Last active
December 15, 2021 09:05
-
-
Save talhaanwarch/52e2bc8118e2fb411277d81c04970ae7 to your computer and use it in GitHub Desktop.
one cycle PL
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torchvision | |
import torch | |
import torch.nn as nn | |
from time import time | |
from torch.optim.lr_scheduler import OneCycleLR | |
from pytorch_lightning import seed_everything, LightningModule, Trainer | |
from pytorch_lightning.callbacks import EarlyStopping,ModelCheckpoint,LearningRateMonitor | |
from torch.utils.data.dataloader import DataLoader | |
transform=torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Normalize( | |
(0.1307,), (0.3081,)) | |
]) | |
import torch.nn.functional as F | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.conv2_drop = nn.Dropout2d() | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | |
x = x.view(-1, 320) | |
x = F.relu(self.fc1(x)) | |
x = F.dropout(x, training=self.training) | |
x = self.fc2(x) | |
return x | |
class OurModel(LightningModule): | |
def __init__(self): | |
super(OurModel,self).__init__() | |
#architecute | |
self.model = Net() | |
#parameters | |
self.lr=1e-6 | |
self.batch_size=72 | |
self.numworker=12 | |
self.criterion=nn.CrossEntropyLoss() | |
self.train_set=torchvision.datasets.MNIST('files/', train=True, download=True,transform=transform) | |
self.val_set=torchvision.datasets.MNIST('files/', train=False, download=True,transform=transform) | |
def forward(self,x): | |
x= self.model(x) | |
return x | |
def configure_optimizers(self): | |
opt=torch.optim.AdamW(params=self.parameters(),lr=self.lr ) | |
scheduler=OneCycleLR(opt,max_lr=1e-2,epochs=10,steps_per_epoch=len(self.train_set)//self.batch_size//8) | |
lr_scheduler = {'scheduler': scheduler, 'interval': 'step'} | |
return {'optimizer': opt,'lr_scheduler':scheduler} | |
def train_dataloader(self): | |
return DataLoader(self.train_set,batch_size=self.batch_size,shuffle=True) | |
def training_step(self,batch,batch_idx): | |
image,label=batch | |
out=self(image) | |
loss=self.criterion(out,label) | |
return {'loss':loss} | |
def training_epoch_end(self, outputs): | |
loss=torch.stack([x["loss"] for x in outputs]).mean().detach().cpu().numpy().round(2) | |
self.log('train_loss', loss) | |
def val_dataloader(self): | |
ds=DataLoader(self.val_set,batch_size=self.batch_size,shuffle=True) | |
return ds | |
def validation_step(self,batch,batch_idx): | |
image,label=batch | |
out=self(image) | |
loss=self.criterion(out,label) | |
return {'loss':loss} | |
def validation_epoch_end(self, outputs): | |
loss=torch.stack([x["loss"] for x in outputs]).mean().detach().cpu().numpy().round(2) | |
self.log('val_loss', loss) | |
def test_dataloader(self): | |
return DataLoader(DataReader(df_test,aug), batch_size = self.batch_size, | |
num_workers=self.numworker,pin_memory=True,shuffle=False) | |
save_name='onecycle' | |
model_name='resnest50d' | |
model=OurModel() | |
from pytorch_lightning.loggers import NeptuneLogger | |
neptune_logger = NeptuneLogger( | |
api_key=api_token, | |
project="mrtictac96/eye", | |
name=model_name, | |
tags=[model_name, save_name], | |
log_model_checkpoints=False, | |
) | |
seed_everything(0) | |
earlystop=EarlyStopping(monitor="val_loss",patience=10, verbose=True) | |
checkpoint_callback = ModelCheckpoint(monitor='val_loss',dirpath='checkpoints', | |
filename='file',save_last=True) | |
lr_monitor = LearningRateMonitor(logging_interval='step') | |
trainer = Trainer(max_epochs=10, | |
deterministic=True, | |
gpus=-1,precision=16, | |
accumulate_grad_batches=8, | |
enable_progress_bar = False, | |
callbacks=[checkpoint_callback,lr_monitor], | |
logger=neptune_logger, | |
num_sanity_val_steps=0 | |
) | |
start=time() | |
trainer.fit(model) | |
train_time=time()-start | |
print('training time',train_time) | |
neptune_logger.run['train_time'].log(train_time) | |
neptune_logger.experiment.stop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is how learning rate look like