.9937 - val_loss: 16.7464 - val_accuracy: 0.2186 | |
Epoch 106/150 | |
438/438 [==============================] - 57s 131ms/step - loss: 0.0110 - accuracy: 0.9959 - val_loss: 18.5318 - val_accuracy: 0.1867 | |
Epoch 107/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0101 - accuracy: 0.9966 - val_loss: 22.4708 - val_accuracy: 0.2303 | |
Epoch 108/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0144 - accuracy: 0.9950 - val_loss: 19.0921 - val_accuracy: 0.1890 | |
Epoch 109/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0113 - accuracy: 0.9961 - val_loss: 20.8358 - val_accuracy: 0.1977 | |
Epoch 110/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0078 - accuracy: 0.9971 - val_loss: 22.2141 - val_accuracy: 0.2164 | |
Epoch 111/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0093 - accuracy: 0.9966 - val_loss: 20.9881 - val_accuracy: 0.2109 | |
Epoch 112/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0140 - accuracy: 0.9954 - val_loss: 20.9951 - val_accuracy: 0.2197 | |
Epoch 113/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0083 - accuracy: 0.9976 - val_loss: 24.4149 - val_accuracy: 0.1863 | |
Epoch 114/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0110 - accuracy: 0.9956 - val_loss: 20.9526 - val_accuracy: 0.1727 | |
Epoch 115/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0131 - accuracy: 0.9948 - val_loss: 19.8622 - val_accuracy: 0.2049 | |
Epoch 116/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0105 - accuracy: 0.9971 - val_loss: 20.3705 - val_accuracy: 0.2224 | |
Epoch 117/150 | |
438/438 [==============================] - 60s 137ms/step - loss: 0.0105 - accuracy: 0.9958 - val_loss: 21.0373 - val_accuracy: 0.1976 | |
Epoch 118/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0107 - accuracy: 0.9959 - val_loss: 20.3715 - val_accuracy: 0.2183 | |
Epoch 119/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0040 - accuracy: 0.9986 - val_loss: 25.9642 - val_accuracy: 0.2191 | |
Epoch 120/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0156 - accuracy: 0.9941 - val_loss: 19.5925 - val_accuracy: 0.1700 | |
Epoch 121/150 | |
438/438 [==============================] - 60s 136ms/step - loss: 0.0118 - accuracy: 0.9954 - val_loss: 21.0675 - val_accuracy: 0.2090 | |
Epoch 122/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0067 - accuracy: 0.9974 - val_loss: 25.9611 - val_accuracy: 0.2090 | |
Epoch 123/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0149 - accuracy: 0.9946 - val_loss: 19.2916 - val_accuracy: 0.2229 | |
Epoch 124/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0108 - accuracy: 0.9962 - val_loss: 19.8004 - val_accuracy: 0.2336 | |
Epoch 125/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0070 - accuracy: 0.9975 - val_loss: 21.2666 - val_accuracy: 0.1849 | |
Epoch 126/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0054 - accuracy: 0.9980 - val_loss: 25.1386 - val_accuracy: 0.2021 | |
Epoch 127/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0121 - accuracy: 0.9953 - val_loss: 20.9420 - val_accuracy: 0.2219 | |
Epoch 128/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0100 - accuracy: 0.9962 - val_loss: 25.1264 - val_accuracy: 0.1980 | |
Epoch 129/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0069 - accuracy: 0.9975 - val_loss: 23.9898 - val_accuracy: 0.2034 | |
Epoch 130/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0098 - accuracy: 0.9963 - val_loss: 21.7751 - val_accuracy: 0.2187 | |
Epoch 131/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0104 - accuracy: 0.9961 - val_loss: 18.3052 - val_accuracy: 0.2140 | |
Epoch 132/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0094 - accuracy: 0.9967 - val_loss: 25.5771 - val_accuracy: 0.1971 | |
Epoch 133/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0115 - accuracy: 0.9962 - val_loss: 18.0659 - val_accuracy: 0.2177 | |
Epoch 134/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0093 - accuracy: 0.9966 - val_loss: 21.0781 - val_accuracy: 0.2176 | |
Epoch 135/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0081 - accuracy: 0.9976 - val_loss: 21.2983 - val_accuracy: 0.2334 | |
Epoch 136/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0068 - accuracy: 0.9975 - val_loss: 24.1916 - val_accuracy: 0.2309 | |
Epoch 137/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0079 - accuracy: 0.9974 - val_loss: 21.8092 - val_accuracy: 0.2271 | |
Epoch 138/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0167 - accuracy: 0.9947 - val_loss: 25.1187 - val_accuracy: 0.2139 | |
Epoch 139/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0072 - accuracy: 0.9973 - val_loss: 20.9736 - val_accuracy: 0.2176 | |
Epoch 140/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0093 - accuracy: 0.9964 - val_loss: 23.0839 - val_accuracy: 0.2200 | |
Epoch 141/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0058 - accuracy: 0.9974 - val_loss: 21.6380 - val_accuracy: 0.2400 | |
Epoch 142/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0071 - accuracy: 0.9979 - val_loss: 22.7540 - val_accuracy: 0.2206 | |
Epoch 143/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.0084 - accuracy: 0.9975 - val_loss: 21.4848 - val_accuracy: 0.2287 | |
Epoch 144/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0069 - accuracy: 0.9975 - val_loss: 23.8004 - val_accuracy: 0.2334 | |
Epoch 145/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0100 - accuracy: 0.9964 - val_loss: 21.8112 - val_accuracy: 0.1881 | |
Epoch 146/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0122 - accuracy: 0.9954 - val_loss: 22.3977 - val_accuracy: 0.2340 | |
Epoch 147/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0071 - accuracy: 0.9976 - val_loss: 29.5000 - val_accuracy: 0.1907 | |
Epoch 148/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0070 - accuracy: 0.9976 - val_loss: 27.8572 - val_accuracy: 0.1851 | |
Epoch 149/150 | |
438/438 [==============================] - 59s 135ms/step - loss: 0.0120 - accuracy: 0.9963 - val_loss: 22.9596 - val_accuracy: 0.2087 | |
Epoch 150/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.0047 - accuracy: 0.9983 - val_loss: 31.2955 - val_accuracy: 0.2090 | |
219/219 - 12s - loss: 31.2955 - accuracy: 0.2090 | |
In[3]: a, b = cvnn_fit(epochs=150) | |
Model: "sequential_1" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
complex_conv2d_3 (ComplexCon (None, 30, 30, 64) 640 | |
_________________________________________________________________ | |
complex_max_pooling2d_2 (Com (None, 15, 15, 64) 0 | |
_________________________________________________________________ | |
complex_conv2d_4 (ComplexCon (None, 13, 13, 128) 73856 | |
_________________________________________________________________ | |
complex_max_pooling2d_3 (Com (None, 6, 6, 128) 0 | |
_________________________________________________________________ | |
complex_conv2d_5 (ComplexCon (None, 4, 4, 128) 147584 | |
_________________________________________________________________ | |
complex_flatten_1 (ComplexFl (None, 2048) 0 | |
_________________________________________________________________ | |
complex_dense_2 (ComplexDens (None, 128) 262272 | |
_________________________________________________________________ | |
complex_dense_3 (ComplexDens (None, 24) 3096 | |
================================================================= | |
Total params: 487,448 | |
Trainable params: 487,448 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
Epoch 1/150 | |
438/438 [==============================] - 59s 136ms/step - loss: 0.6362 - accuracy: 0.7082 - val_loss: 2.3866 - val_accuracy: 0.0000e+00 | |
Epoch 2/150 | |
438/438 [==============================] - 59s 134ms/step - loss: 0.6026 - accuracy: 0.7143 - val_loss: 2.4331 - val_accuracy: 0.0000e+00 | |
Epoch 3/150 | |
313/438 [====================>.........] - ETA: 14s - loss: 0.5968 - accuracy: 0.7172 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment