Last active
February 15, 2025 17:07
-
-
Save tam17aki/049efa97d1c9a8896a34786d5cf38bbd to your computer and use it in GitHub Desktop.
A demonstration for calculating pseudo-inverse matrix using the GNU Scientific Library (GSL).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* ***************************************************************************** | |
A demonstration for calculating pseudo-inverse matrix using the GNU Scientific | |
Library (GSL). | |
Copyright (C) 2025 by Akira TAMAMORI | |
This program is free software; you can redistribute it and/or modify it under | |
the terms of the GNU General Public License as published by the Free Software | |
Foundation; either version 2 of the License, or (at your option) any later | |
version. | |
This program is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A | |
PARTICULAR PURPOSE. See the GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License along with | |
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin | |
Street, Fifth Floor, Boston, MA 02110-1301, USA. | |
***************************************************************************** */ | |
/* ***************************************************************************** | |
This program utilizes the GNU Scientific Library (GSL). GSL is licensed under | |
the GNU General Public License version 3 or later. See the GSL documentation or | |
source code for its copyright notice. | |
***************************************************************************** */ | |
#include <gsl/gsl_linalg.h> | |
#include <gsl/gsl_matrix.h> | |
#include <gsl/gsl_vector.h> | |
#include <stdio.h> | |
double frobenius_norm(const gsl_matrix *A, const gsl_matrix *B) { | |
/* Calculate Frobenius norm between two matrices. | |
Args: | |
A (const gsl_matrix *): The first matrix. | |
B (const gsl_matrix *): The second matrix. | |
*/ | |
double sum = 0.0; | |
for (size_t i = 0; i < A->size1; i++) { | |
for (size_t j = 0; j < A->size2; j++) { | |
double diff = gsl_matrix_get(A, i, j) - gsl_matrix_get(B, i, j); | |
sum += diff * diff; | |
} | |
} | |
return sqrt(sum); | |
} | |
void pseudo_inverse(const gsl_matrix *M, double tolerance_level, | |
gsl_matrix *M_pinv) { | |
/* Calculate the pseudo-inverse for a given matrix. | |
Args: | |
M (const gsl_matrix *): The original matrix. | |
tolerance_level (double): The tolerance level of singular value. | |
M_pinv (gsl_matrix *): The pseudo-inverse of M. | |
*/ | |
int m = M->size1; | |
int n = M->size2; | |
gsl_matrix *U = gsl_matrix_alloc(m, n); | |
gsl_matrix *V = gsl_matrix_alloc(n, n); | |
gsl_vector *S = gsl_vector_alloc(n); | |
gsl_vector *work = gsl_vector_alloc(n); | |
gsl_vector *col_vector = gsl_vector_alloc(m); | |
gsl_matrix_memcpy(U, M); | |
gsl_linalg_SV_decomp(U, V, S, work); | |
for (int i = 0; i < n; i++) { | |
double s = gsl_vector_get(S, i); | |
gsl_matrix_get_col(col_vector, U, i); | |
if (s > tolerance_level) { | |
gsl_vector_scale(col_vector, 1.0 / s); | |
} else { | |
gsl_vector_set_zero(col_vector); | |
} | |
gsl_matrix_set_col(U, i, col_vector); | |
} | |
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, V, U, 0.0, M_pinv); | |
gsl_matrix_free(U); | |
gsl_matrix_free(V); | |
gsl_vector_free(S); | |
gsl_vector_free(work); | |
gsl_vector_free(col_vector); | |
} | |
int main(void) { | |
int m = 3; // number of rows | |
int n = 2; // number of columns | |
// Initialize matrix A | |
gsl_matrix *A = gsl_matrix_alloc(m, n); | |
gsl_matrix_set(A, 0, 0, 1.0); | |
gsl_matrix_set(A, 0, 1, 2.0); | |
gsl_matrix_set(A, 1, 0, 3.0); | |
gsl_matrix_set(A, 1, 1, 4.0); | |
gsl_matrix_set(A, 2, 0, 5.0); | |
gsl_matrix_set(A, 2, 1, 6.0); | |
// Calculate the pseudo-inverse A+ | |
gsl_matrix *A_pinv = gsl_matrix_alloc(n, m); | |
double tol = 1e-10; // Set an appropriate threshold | |
pseudo_inverse(A, tol, A_pinv); | |
// Calculate the reconstructed matrix: A * A+ * A = A | |
gsl_matrix *A_reconstructed = gsl_matrix_alloc(m, n); | |
gsl_matrix *temp_matrix = gsl_matrix_alloc(m, m); | |
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, A, A_pinv, 0.0, | |
temp_matrix); // A * A+ | |
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, temp_matrix, A, 0.0, | |
A_reconstructed); // (A * A+) * A | |
gsl_matrix_free(temp_matrix); | |
// Calculate the reconstruction error: ||A - A_reconstructed||_F | |
double reconstruction_error = frobenius_norm(A, A_reconstructed); | |
// Display the results | |
printf("Original Matrix A:\n"); | |
for (int i = 0; i < m; i++) { | |
for (int j = 0; j < n; j++) { | |
printf("%f ", gsl_matrix_get(A, i, j)); | |
} | |
printf("\n"); | |
} | |
printf("\nPseudo Inverse A+:\n"); | |
for (int i = 0; i < n; i++) { | |
for (int j = 0; j < m; j++) { | |
printf("%f ", gsl_matrix_get(A_pinv, i, j)); | |
} | |
printf("\n"); | |
} | |
// Display the reconstruction error | |
printf("\nReconstruction Error: %e\n", reconstruction_error); | |
// Free memory | |
gsl_matrix_free(A); | |
gsl_matrix_free(A_pinv); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment