Created
October 23, 2015 21:10
-
-
Save tanimislam/9683d932aedcc03fee17 to your computer and use it in GitHub Desktop.
Python module that contains functionality to calculate a FUNKY collection of distribution functions, that sum to 1 over M sample points.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import numpy, pandas, pylab | |
def _return_prob_dist_sub(M = 5, N = 1000000): | |
us = numpy.random.random_sample((M-1, N)) | |
ainits = numpy.zeros((M, N)) | |
# | |
z = numpy.ones( N ) | |
ainits[0,:] = z * us[0,:] | |
for jdx in xrange(1, M - 1): | |
z = z * (1 - us[jdx-1,:] ) | |
ainits[jdx,:] = z * us[jdx,:] | |
z = z * (1 - us[M-2,:] ) | |
ainits[M-1,:] = z | |
# | |
alpha_shuffle = numpy.zeros((M, N)) | |
idx_shuffle = numpy.zeros((M, N), dtype=int) | |
for jdx in xrange(N): | |
a0 = ainits[:,jdx] | |
vals = numpy.random.permutation( numpy.linspace( 0, M-1, M, dtype=int)) | |
alpha_shuffle[:,jdx] = a0[vals] | |
return alpha_shuffle | |
def calc_prob_dist(M = 5, N = 1000000): | |
assert(isinstance(M, int)) | |
assert(isinstance(N, int)) | |
assert(M >= 1) | |
assert(N >= 1) | |
# | |
nums, rem = divmod( N, 1000000) | |
alpha_shuffle = numpy.zeros((M, N)) | |
for idx in xrange(nums): | |
alpha_shuffle[:,idx*1000000:(idx+1)*1000000] = _return_prob_dist_sub(M, 1000000) | |
if rem != 0: | |
alpha_shuffle[:,nums*1000000:] = _return_prob_dist_sub(M, rem) | |
return alpha_shuffle | |
def draw_data( alpha_shuffle ): | |
vars, lengths = alpha_shuffle.shape | |
df = pandas.DataFrame({ r'alpha_%d' % (idx + 1) : pandas.Series( alpha_shuffle[idx,:] ) for | |
idx in xrange(vars) }) | |
df.plot(kind = 'hist', bins = 1000, normed = True, alpha = 0.1, linewidth = 0) | |
pylab.savefig('distrib_%d_%d.pdf' % (vars, lengths), bbox_inches = 'tight') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment