Last active
March 23, 2020 10:24
-
-
Save taka-wang/bd9b22db366333a153a6d1340e8dda4c to your computer and use it in GitHub Desktop.
ai basic1 snippets
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Simple Loop" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import random\n", | |
"r = [random.randrange(100) for _ in range(100_000)] # 十萬個 0~99 的隨機數" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"n = 1_000\n", | |
"x, y = random.sample(r, n), random.sample(r, n)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Pure Python" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"307 µs ± 20.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"i, z = 0, []\n", | |
"while i < n:\n", | |
" z.append(x[i] + y[i])\n", | |
" i += 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"208 µs ± 6.69 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"z = []\n", | |
"for i in range(n):\n", | |
" z.append(x[i] + y[i])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Numpy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x_, y_ = np.array(x, dtype=np.int64), np.array(y, dtype=np.int64)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.37 µs ± 110 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"z = x_ + y_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x_, y_ = np.array(x, dtype=np.int32), np.array(y, dtype=np.int32)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"971 ns ± 13.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"z = x_ + y_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Nested Loops" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Pure Python" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"m, n = 100, 1_000 # work like 100x1000 matrix\n", | |
"x = [random.sample(r, n) for _ in range(m)]\n", | |
"y = [random.sample(r, n) for _ in range(m)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"35.8 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"i, z = 0, []\n", | |
"while i < m:\n", | |
" j, z_ = 0, []\n", | |
" while j < n:\n", | |
" z_.append(x[i][j] + y[i][j])\n", | |
" j += 1\n", | |
" z.append(z_)\n", | |
" i += 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"31.4 ms ± 4.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"z = []\n", | |
"for i in range(m):\n", | |
" z_ = []\n", | |
" for j in range(n):\n", | |
" z_.append(x[i][j] + y[i][j])\n", | |
" z.append(z_)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Numpy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x_, y_ = np.array(x, dtype=np.int64), np.array(y, dtype=np.int64)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"147 µs ± 14.4 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"z = x_ + y_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x_, y_ = np.array(x, dtype=np.int32), np.array(y, dtype=np.int32)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"46.6 µs ± 2.06 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"z = x_ + y_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Reference: [Python loops comparison and performance testing](https://medium.com/duomly-blockchain-online-courses/python-loops-comparison-and-performance-testing-9240e7589b82)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Vectorization" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"# define two arrays a, b:\n", | |
"a = np.random.rand(1_000_000)\n", | |
"b = np.random.rand(1_000_000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"781 ms ± 30.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"c = 0\n", | |
"for i in range(1000000):\n", | |
" c += a[i]*b[i]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"249581.03910735913\n" | |
] | |
} | |
], | |
"source": [ | |
"c = 0\n", | |
"for i in range(1000000):\n", | |
" c += a[i]*b[i]\n", | |
"print(c)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.09 ms ± 40.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"c = np.dot(a,b)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"249581.03910735418\n" | |
] | |
} | |
], | |
"source": [ | |
"print(np.dot(a,b))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment