Skip to content

Instantly share code, notes, and snippets.

@tam17aki
Last active February 15, 2025 17:07
Show Gist options
  • Save tam17aki/049efa97d1c9a8896a34786d5cf38bbd to your computer and use it in GitHub Desktop.
Save tam17aki/049efa97d1c9a8896a34786d5cf38bbd to your computer and use it in GitHub Desktop.
A demonstration for calculating pseudo-inverse matrix using the GNU Scientific Library (GSL).
/* *****************************************************************************
A demonstration for calculating pseudo-inverse matrix using the GNU Scientific
Library (GSL).
Copyright (C) 2025 by Akira TAMAMORI
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.
***************************************************************************** */
/* *****************************************************************************
This program utilizes the GNU Scientific Library (GSL). GSL is licensed under
the GNU General Public License version 3 or later. See the GSL documentation or
source code for its copyright notice.
***************************************************************************** */
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <stdio.h>
double frobenius_norm(const gsl_matrix *A, const gsl_matrix *B) {
/* Calculate Frobenius norm between two matrices.
Args:
A (const gsl_matrix *): The first matrix.
B (const gsl_matrix *): The second matrix.
*/
double sum = 0.0;
for (size_t i = 0; i < A->size1; i++) {
for (size_t j = 0; j < A->size2; j++) {
double diff = gsl_matrix_get(A, i, j) - gsl_matrix_get(B, i, j);
sum += diff * diff;
}
}
return sqrt(sum);
}
void pseudo_inverse(const gsl_matrix *M, double tolerance_level,
gsl_matrix *M_pinv) {
/* Calculate the pseudo-inverse for a given matrix.
Args:
M (const gsl_matrix *): The original matrix.
tolerance_level (double): The tolerance level of singular value.
M_pinv (gsl_matrix *): The pseudo-inverse of M.
*/
int m = M->size1;
int n = M->size2;
gsl_matrix *U = gsl_matrix_alloc(m, n);
gsl_matrix *V = gsl_matrix_alloc(n, n);
gsl_vector *S = gsl_vector_alloc(n);
gsl_vector *work = gsl_vector_alloc(n);
gsl_vector *col_vector = gsl_vector_alloc(m);
gsl_matrix_memcpy(U, M);
gsl_linalg_SV_decomp(U, V, S, work);
for (int i = 0; i < n; i++) {
double s = gsl_vector_get(S, i);
gsl_matrix_get_col(col_vector, U, i);
if (s > tolerance_level) {
gsl_vector_scale(col_vector, 1.0 / s);
} else {
gsl_vector_set_zero(col_vector);
}
gsl_matrix_set_col(U, i, col_vector);
}
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, V, U, 0.0, M_pinv);
gsl_matrix_free(U);
gsl_matrix_free(V);
gsl_vector_free(S);
gsl_vector_free(work);
gsl_vector_free(col_vector);
}
int main(void) {
int m = 3; // number of rows
int n = 2; // number of columns
// Initialize matrix A
gsl_matrix *A = gsl_matrix_alloc(m, n);
gsl_matrix_set(A, 0, 0, 1.0);
gsl_matrix_set(A, 0, 1, 2.0);
gsl_matrix_set(A, 1, 0, 3.0);
gsl_matrix_set(A, 1, 1, 4.0);
gsl_matrix_set(A, 2, 0, 5.0);
gsl_matrix_set(A, 2, 1, 6.0);
// Calculate the pseudo-inverse A+
gsl_matrix *A_pinv = gsl_matrix_alloc(n, m);
double tol = 1e-10; // Set an appropriate threshold
pseudo_inverse(A, tol, A_pinv);
// Calculate the reconstructed matrix: A * A+ * A = A
gsl_matrix *A_reconstructed = gsl_matrix_alloc(m, n);
gsl_matrix *temp_matrix = gsl_matrix_alloc(m, m);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, A, A_pinv, 0.0,
temp_matrix); // A * A+
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, temp_matrix, A, 0.0,
A_reconstructed); // (A * A+) * A
gsl_matrix_free(temp_matrix);
// Calculate the reconstruction error: ||A - A_reconstructed||_F
double reconstruction_error = frobenius_norm(A, A_reconstructed);
// Display the results
printf("Original Matrix A:\n");
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
printf("%f ", gsl_matrix_get(A, i, j));
}
printf("\n");
}
printf("\nPseudo Inverse A+:\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
printf("%f ", gsl_matrix_get(A_pinv, i, j));
}
printf("\n");
}
// Display the reconstruction error
printf("\nReconstruction Error: %e\n", reconstruction_error);
// Free memory
gsl_matrix_free(A);
gsl_matrix_free(A_pinv);
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment