Last active
February 18, 2021 19:20
-
-
Save tahwaru/c7e2387d3243723cd8e934902eafb097 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
...........\Anaconda3\python.exe ".........\Local\JetBrains\PyCharm Community Edition 2020.3\plugins\python-ce\helpers\pydev\pydevconsole.py" --mode=client --port=50459 | |
import sys; print('Python %s on %s' % (sys.version, sys.platform)) | |
sys.path.extend(['']) | |
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] | |
Type 'copyright', 'credits' or 'license' for more information | |
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help. | |
PyDev console: using IPython 7.19.0 | |
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] on win32 | |
In[2]: runfile('/cvnn/examples/MztestImag.py', wdir='C:/Users/ndongma/PycharmProjects/cvnn/examples') | |
2021-02-12 16:51:29.953108: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found | |
2021-02-12 16:51:29.953642: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. | |
2021-02-12 16:51:41.685420: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found | |
2021-02-12 16:51:41.686058: W tensorflow/stream_executor/cuda/cuda_driver.cc:312] failed call to cuInit: UNKNOWN ERROR (303) | |
2021-02-12 16:51:41.690284: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: ip2979 | |
2021-02-12 16:51:41.690929: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: ip2979 | |
2021-02-12 16:51:41.692146: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 | |
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. | |
2021-02-12 16:51:41.704780: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1f02753f840 initialized for platform Host (this does not guarantee that XLA will be used). Devices: | |
2021-02-12 16:51:41.705546: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
complex_conv2d (ComplexConv2 (None, 30, 30, 32) 1792 | |
_________________________________________________________________ | |
complex_avg_pooling2d (Compl (None, 15, 15, 32) 0 | |
_________________________________________________________________ | |
complex_conv2d_1 (ComplexCon (None, 13, 13, 64) 36992 | |
_________________________________________________________________ | |
complex_max_pooling2d (Compl (None, 6, 6, 64) 0 | |
_________________________________________________________________ | |
complex_conv2d_2 (ComplexCon (None, 4, 4, 64) 73856 | |
_________________________________________________________________ | |
complex_flatten (ComplexFlat (None, 1024) 0 | |
_________________________________________________________________ | |
complex_dense (ComplexDense) (None, 64) 131200 | |
_________________________________________________________________ | |
complex_dense_1 (ComplexDens (None, 10) 1300 | |
================================================================= | |
Total params: 245,140 | |
Trainable params: 245,140 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
Epoch 1/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 1.5229 - accuracy: 0.4441 - val_loss: 1.2799 - val_accuracy: 0.5434 | |
Epoch 2/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 1.1226 - accuracy: 0.6035 - val_loss: 1.0213 - val_accuracy: 0.6388 | |
Epoch 3/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.9412 - accuracy: 0.6688 - val_loss: 0.9652 - val_accuracy: 0.6578 | |
Epoch 4/70 | |
1563/1563 [==============================] - 134s 85ms/step - loss: 0.8170 - accuracy: 0.7135 - val_loss: 0.9545 - val_accuracy: 0.6726 | |
Epoch 5/70 | |
1563/1563 [==============================] - 134s 85ms/step - loss: 0.7261 - accuracy: 0.7454 - val_loss: 0.8778 - val_accuracy: 0.6972 | |
Epoch 6/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.6460 - accuracy: 0.7726 - val_loss: 0.8882 - val_accuracy: 0.6973 | |
Epoch 7/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.5726 - accuracy: 0.7988 - val_loss: 0.8791 - val_accuracy: 0.7082 | |
Epoch 8/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.5103 - accuracy: 0.8206 - val_loss: 0.8888 - val_accuracy: 0.7174 | |
Epoch 9/70 | |
1563/1563 [==============================] - 136s 87ms/step - loss: 0.4430 - accuracy: 0.8435 - val_loss: 1.0111 - val_accuracy: 0.7042 | |
Epoch 10/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.3877 - accuracy: 0.8641 - val_loss: 1.0110 - val_accuracy: 0.7074 | |
Epoch 11/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.3328 - accuracy: 0.8815 - val_loss: 1.0689 - val_accuracy: 0.7069 | |
Epoch 12/70 | |
1563/1563 [==============================] - 134s 85ms/step - loss: 0.2925 - accuracy: 0.8955 - val_loss: 1.1761 - val_accuracy: 0.7040 | |
Epoch 13/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.2504 - accuracy: 0.9110 - val_loss: 1.2678 - val_accuracy: 0.7026 | |
Epoch 14/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.2185 - accuracy: 0.9228 - val_loss: 1.3635 - val_accuracy: 0.7085 | |
Epoch 15/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.2011 - accuracy: 0.9286 - val_loss: 1.5278 - val_accuracy: 0.6814 | |
Epoch 16/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1729 - accuracy: 0.9387 - val_loss: 1.5470 - val_accuracy: 0.6991 | |
Epoch 17/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1629 - accuracy: 0.9431 - val_loss: 1.6510 - val_accuracy: 0.6956 | |
Epoch 18/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1502 - accuracy: 0.9463 - val_loss: 1.6663 - val_accuracy: 0.6929 | |
Epoch 19/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1467 - accuracy: 0.9503 - val_loss: 1.7682 - val_accuracy: 0.6924 | |
Epoch 20/70 | |
1563/1563 [==============================] - 134s 85ms/step - loss: 0.1337 - accuracy: 0.9546 - val_loss: 1.8140 - val_accuracy: 0.6983 | |
Epoch 21/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1312 - accuracy: 0.9544 - val_loss: 1.8555 - val_accuracy: 0.6981 | |
Epoch 22/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1256 - accuracy: 0.9571 - val_loss: 1.9017 - val_accuracy: 0.6986 | |
Epoch 23/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.1203 - accuracy: 0.9590 - val_loss: 2.1725 - val_accuracy: 0.6793 | |
Epoch 24/70 | |
1563/1563 [==============================] - 128s 82ms/step - loss: 0.1170 - accuracy: 0.9587 - val_loss: 2.0117 - val_accuracy: 0.6946 | |
Epoch 25/70 | |
1563/1563 [==============================] - 129s 82ms/step - loss: 0.1122 - accuracy: 0.9617 - val_loss: 2.1793 - val_accuracy: 0.6869 | |
Epoch 26/70 | |
1563/1563 [==============================] - 129s 82ms/step - loss: 0.1058 - accuracy: 0.9645 - val_loss: 2.2122 - val_accuracy: 0.6915 | |
Epoch 27/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.1127 - accuracy: 0.9621 - val_loss: 2.4154 - val_accuracy: 0.6906 | |
Epoch 28/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.1013 - accuracy: 0.9662 - val_loss: 2.3482 - val_accuracy: 0.6967 | |
Epoch 29/70 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0969 - accuracy: 0.9682 - val_loss: 2.3620 - val_accuracy: 0.6843 | |
Epoch 30/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.1051 - accuracy: 0.9657 - val_loss: 2.4214 - val_accuracy: 0.6936 | |
Epoch 31/70 | |
1563/1563 [==============================] - 132s 84ms/step - loss: 0.1064 - accuracy: 0.9662 - val_loss: 2.3700 - val_accuracy: 0.6980 | |
Epoch 32/70 | |
1563/1563 [==============================] - 134s 85ms/step - loss: 0.0921 - accuracy: 0.9695 - val_loss: 2.5464 - val_accuracy: 0.6884 | |
Epoch 33/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0932 - accuracy: 0.9694 - val_loss: 2.5824 - val_accuracy: 0.6843 | |
Epoch 34/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0910 - accuracy: 0.9703 - val_loss: 2.5439 - val_accuracy: 0.6866 | |
Epoch 35/70 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0981 - accuracy: 0.9686 - val_loss: 2.7195 - val_accuracy: 0.6885 | |
Epoch 36/70 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0910 - accuracy: 0.9697 - val_loss: 2.5877 - val_accuracy: 0.6895 | |
Epoch 37/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0908 - accuracy: 0.9710 - val_loss: 3.1192 - val_accuracy: 0.6677 | |
Epoch 38/70 | |
1563/1563 [==============================] - 132s 84ms/step - loss: 0.0834 - accuracy: 0.9732 - val_loss: 2.6330 - val_accuracy: 0.6865 | |
Epoch 39/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0887 - accuracy: 0.9711 - val_loss: 2.8336 - val_accuracy: 0.6948 | |
Epoch 40/70 | |
1563/1563 [==============================] - 132s 84ms/step - loss: 0.0901 - accuracy: 0.9718 - val_loss: 2.6921 - val_accuracy: 0.6865 | |
Epoch 41/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0837 - accuracy: 0.9737 - val_loss: 2.8364 - val_accuracy: 0.6945 | |
Epoch 42/70 | |
1563/1563 [==============================] - 132s 85ms/step - loss: 0.0818 - accuracy: 0.9747 - val_loss: 2.8029 - val_accuracy: 0.6927 | |
Epoch 43/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0829 - accuracy: 0.9735 - val_loss: 2.8953 - val_accuracy: 0.6913 | |
Epoch 44/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0781 - accuracy: 0.9755 - val_loss: 2.8892 - val_accuracy: 0.6877 | |
Epoch 45/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0899 - accuracy: 0.9728 - val_loss: 2.8496 - val_accuracy: 0.6858 | |
Epoch 46/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0704 - accuracy: 0.9777 - val_loss: 2.9609 - val_accuracy: 0.6816 | |
Epoch 47/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0796 - accuracy: 0.9749 - val_loss: 3.1546 - val_accuracy: 0.6761 | |
Epoch 48/70 | |
1563/1563 [==============================] - 134s 86ms/step - loss: 0.0725 - accuracy: 0.9774 - val_loss: 3.0573 - val_accuracy: 0.6951 | |
Epoch 49/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0800 - accuracy: 0.9763 - val_loss: 3.1093 - val_accuracy: 0.6816 | |
Epoch 50/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0827 - accuracy: 0.9747 - val_loss: 3.2348 - val_accuracy: 0.6881 | |
Epoch 51/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0743 - accuracy: 0.9781 - val_loss: 3.2316 - val_accuracy: 0.6819 | |
Epoch 52/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0780 - accuracy: 0.9761 - val_loss: 3.0791 - val_accuracy: 0.6865 | |
Epoch 53/70 | |
1563/1563 [==============================] - 132s 85ms/step - loss: 0.0770 - accuracy: 0.9770 - val_loss: 3.2702 - val_accuracy: 0.6838 | |
Epoch 54/70 | |
1563/1563 [==============================] - 132s 84ms/step - loss: 0.0818 - accuracy: 0.9766 - val_loss: 3.2843 - val_accuracy: 0.6859 | |
Epoch 55/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0648 - accuracy: 0.9805 - val_loss: 3.3683 - val_accuracy: 0.6888 | |
Epoch 56/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0805 - accuracy: 0.9755 - val_loss: 3.2599 - val_accuracy: 0.6860 | |
Epoch 57/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0730 - accuracy: 0.9783 - val_loss: 3.4671 - val_accuracy: 0.6890 | |
Epoch 58/70 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0732 - accuracy: 0.9782 - val_loss: 3.4719 - val_accuracy: 0.6874 | |
Epoch 59/70 | |
1563/1563 [==============================] - 130s 83ms/step - loss: 0.0720 - accuracy: 0.9780 - val_loss: 3.3444 - val_accuracy: 0.6884 | |
Epoch 60/70 | |
1563/1563 [==============================] - 132s 85ms/step - loss: 0.0720 - accuracy: 0.9792 - val_loss: 3.5581 - val_accuracy: 0.6879 | |
Epoch 61/70 | |
1563/1563 [==============================] - 137s 88ms/step - loss: 0.0729 - accuracy: 0.9788 - val_loss: 3.4022 - val_accuracy: 0.6879 | |
Epoch 62/70 | |
1563/1563 [==============================] - 140s 90ms/step - loss: 0.0690 - accuracy: 0.9794 - val_loss: 3.6871 - val_accuracy: 0.6773 | |
Epoch 63/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0747 - accuracy: 0.9792 - val_loss: 3.4398 - val_accuracy: 0.6916 | |
Epoch 64/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0622 - accuracy: 0.9815 - val_loss: 3.6849 - val_accuracy: 0.6831 | |
Epoch 65/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0680 - accuracy: 0.9801 - val_loss: 3.5431 - val_accuracy: 0.6825 | |
Epoch 66/70 | |
1563/1563 [==============================] - 132s 85ms/step - loss: 0.0684 - accuracy: 0.9802 - val_loss: 3.5913 - val_accuracy: 0.6904 | |
Epoch 67/70 | |
1563/1563 [==============================] - 129s 83ms/step - loss: 0.0686 - accuracy: 0.9804 - val_loss: 3.5921 - val_accuracy: 0.6906 | |
Epoch 68/70 | |
1563/1563 [==============================] - 134s 85ms/step - loss: 0.0678 - accuracy: 0.9806 - val_loss: 3.7463 - val_accuracy: 0.6886 | |
Epoch 69/70 | |
1563/1563 [==============================] - 133s 85ms/step - loss: 0.0678 - accuracy: 0.9804 - val_loss: 3.7811 - val_accuracy: 0.6822 | |
Epoch 70/70 | |
1563/1563 [==============================] - 131s 84ms/step - loss: 0.0747 - accuracy: 0.9801 - val_loss: 3.7974 - val_accuracy: 0.6956 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment