Skip to content

Instantly share code, notes, and snippets.

@taka-wang
Last active March 23, 2020 10:24
Show Gist options
  • Save taka-wang/bd9b22db366333a153a6d1340e8dda4c to your computer and use it in GitHub Desktop.
Save taka-wang/bd9b22db366333a153a6d1340e8dda4c to your computer and use it in GitHub Desktop.
ai basic1 snippets
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple Loop"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"r = [random.randrange(100) for _ in range(100_000)] # 十萬個 0~99 的隨機數"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"n = 1_000\n",
"x, y = random.sample(r, n), random.sample(r, n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pure Python"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"307 µs ± 20.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"i, z = 0, []\n",
"while i < n:\n",
" z.append(x[i] + y[i])\n",
" i += 1"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"208 µs ± 6.69 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"z = []\n",
"for i in range(n):\n",
" z.append(x[i] + y[i])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Numpy"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"x_, y_ = np.array(x, dtype=np.int64), np.array(y, dtype=np.int64)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.37 µs ± 110 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"z = x_ + y_"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"x_, y_ = np.array(x, dtype=np.int32), np.array(y, dtype=np.int32)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"971 ns ± 13.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"z = x_ + y_"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Nested Loops"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pure Python"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"m, n = 100, 1_000 # work like 100x1000 matrix\n",
"x = [random.sample(r, n) for _ in range(m)]\n",
"y = [random.sample(r, n) for _ in range(m)]"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"35.8 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"i, z = 0, []\n",
"while i < m:\n",
" j, z_ = 0, []\n",
" while j < n:\n",
" z_.append(x[i][j] + y[i][j])\n",
" j += 1\n",
" z.append(z_)\n",
" i += 1"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"31.4 ms ± 4.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"z = []\n",
"for i in range(m):\n",
" z_ = []\n",
" for j in range(n):\n",
" z_.append(x[i][j] + y[i][j])\n",
" z.append(z_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Numpy"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"x_, y_ = np.array(x, dtype=np.int64), np.array(y, dtype=np.int64)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"147 µs ± 14.4 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"z = x_ + y_"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"x_, y_ = np.array(x, dtype=np.int32), np.array(y, dtype=np.int32)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"46.6 µs ± 2.06 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"z = x_ + y_"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Reference: [Python loops comparison and performance testing](https://medium.com/duomly-blockchain-online-courses/python-loops-comparison-and-performance-testing-9240e7589b82)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Vectorization"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"# define two arrays a, b:\n",
"a = np.random.rand(1_000_000)\n",
"b = np.random.rand(1_000_000)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"781 ms ± 30.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"c = 0\n",
"for i in range(1000000):\n",
" c += a[i]*b[i]"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"249581.03910735913\n"
]
}
],
"source": [
"c = 0\n",
"for i in range(1000000):\n",
" c += a[i]*b[i]\n",
"print(c)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.09 ms ± 40.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"c = np.dot(a,b)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"249581.03910735418\n"
]
}
],
"source": [
"print(np.dot(a,b))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment