Last active
May 14, 2023 22:53
-
-
Save tam17aki/e2525d505de79dde7eb45739bf4f8503 to your computer and use it in GitHub Desktop.
An implementation of zoneout regularizer on LSTM-RNN in Tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (C) 2017 by Akira TAMAMORI | |
# | |
# This program is free software; you can redistribute it and/or modify it under | |
# the terms of the GNU General Public License as published by the Free Software | |
# Foundation, either version 3 of the License, or (at your option) any later | |
# version. | |
# | |
# This program is distributed in the hope that it will be useful, but WITHOUT | |
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more | |
# details. | |
# | |
# You should have received a copy of the GNU General Public License along with | |
# this program. If not, see <http://www.gnu.org/licenses/>. | |
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Notice: | |
# This file is tested on TensorFlow v0.12.0 only. | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.python.ops.rnn_cell import RNNCell | |
# Thanks to 'initializers_enhanced.py' of Project RNN Enhancement: | |
# https://github.com/nicolas-ivanov/Seq2Seq_Upgrade_TensorFlow/blob/master/rnn_enhancement/initializers_enhanced.py | |
def orthogonal_initializer(scale=1.0): | |
def _initializer(shape, dtype=tf.float32): | |
flat_shape = (shape[0], np.prod(shape[1:])) | |
a = np.random.normal(0.0, 1.0, flat_shape) | |
u, _, v = np.linalg.svd(a, full_matrices=False) | |
q = u if u.shape == flat_shape else v | |
q = q.reshape(shape) | |
return tf.constant(scale * q[:shape[0], :shape[1]], dtype=tf.float32) | |
return _initializer | |
class ZoneoutLSTMCell(RNNCell): | |
"""Zoneout Regularization for LSTM-RNN. | |
""" | |
def __init__(self, num_units, is_training, input_size=None, | |
use_peepholes=False, cell_clip=None, | |
initializer=orthogonal_initializer(), | |
num_proj=None, proj_clip=None, | |
forget_bias=1.0, | |
state_is_tuple=True, | |
activation=tf.tanh, | |
zoneout_factor_cell=0.0, | |
zoneout_factor_output=0.0, | |
reuse=None): | |
"""Initialize the parameters for an LSTM cell. | |
Args: | |
num_units: int, The number of units in the LSTM cell. | |
is_training: bool, set True when training. | |
use_peepholes: bool, set True to enable diagonal/peephole | |
connections. | |
cell_clip: (optional) A float value, if provided the cell state | |
is clipped by this value prior to the cell output activation. | |
initializer: (optional) The initializer to use for the weight | |
matrices. | |
num_proj: (optional) int, The output dimensionality for | |
the projection matrices. If None, no projection is performed. | |
forget_bias: Biases of the forget gate are initialized by default | |
to 1 in order to reduce the scale of forgetting at the beginning of | |
the training. | |
activation: Activation function of the inner states. | |
""" | |
if not state_is_tuple: | |
tf.logging.warn( | |
"%s: Using a concatenated state is slower and will soon be " | |
"deprecated. Use state_is_tuple=True.", self) | |
if input_size is not None: | |
tf.logging.warn( | |
"%s: The input_size parameter is deprecated.", self) | |
if not (zoneout_factor_cell >= 0.0 and zoneout_factor_cell <= 1.0): | |
raise ValueError( | |
"Parameter zoneout_factor_cell must be between 0 and 1") | |
if not (zoneout_factor_output >= 0.0 and zoneout_factor_output <= 1.0): | |
raise ValueError( | |
"Parameter zoneout_factor_cell must be between 0 and 1") | |
self.num_units = num_units | |
self.is_training = is_training | |
self.use_peepholes = use_peepholes | |
self.cell_clip = cell_clip | |
self.num_proj = num_proj | |
self.proj_clip = proj_clip | |
self.initializer = initializer | |
self.forget_bias = forget_bias | |
self.state_is_tuple = state_is_tuple | |
self.activation = activation | |
self.zoneout_factor_cell = zoneout_factor_cell | |
self.zoneout_factor_output = zoneout_factor_output | |
if num_proj: | |
self._state_size = ( | |
tf.nn.rnn_cell.LSTMStateTuple(num_units, num_proj) | |
if state_is_tuple else num_units + num_proj) | |
self._output_size = num_proj | |
else: | |
self._state_size = ( | |
tf.nn.rnn_cell.LSTMStateTuple(num_units, num_units) | |
if state_is_tuple else 2 * num_units) | |
self._output_size = num_units | |
@property | |
def state_size(self): | |
return self._state_size | |
@property | |
def output_size(self): | |
return self._output_size | |
def __call__(self, inputs, state, scope=None): | |
num_proj = self.num_units if self.num_proj is None else self.num_proj | |
if self.state_is_tuple: | |
(c_prev, h_prev) = state | |
else: | |
c_prev = tf.slice(state, [0, 0], [-1, self.num_units]) | |
h_prev = tf.slice(state, [0, self.num_units], [-1, num_proj]) | |
# c_prev : Tensor with the size of [batch_size, state_size] | |
# h_prev : Tensor with the size of [batch_size, state_size/2] | |
dtype = inputs.dtype | |
input_size = inputs.get_shape().with_rank(2)[1] | |
with tf.variable_scope(scope or type(self).__name__): | |
if input_size.value is None: | |
raise ValueError( | |
"Could not infer input size from inputs.get_shape()[-1]") | |
# i = input_gate, j = new_input, f = forget_gate, o = output_gate | |
lstm_matrix = _linear([inputs, h_prev], 4 * self.num_units, True) | |
i, j, f, o = tf.split(1, 4, lstm_matrix) | |
# diagonal connections | |
if self.use_peepholes: | |
w_f_diag = tf.get_variable( | |
"W_F_diag", shape=[self.num_units], dtype=dtype) | |
w_i_diag = tf.get_variable( | |
"W_I_diag", shape=[self.num_units], dtype=dtype) | |
w_o_diag = tf.get_variable( | |
"W_O_diag", shape=[self.num_units], dtype=dtype) | |
with tf.name_scope(None, "zoneout"): | |
# make binary mask tensor for cell | |
keep_prob_cell = tf.convert_to_tensor( | |
self.zoneout_factor_cell, | |
dtype=c_prev.dtype | |
) | |
random_tensor_cell = keep_prob_cell | |
random_tensor_cell += \ | |
tf.random_uniform(tf.shape(c_prev), | |
seed=None, dtype=c_prev.dtype) | |
binary_mask_cell = tf.floor(random_tensor_cell) | |
# 0 <-> 1 swap | |
binary_mask_cell_complement = tf.ones(tf.shape(c_prev)) \ | |
- binary_mask_cell | |
# make binary mask tensor for output | |
keep_prob_output = tf.convert_to_tensor( | |
self.zoneout_factor_output, | |
dtype=h_prev.dtype | |
) | |
random_tensor_output = keep_prob_output | |
random_tensor_output += \ | |
tf.random_uniform(tf.shape(h_prev), | |
seed=None, dtype=h_prev.dtype) | |
binary_mask_output = tf.floor(random_tensor_output) | |
# 0 <-> 1 swap | |
binary_mask_output_complement = tf.ones(tf.shape(h_prev)) \ | |
- binary_mask_output | |
# apply zoneout for cell | |
if self.use_peepholes: | |
c_temp = c_prev * \ | |
tf.sigmoid(f + self.forget_bias + | |
w_f_diag * c_prev) + \ | |
tf.sigmoid(i + w_i_diag * c_prev) * \ | |
self.activation(j) | |
if self.is_training and self.zoneout_factor_cell > 0.0: | |
c = binary_mask_cell * c_prev + \ | |
binary_mask_cell_complement * c_temp | |
else: | |
c = c_temp | |
else: | |
c_temp = c_prev * tf.sigmoid(f + self.forget_bias) + \ | |
tf.sigmoid(i) * self.activation(j) | |
if self.is_training and self.zoneout_factor_cell > 0.0: | |
c = binary_mask_cell * c_prev + \ | |
binary_mask_cell_complement * c_temp | |
else: | |
c = c_temp | |
if self.cell_clip is not None: | |
c = tf.clip_by_value(c, -self.cell_clip, self.cell_clip) | |
# apply zoneout for output | |
if self.use_peepholes: | |
h_temp = tf.sigmoid(o + w_o_diag * c) * self.activation(c) | |
if self.is_training and self.zoneout_factor_output > 0.0: | |
h = binary_mask_output * h_prev + \ | |
binary_mask_output_complement * h_temp | |
else: | |
h = h_temp | |
else: | |
h_temp = tf.sigmoid(o) * self.activation(c) | |
if self.is_training and self.zoneout_factor_output > 0.0: | |
h = binary_mask_output * h_prev + \ | |
binary_mask_output_complement * h_temp | |
else: | |
h = h_temp | |
# apply prejection | |
if self.num_proj is not None: | |
w_proj = tf.get_variable( | |
"W_P", [self.num_units, num_proj], dtype=dtype) | |
h = tf.matmul(h, w_proj) | |
if self.proj_clip is not None: | |
h = tf.clip_by_value(h, -self.proj_clip, self.proj_clip) | |
new_state = (tf.nn.rnn_cell.LSTMStateTuple(c, h) | |
if self.state_is_tuple else tf.concat(1, [c, h])) | |
return h, new_state | |
def _linear(args, output_size, bias, bias_start=0.0, scope=None): | |
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. | |
Args: | |
args: a 2D Tensor or a list of 2D, batch x n, Tensors. | |
output_size: int, second dimension of W[i]. | |
bias: boolean, whether to add a bias term or not. | |
bias_start: starting value to initialize the bias; 0 by default. | |
scope: VariableScope for the created subgraph; defaults to "Linear". | |
Returns: | |
A 2D Tensor with shape [batch x output_size] equal to | |
sum_i(args[i] * W[i]), where W[i]s are newly created matrices. | |
Raises: | |
ValueError: if some of the arguments has unspecified or wrong shape. | |
""" | |
if args is None or (isinstance(args, (list, tuple)) and not args): | |
raise ValueError("`args` must be specified") | |
if not isinstance(args, (list, tuple)): | |
args = [args] | |
# Calculate the total size of arguments on dimension 1. | |
total_arg_size = 0 | |
shapes = [a.get_shape().as_list() for a in args] | |
for shape in shapes: | |
if len(shape) != 2: | |
raise ValueError( | |
"Linear is expecting 2D arguments: %s" % str(shapes)) | |
if not shape[1]: | |
raise ValueError( | |
"Linear expects shape[1] of arguments: %s" % str(shapes)) | |
else: | |
total_arg_size += shape[1] | |
# Now the computation. | |
with tf.variable_scope(scope or "Linear"): | |
matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) | |
if len(args) == 1: | |
res = tf.matmul(args[0], matrix) | |
else: | |
res = tf.matmul(tf.concat(1, args), matrix) | |
if not bias: | |
return res | |
bias_term = tf.get_variable( | |
"Bias", [output_size], | |
initializer=tf.constant_initializer(bias_start)) | |
return res + bias_term |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello.
Please how can I do for the zoneout cells to return thier hidden and cell states ?