Skip to content

Instantly share code, notes, and snippets.

@takuma104
Created February 17, 2023 17:26
Show Gist options
  • Save takuma104/6cdb6d9aa27f67462f11554cccdf4b34 to your computer and use it in GitHub Desktop.
Save takuma104/6cdb6d9aa27f67462f11554cccdf4b34 to your computer and use it in GitHub Desktop.
# from https://github.com/lllyasviel/ControlNet/blob/main/gradio_canny2image.py
from share import *
import config
import cv2
import einops
import gradio as gr
import numpy as np
import torch
from PIL import Image
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.canny import apply_canny
from cldm.model import create_model, load_state_dict
from ldm.models.diffusion.ddim import DDIMSampler
from diffusers.utils import load_image
test_prompt = "best quality, extremely detailed, illustration, looking at viewer"
test_negative_prompt = (
"longbody, lowres, bad anatomy, bad hands, missing fingers, "
+ "pubic hair,extra digit, fewer digits, cropped, worst quality, low quality"
)
canny_edged_image = load_image(
"https://huggingface.co/takuma104/controlnet_dev/resolve/main/vermeer_canny_edged.png"
)
@torch.no_grad()
def generate(prompt, n_prompt, seed, control, ddim_steps=20, eta=0.0, scale=9.0, H=512, W=512):
seed_everything(seed)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt] * num_samples)]}
un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
return Image.fromarray(x_samples[0])
if __name__ == '__main__':
num_samples = 1
model = create_model('./models/cldm_v15.yaml').cpu()
model.load_state_dict(load_state_dict('./models/control_sd15_canny.pth', location='cpu'))
model = model.cuda()
ddim_sampler = DDIMSampler(model)
control = torch.from_numpy(np.array(canny_edged_image).copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
for seed in range(4):
image = generate(test_prompt, test_negative_prompt, seed=seed, control=control)
image.save(f'vermeer_canny_edged_seed_{seed}.png')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment