Created
March 3, 2025 10:50
-
-
Save tam17aki/1b5aae983d325dd9867f19a34d56d993 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
"""A demonstration script of Hopfield Network to evaluate dynamics of recall process. | |
Copyright (C) 2025 by Akira TAMAMORI | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
import argparse | |
import numpy as np | |
import numpy.typing as npt | |
from scipy.special import expit | |
def limited_float(x: str) -> float: | |
"""Convert the input to a float and checks if it's within the range [0.0, 1.0]. | |
Args: | |
x (str): The value to convert and check. | |
Returns: | |
y (float): The float value if it's within the range. | |
Raises: | |
argparse.ArgumentTypeError: If the value is not a float or is outside the range. | |
""" | |
try: | |
y = float(x) | |
except ValueError as exc: | |
raise argparse.ArgumentTypeError(f"{x} is not a float value") from exc | |
if y < 0.0 or y > 1.0: | |
raise argparse.ArgumentTypeError(f"{x} is not within the range [0.0, 1.0]") | |
return y | |
def parse_arguments() -> argparse.Namespace: | |
"""Parse command line arguments. | |
Returns: | |
argparse.Namespace: An object containing the parsed arguments. | |
""" | |
parser = argparse.ArgumentParser(description="Hopfield Network Simulation") | |
parser.add_argument( | |
"--num_neurons", type=int, default=20, help="Number of neurons (default: 20)" | |
) | |
parser.add_argument( | |
"--num_patterns", | |
type=int, | |
default=3, | |
help="Number of patterns to be learned (default: 3)", | |
) | |
parser.add_argument( | |
"--neuron_threshold", | |
type=float, | |
default=0.0, | |
help="Activation threshold for the neurons (default: 0.0)", | |
) | |
parser.add_argument( | |
"--num_steps", | |
type=int, | |
default=30, | |
help="The number of steps for recall process (default: 30)", | |
) | |
parser.add_argument( | |
"--similarity", | |
default=0.5, | |
type=limited_float, | |
help="Similarity of initial pattern (default: 0.5)", | |
) | |
parser.add_argument( | |
"--num_updates", | |
type=int, | |
default=10, | |
help="The number of updates in learning weights (default: 10)", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1.0, | |
help="The learning rate (default: 1.0)", | |
) | |
parser.add_argument( | |
"--weight_decay", | |
type=float, | |
default=0.0, | |
help="The scale of weight decay (default: 0.0)", | |
) | |
parser.add_argument( | |
"--log_file", | |
type=str, | |
default="log.txt", | |
help="Filename to save direction cosines (default: log.txt)", | |
) | |
return parser.parse_args() | |
def direction_cosine( | |
pattern1: npt.NDArray[np.int64], pattern2: npt.NDArray[np.int64] | |
) -> float: | |
"""Calculate a direction cosine (similarity) between two patterns. | |
Args: | |
pattern1 (npt.NDArray[np.int64]): The bit pattern. | |
pattern2 (npt.NDArray[np.int64]): The bit pattern. | |
Returns: | |
dircos (float): Direction cosine (similarity). | |
""" | |
num_neurons = len(pattern1) | |
distance = np.dot(pattern1, pattern2) | |
dircos: float = distance / num_neurons | |
return dircos | |
def learn( | |
patterns: npt.NDArray[np.int64], | |
num_updates: int = 10, | |
lr: float = 0.01, | |
weight_decay: float = 0.0, | |
) -> npt.NDArray[np.float64]: | |
"""Learn the given patterns using a logistic regression. | |
Args: | |
patterns (npt.NDArray[np.int64]): A 2D NumPy array where each row | |
represents a pattern. | |
num_updates (int): The number of parameter updates. | |
lr (float): Learning rate. | |
weight_decay (float): Weight decay. | |
Returns: | |
weights (npt.NDArray[np.float64]): The learned weights of the network. | |
""" | |
# Initialize the weights by Hebbian learning rule | |
num_neurons = patterns.shape[1] | |
weights = (patterns.T @ patterns).astype(np.float64) | |
weights = weights / num_neurons | |
np.fill_diagonal(weights, 0.0) | |
# Optimize weights via gradient decent | |
num_patterns = patterns.shape[0] | |
targets = np.copy(patterns) | |
targets[targets == -1] = 0 | |
for _ in range(num_updates): | |
activation = expit(patterns @ weights) | |
_grad = -(targets - activation).T @ patterns / num_patterns | |
grad = (_grad + _grad.T) / 2 | |
weights = weights - lr * (grad + weight_decay * weights) | |
np.fill_diagonal(weights, 0.0) | |
return weights | |
def recall( | |
initial_state: npt.NDArray[np.int64], | |
reference_state: npt.NDArray[np.int64], | |
weights: npt.NDArray[np.float64], | |
num_steps: int, | |
neuron_threshold: float, | |
) -> npt.NDArray[np.float64]: | |
"""Recall a pattern from the network, starting from the initial state. | |
Args: | |
initial_state (npt.NDArray[np.int64]): The initial state of the network. | |
reference_state (npt.NDArray[np.int64]): The reference state. | |
weights (npt.NDArray[np.float64]): The weights of the network. | |
num_steps (int): The number of steps for the recall process. | |
neuron_threshold (float): Activation threshold for the neurons. | |
Returns: | |
dircos_array (npt.NDArray[np.float64]): The array of direction cosines. | |
""" | |
state = initial_state.copy() | |
dircos_list = [] | |
dircos = direction_cosine(state, reference_state) | |
dircos_list.append(dircos) | |
for _ in range(num_steps): | |
state = np.sign(weights @ state - neuron_threshold) | |
state[state == 0] = np.random.choice([-1, 1], size=np.sum(state == 0)) | |
dircos = direction_cosine(state, reference_state) | |
dircos_list.append(dircos) | |
dircos_array = np.array(dircos_list) | |
return dircos_array | |
def define_patterns(num_neurons: int, num_patterns: int) -> npt.NDArray[np.int64]: | |
"""Define bit patterns to be learned. | |
Args: | |
num_neurons (int): The number of neurons in the network. | |
num_patterns (int): The number of patterns to generate. | |
Returns: | |
npt.NDArray[np.int64]: A 2D NumPy array where each row represents a pattern. | |
""" | |
patterns: npt.NDArray[np.int64] = ( | |
np.random.randint(0, 2, (num_patterns, num_neurons), dtype=np.int64) * 2 - 1 | |
) | |
return patterns | |
def init_state( | |
pattern: npt.NDArray[np.int64], num_neurons: int, initial_dircos: float | |
) -> npt.NDArray[np.int64]: | |
"""Initialize state vector with direction cosine to original pattern. | |
Flips a subset of pattern elements randomly to achieve the desired | |
direction cosine. Creates initial states similar to the original | |
pattern but with controlled levels of noise. | |
Args: | |
pattern (npt.NDArray[np.int64]): The original pattern. | |
num_neurons (int): The number of neurons in the network. | |
initial_dircos (float): Initial direction cosine, determining | |
the similarity between the pattern and the initial state. | |
Returns: | |
initial_state (npt.NDArray[np.int64]): The initial state. | |
""" | |
hamming_dist = (1 - initial_dircos) / 2 # a normalized Hamming distance | |
num_to_extract = int(num_neurons * hamming_dist) | |
numbers = np.arange(num_neurons) | |
np.random.shuffle(numbers) | |
initial_state: npt.NDArray[np.int64] = pattern.copy() | |
initial_state[numbers[np.arange(num_to_extract)]] *= -1 | |
return initial_state | |
def eval_dynamics( | |
patterns: npt.NDArray[np.int64], | |
weights: npt.NDArray[np.float64], | |
args: argparse.Namespace, | |
) -> None: | |
"""Evaluate dynamics of recall process in the network. | |
Args: | |
patterns (npt.NDArray[np.int64]): The patterns to test. | |
weights (npt.NDArray[np.float64]): The weights of the network. | |
args (argparse.Namespace): The command line arguments. | |
""" | |
index = np.random.choice(np.arange(args.num_patterns)) | |
initial_state = init_state(patterns[index], args.num_neurons, args.similarity) | |
dircos_array = recall( | |
initial_state, patterns[index], weights, args.num_steps, args.neuron_threshold | |
) | |
with open(args.log_file, "w", encoding="utf-8") as file_handler: | |
for i in range(args.num_steps + 1): | |
print(dircos_array[i], file=file_handler) | |
def main() -> None: | |
"""Run the Hopfield network simulation.""" | |
# 1. Set up argument parser | |
args = parse_arguments() | |
# 2. Define bit patterns to be learned | |
patterns = define_patterns(args.num_neurons, args.num_patterns) | |
# 3. Learn patterns using logistic regression | |
weights = learn(patterns, args.num_updates, args.learning_rate, args.weight_decay) | |
# 4. Evaluate dynamics of recall process | |
eval_dynamics(patterns, weights, args) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment