Created
February 12, 2013 09:37
-
-
Save taka011239/4761210 to your computer and use it in GitHub Desktop.
集合知プログラミング7章
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from PIL import Image, ImageDraw | |
my_data = [line.split('\t') for line in file('decision_tree_example.txt')] | |
class decisionnode: | |
def __init__(self, col = -1, value = None, results = None, tb = None, fb = None): | |
self.col = col | |
self.value = value | |
self.results = results | |
self.tb = tb | |
self.fb = fb | |
def divideset(rows, column, value): | |
split_function = None | |
if isinstance(value, int) or isinstance(value, float): | |
split_function = lambda row:row[column] >= value | |
else: | |
split_function = lambda row:row[column] == value | |
set1 = [row for row in rows if split_function(row)] | |
set2 = [row for row in rows if not split_function(row)] | |
return (set1, set2) | |
def uniquecounts(rows): | |
results = {} | |
for row in rows: | |
r = row[len(row) - 1] | |
if r not in results: | |
results[r] = 0 | |
results[r] += 1 | |
return results | |
def giniimpurity(rows): | |
total = len(rows) | |
counts = uniquecounts(rows) | |
imp = 0 | |
for k1 in counts: | |
p1 = float(counts[k1])/total | |
for k2 in counts: | |
if k1 == k2: continue | |
p2 = float(counts[k2])/total | |
imp += p1 * p2 | |
return imp | |
def entropy(rows): | |
from math import log | |
log2 = lambda x:log(x)/log(2) | |
results = uniquecounts(rows) | |
ent = 0.0 | |
for r in results.keys(): | |
p = float(results[r])/len(rows) | |
ent = ent - p * log2(p) | |
return ent | |
def buildtree(rows, scoref = entropy): | |
if len(rows) == 0: | |
return None | |
current_socre = scoref(rows) | |
best_gain = 0.0 | |
best_criteria = None | |
best_sets = None | |
column_count = len(rows[0]) - 1 | |
for col in range(0, column_count): | |
column_values = {} | |
for row in rows: | |
column_values[row[col]] = 1 | |
for value in column_values.keys(): | |
(set1, set2) = divideset(rows, col, value) | |
p = float(len(set1)) / len(rows) | |
gain = current_socre - p * scoref(set1) - (1 - p) * scoref(set2) | |
if gain > best_gain and len(set1) > 0 and len(set2) > 0: | |
best_gain = gain | |
best_criteria = (col, value) | |
best_sets = (set1, set2) | |
if best_gain > 0: | |
trueBranch = buildtree(best_sets[0], scoref) | |
falseBranch = buildtree(best_sets[1], scoref) | |
return decisionnode(col = best_criteria[0], value = best_criteria[1], | |
tb = trueBranch, fb = falseBranch) | |
else: | |
return decisionnode(results = uniquecounts(rows)) | |
def printtree(tree, indent=''): | |
if tree.results != None: | |
print str(tree.results) | |
else: | |
print str(tree.col) + ':' + str(tree.value) + '? ' | |
print indent + 'T->', | |
printtree(tree.tb, indent + ' ') | |
print indent + 'F->', | |
printtree(tree.fb, indent + ' ') | |
def getwidth(tree): | |
if tree.tb == None and tree.fb == None: | |
return 1 | |
return getwidth(tree.tb) + getwidth(tree.fb) | |
def getdepth(tree): | |
if tree.tb == None and tree.fb == None: | |
return 0 | |
return max(getdepth(tree.tb), getdepth(tree.fb)) + 1 | |
def drawtree(tree, jpeg = 'tree.jpg'): | |
w = getwidth(tree) * 100 | |
h = getdepth(tree) * 100 + 120 | |
img = Image.new('RGB', (w,h), (255,255,255)) | |
draw = ImageDraw.Draw(img) | |
drawnode(draw, tree, w/2, 20) | |
img.save(jpeg, 'JPEG') | |
def drawnode(draw, tree, x, y): | |
if tree.results == None: | |
w1 = getwidth(tree.fb) * 100 | |
w2 = getwidth(tree.tb) * 100 | |
left = x - (w1 + w2) / 2 | |
right = x + (w1 + w2) / 2 | |
draw.text((x - 20, y - 10), str(tree.col) + ':' + str(tree.value), (0,0,0)) | |
draw.line((x, y, left + w1 / 2, y + 100), fill = (255,0,0)) | |
draw.line((x, y, right - w2 / 2, y + 100), fill = (255,0,0)) | |
drawnode(draw, tree.fb, left + w1 / 2, y + 100) | |
drawnode(draw, tree.tb, right - w2 / 2, y + 100) | |
else: | |
txt = ' \n'.join(['%s:%d'%v for v in tree.results.items()]) | |
draw.text((x - 20, y), txt, (0,0,0)) | |
def prune(tree, mingain): | |
if tree.tb.results == None: | |
prune(tree.tb, mingain) | |
if tree.fb.results == None: | |
prune(tree.fb, mingain) | |
if tree.tb.results != None and tree.fb.results != None: | |
tb, fb = [], [] | |
for v, c in tree.tb.results.items(): | |
tb += [[v]] * c | |
for v, c in tree.fb.results.items(): | |
fb += [[v]] * c | |
delta = entropy(tb + fb) - (entropy(tb) + entropy(fb)) / 2 | |
if delta < mingain: | |
tree.tb, tree.fb = None, None | |
tree.results = uniquecounts(tb + fb) | |
def mdclassify(observation, tree): | |
if tree.results != None: | |
return tree.results | |
else: | |
v = observation[tree.col] | |
if v == None: | |
tr, fr = mdclassify(observation, tree.tb), mdclassify(observation, tree.fb) | |
tcount = sum(tr.values()) | |
fcount = sum(fr.values()) | |
tw = float(tcount) / (tcount + fcount) | |
fw = float(fcount) / (tcount + fcount) | |
result = {} | |
for k, v in tr.items(): | |
result[k] = v * tw | |
for k, v in fr.items(): | |
if k not in result: | |
result[k] = 0 | |
result[k] += v * fw | |
return result | |
else: | |
if isinstance(v, int) or isinstance(v, float): | |
if v >= tree.value: | |
branch = tree.tb | |
else: | |
branch = tree.fb | |
else: | |
if v == tree.value: | |
branch = tree.tb | |
else: | |
branch = tree.fb | |
return mdclassify(observation, branch) | |
def variance(rows): | |
if len(rows) == 0: | |
return 0 | |
data = [float(row[len(row) - 1]) for row in rows] | |
mean = sum(data) / len(data) | |
variance = sum([(d - mean)**2 for d in data]) / len(data) | |
return variance | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import xml.dom.minidom | |
import urllib2 | |
zwskey = "X1-ZWz1di5mpibbij_23up5" | |
def getaddressdata(address, city): | |
escad = address.replace(' ', '+') | |
url = 'http://www.zillow.com/webservice/GetDeepSearchResults.htm?' | |
url += 'zws-id=%s&address=%s&citystatezip=%s' % (zwskey, escad, city) | |
doc = xml.dom.minidom.parseString(urllib2.urlopen(url).read()) | |
code = doc.getElementsByTagName('code')[0].firstChild.data | |
if code != '0': | |
return None | |
try: | |
zipcode = doc.getElementsByTagName('zipcode')[0].firstChild.data | |
use = doc.getElementsByTagName('useCode')[0].firstChild.data | |
year = doc.getElementsByTagName('yearBuilt')[0].firstChild.data | |
bath = doc.getElementsByTagName('bathrooms')[0].firstChild.data | |
bed = doc.getElementsByTagName('bedrooms')[0].firstChild.data | |
price = doc.getElementsByTagName('amount')[0].firstChild.data | |
except: | |
return None | |
return (zipcode, use, int(year), float(bath), int(bed), price) | |
def getpricelist(): | |
li = [] | |
for line in file('addresslist.txt'): | |
data = getaddressdata(line.strip(), 'Cambridge,MA') | |
if data != None: | |
li.append(data) | |
return li |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment