Created
November 8, 2016 08:59
-
-
Save taotao54321/17f7319c6466eedb5c42525f8aba1409 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Q学習 | |
# 探索時e-greedy | |
import sys | |
import random | |
import os.path | |
import pprint | |
import numpy as np | |
import gym | |
DEBUG = False | |
#DEBUG = True | |
ENVS = { | |
"4x4" : "FrozenLake-v0", | |
"8x8" : "FrozenLake8x8-v0", | |
} | |
def argmax_multi(x): | |
maxval = max(x) | |
return tuple(idx for idx, val in enumerate(x) if val == maxval) | |
def error(msg): | |
sys.exit(msg) | |
class Agent: | |
def __init__(self, env, epsilon): | |
self.env = env | |
self.epsilon = epsilon | |
self.q = [[.0,.0,.0,.0] for _ in range(env.observation_space.n)] | |
def learn(self, alpha, gamma): | |
"""1エピソード学習""" | |
state = self.env.reset() | |
if DEBUG: self.env.render() | |
for t in range(self.env.spec.timestep_limit): | |
# 現在のQ関数に基づくe-greedy | |
act = self._e_greedy(state) | |
state_next, reward, done, info = self.env.step(act) | |
# qは0で初期化しているので、state_nextが終端状態なら | |
# q_next_maxは0になる | |
q_next_max = max(self.q[state_next]) | |
self.q[state][act] = (1-alpha) * self.q[state][act]\ | |
+ alpha * (reward + gamma*q_next_max) | |
if DEBUG: | |
self.env.render() | |
print(state_next, reward, done, info) | |
pprint.pprint(self.q) | |
if done: | |
return reward | |
else: | |
state = state_next | |
# ターン制限超過 | |
return 0.0 | |
def _e_greedy(self, state): | |
if random.random() < self.epsilon: | |
return self.env.action_space.sample() | |
else: | |
# 同点のケースもありうる(学習初期は全部0だからそうなる) | |
# その場合は同点のものからランダムに選ぶ | |
acts = argmax_multi(self.q[state]) | |
return random.choice(acts) | |
def test(self): | |
"""学習結果を用いて1エピソード実行""" | |
state = self.env.reset() | |
if DEBUG: self.env.render() | |
for t in range(self.env.spec.timestep_limit): | |
act = np.argmax(self.q[state]) | |
state, reward, done, info = self.env.step(act) | |
if DEBUG: | |
self.env.render() | |
print(state, reward, done, info) | |
if done: | |
return reward | |
# ターン制限超過 | |
return 0.0 | |
def usage(): | |
error("Usage: FrozenLake-qlearning <4x4|8x8> <alpha> <gamma> <epsilon> <learn_count> <test_count> [recdir]") | |
def main(): | |
if len(sys.argv) < 7: usage() | |
env_name = ENVS[sys.argv[1]] | |
alpha = float(sys.argv[2]) | |
gamma = float(sys.argv[3]) | |
epsilon = float(sys.argv[4]) | |
learn_count = int(sys.argv[5]) | |
test_count = int(sys.argv[6]) | |
rec_dir = sys.argv[7] if len(sys.argv) >= 8 else None | |
print("# <{}> alpha={}, gamma={}, epsilon={}, learn_count={} test_count={}".format( | |
env_name, alpha, gamma, epsilon, learn_count, test_count)) | |
env = gym.make(env_name) | |
print("# step-max: {}".format(env.spec.timestep_limit)) | |
if rec_dir: | |
subdir = "FrozenLake{}-qlearning2-alpha{}-gamma{}-eps{}-learn{}-test{}".format( | |
sys.argv[1], alpha, gamma, epsilon, learn_count, test_count | |
) | |
env.monitor.start(os.path.join(rec_dir, subdir)) | |
agent = Agent(env, epsilon) | |
print("##### LEARNING #####") | |
reward_total = 0.0 | |
for episode in range(learn_count): | |
reward_total += agent.learn(alpha, gamma) | |
pprint.pprint(agent.q) | |
print("episodes: {}".format(learn_count)) | |
print("total reward: {}".format(reward_total)) | |
print("average reward: {:.2f}".format(reward_total / learn_count)) | |
print("##### TEST #####") | |
reward_total = 0.0 | |
for episode in range(test_count): | |
reward_total += agent.test() | |
print("episodes: {}".format(test_count)) | |
print("total reward: {}".format(reward_total)) | |
print("average reward: {:.2f}".format(reward_total / test_count)) | |
if rec_dir: env.monitor.close() | |
if __name__ == "__main__": main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment