Last active
February 18, 2021 19:21
-
-
Save tahwaru/8ff182d130b545b8a5375e1c8c010d71 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
C\AppData\Local\JetBrains\PyCharm Community Edition 2020.3\plugins\python-ce\helpers\pydev\pydevconsole.py" --mode=client --port=59828 | |
import sys; print('Python %s on %s' % (sys.version, sys.platform)) | |
sys.path.extend(['a/PycharmProjects/cvnn']) | |
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] | |
Type 'copyright', 'credits' or 'license' for more information | |
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help. | |
PyDev console: using IPython 7.19.0 | |
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] on win32 | |
In[2]: runPycharmProjects/cvnn/examples/Mytest.py', wdir=/PycharmProjects/cvnn/examples') | |
2021-02-16 10:49:39.476272: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found | |
2021-02-16 10:49:39.476904: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. | |
2021-02-16 10:49:47.668125: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found | |
2021-02-16 10:49:47.668705: W tensorflow/stream_executor/cuda/cuda_driver.cc:312] failed call to cuInit: UNKNOWN ERROR (303) | |
2021-02-16 10:49:47.675070: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: ip2979 | |
2021-02-16 10:49:47.675722: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: ip2979 | |
2021-02-16 10:49:47.676457: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 | |
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. | |
2021-02-16 10:49:47.687932: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1f880d390c0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: | |
2021-02-16 10:49:47.688594: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
complex_conv2d (ComplexConv2 (None, 30, 30, 32) 1792 | |
_________________________________________________________________ | |
complex_avg_pooling2d (Compl (None, 15, 15, 32) 0 | |
_________________________________________________________________ | |
complex_conv2d_1 (ComplexCon (None, 13, 13, 64) 36992 | |
_________________________________________________________________ | |
complex_max_pooling2d (Compl (None, 6, 6, 64) 0 | |
_________________________________________________________________ | |
complex_conv2d_2 (ComplexCon (None, 4, 4, 64) 73856 | |
_________________________________________________________________ | |
complex_flatten (ComplexFlat (None, 1024) 0 | |
_________________________________________________________________ | |
complex_dense (ComplexDense) (None, 64) 131200 | |
_________________________________________________________________ | |
complex_dense_1 (ComplexDens (None, 10) 1300 | |
================================================================= | |
Total params: 245,140 | |
Trainable params: 245,140 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
Epoch 1/50 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 1.5060 - accuracy: 0.4507 - val_loss: 1.3063 - val_accuracy: 0.5288 | |
Epoch 2/50 | |
1563/1563 [==============================] - 140s 90ms/step - loss: 1.1287 - accuracy: 0.5992 - val_loss: 1.0865 - val_accuracy: 0.6195 | |
Epoch 3/50 | |
1563/1563 [==============================] - 138s 88ms/step - loss: 0.9450 - accuracy: 0.6686 - val_loss: 0.9367 - val_accuracy: 0.6764 | |
Epoch 4/50 | |
1563/1563 [==============================] - 137s 88ms/step - loss: 0.8210 - accuracy: 0.7137 - val_loss: 0.9554 - val_accuracy: 0.6745 | |
Epoch 5/50 | |
1563/1563 [==============================] - 135s 87ms/step - loss: 0.7203 - accuracy: 0.7475 - val_loss: 0.8982 - val_accuracy: 0.6969 | |
Epoch 6/50 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.6328 - accuracy: 0.7787 - val_loss: 0.8671 - val_accuracy: 0.7053 | |
Epoch 7/50 | |
1563/1563 [==============================] - 139s 89ms/step - loss: 0.5508 - accuracy: 0.8072 - val_loss: 0.8965 - val_accuracy: 0.7076 | |
Epoch 8/50 | |
1563/1563 [==============================] - 137s 88ms/step - loss: 0.4781 - accuracy: 0.8323 - val_loss: 0.9527 - val_accuracy: 0.6985 | |
Epoch 9/50 | |
1563/1563 [==============================] - 136s 87ms/step - loss: 0.4123 - accuracy: 0.8535 - val_loss: 0.9763 - val_accuracy: 0.7117 | |
Epoch 10/50 | |
1563/1563 [==============================] - 136s 87ms/step - loss: 0.3570 - accuracy: 0.8722 - val_loss: 1.0548 - val_accuracy: 0.7046 | |
Epoch 11/50 | |
1563/1563 [==============================] - 136s 87ms/step - loss: 0.3046 - accuracy: 0.8911 - val_loss: 1.1623 - val_accuracy: 0.7041 | |
Epoch 12/50 | |
1563/1563 [==============================] - 136s 87ms/step - loss: 0.2598 - accuracy: 0.9067 - val_loss: 1.2645 - val_accuracy: 0.6987 | |
Epoch 13/50 | |
1563/1563 [==============================] - 138s 88ms/step - loss: 0.2284 - accuracy: 0.9190 - val_loss: 1.3244 - val_accuracy: 0.7043 | |
Epoch 14/50 | |
1563/1563 [==============================] - 139s 89ms/step - loss: 0.2087 - accuracy: 0.9256 - val_loss: 1.4699 - val_accuracy: 0.6830 | |
Epoch 15/50 | |
1563/1563 [==============================] - 136s 87ms/step - loss: 0.1854 - accuracy: 0.9344 - val_loss: 1.5103 - val_accuracy: 0.6938 | |
Epoch 16/50 | |
1563/1563 [==============================] - 137s 87ms/step - loss: 0.1684 - accuracy: 0.9400 - val_loss: 1.5969 - val_accuracy: 0.6968 | |
Epoch 17/50 | |
1563/1563 [==============================] - 138s 88ms/step - loss: 0.1532 - accuracy: 0.9455 - val_loss: 1.6835 - val_accuracy: 0.6971 | |
Epoch 18/50 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1455 - accuracy: 0.9492 - val_loss: 1.7654 - val_accuracy: 0.6950 | |
Epoch 19/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1311 - accuracy: 0.9550 - val_loss: 1.9224 - val_accuracy: 0.6953 | |
Epoch 20/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1335 - accuracy: 0.9532 - val_loss: 1.8647 - val_accuracy: 0.6922 | |
Epoch 21/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.1256 - accuracy: 0.9562 - val_loss: 1.9918 - val_accuracy: 0.6887 | |
Epoch 22/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.1224 - accuracy: 0.9574 - val_loss: 2.0633 - val_accuracy: 0.6889 | |
Epoch 23/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.1213 - accuracy: 0.9598 - val_loss: 2.2803 - val_accuracy: 0.6873 | |
Epoch 24/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.1150 - accuracy: 0.9610 - val_loss: 2.2305 - val_accuracy: 0.6857 | |
Epoch 25/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1100 - accuracy: 0.9628 - val_loss: 2.1134 - val_accuracy: 0.6895 | |
Epoch 26/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1072 - accuracy: 0.9640 - val_loss: 2.4607 - val_accuracy: 0.6932 | |
Epoch 27/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1071 - accuracy: 0.9646 - val_loss: 2.4123 - val_accuracy: 0.6797 | |
Epoch 28/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1044 - accuracy: 0.9645 - val_loss: 2.3938 - val_accuracy: 0.6885 | |
Epoch 29/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1008 - accuracy: 0.9663 - val_loss: 2.3439 - val_accuracy: 0.6867 | |
Epoch 30/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1015 - accuracy: 0.9666 - val_loss: 2.4318 - val_accuracy: 0.6932 | |
Epoch 31/50 | |
1563/1563 [==============================] - 131s 83ms/step - loss: 0.0934 - accuracy: 0.9699 - val_loss: 2.4682 - val_accuracy: 0.6940 | |
Epoch 32/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1023 - accuracy: 0.9679 - val_loss: 2.5649 - val_accuracy: 0.6870 | |
Epoch 33/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0902 - accuracy: 0.9705 - val_loss: 2.6804 - val_accuracy: 0.6796 | |
Epoch 34/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0931 - accuracy: 0.9703 - val_loss: 2.6035 - val_accuracy: 0.6746 | |
Epoch 35/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0884 - accuracy: 0.9706 - val_loss: 2.7067 - val_accuracy: 0.6906 | |
Epoch 36/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0904 - accuracy: 0.9707 - val_loss: 2.7004 - val_accuracy: 0.6898 | |
Epoch 37/50 | |
1563/1563 [==============================] - 132s 84ms/step - loss: 0.0926 - accuracy: 0.9718 - val_loss: 2.6711 - val_accuracy: 0.6877 | |
Epoch 38/50 | |
1563/1563 [==============================] - 129s 82ms/step - loss: 0.0912 - accuracy: 0.9718 - val_loss: 2.6544 - val_accuracy: 0.6853 | |
Epoch 39/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0840 - accuracy: 0.9742 - val_loss: 2.6343 - val_accuracy: 0.6867 | |
Epoch 40/50 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0885 - accuracy: 0.9718 - val_loss: 2.7846 - val_accuracy: 0.6895 | |
Epoch 41/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0927 - accuracy: 0.9723 - val_loss: 2.8534 - val_accuracy: 0.6864 | |
Epoch 42/50 | |
1563/1563 [==============================] - 129s 82ms/step - loss: 0.0812 - accuracy: 0.9752 - val_loss: 2.8807 - val_accuracy: 0.6858 | |
Epoch 43/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0852 - accuracy: 0.9729 - val_loss: 2.8798 - val_accuracy: 0.6887 | |
Epoch 44/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0819 - accuracy: 0.9750 - val_loss: 2.8497 - val_accuracy: 0.6857 | |
Epoch 45/50 | |
1563/1563 [==============================] - 129s 82ms/step - loss: 0.0854 - accuracy: 0.9734 - val_loss: 2.8855 - val_accuracy: 0.6894 | |
Epoch 46/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0785 - accuracy: 0.9757 - val_loss: 3.2925 - val_accuracy: 0.6747 | |
Epoch 47/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0746 - accuracy: 0.9773 - val_loss: 3.0221 - val_accuracy: 0.6919 | |
Epoch 48/50 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0810 - accuracy: 0.9751 - val_loss: 3.1343 - val_accuracy: 0.6896 | |
Epoch 49/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0873 - accuracy: 0.9746 - val_loss: 3.2250 - val_accuracy: 0.6886 | |
Epoch 50/50 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0778 - accuracy: 0.9770 - val_loss: 3.0985 - val_accuracy: 0.6886 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment