Last active
February 13, 2022 12:17
-
-
Save taroushirani/08683b4a7357f79713976fa66d61857c to your computer and use it in GitHub Desktop.
Make graphs of learning curves from NNSVS outputs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# /usr/bin/python | |
import argparse | |
import sys | |
import os | |
from os.path import basename, expanduser, join | |
import glob | |
import re | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
def process_log(f): | |
log_re = re.compile(".* \\- \\[(?P<dataset>[\w_]+)\\] \\[Epoch (?P<epoch>\d+)\\]: loss (?P<loss>[\\-\d.]+)") | |
model_re = re.compile("\s+.*_target_:\s+nnsvs\.model\.(?P<model_name>\w+)$") | |
out_dir_re = re.compile("\s{2}out_dir:\s+(?P<out_dir>[\w./]+)$") | |
data = [] | |
model_name = None | |
training_type = None | |
for line in f: | |
# model name | |
match = model_re.match(line) | |
if match: | |
model_name = match["model_name"] | |
# Which model is trained? (timelag or duration or acoustic) | |
match = out_dir_re.match(line) | |
if match: | |
training_type = basename(match["out_dir"]) | |
# train information | |
match = log_re.match(line) | |
if match: | |
data.append([match["dataset"], int(match["epoch"]), float(match["loss"])]) | |
ret = {'model_name': model_name, 'training_type': training_type, | |
"log": pd.DataFrame(data, columns=['dataset', 'epoch', 'loss'])} | |
return ret | |
def get_parser(): | |
parser = argparse.ArgumentParser( | |
description="Make graphs of learning curves from NNSVS outputs", | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | |
) | |
parser.add_argument("recipe_root", type=str, help="Recipe Root directory") | |
parser.add_argument("--output_dir", type=str, help="Directory of output files") | |
return parser | |
args = get_parser().parse_args(sys.argv[1:]) | |
recipe_root = expanduser(args.recipe_root) | |
if args.output_dir != None: | |
output_dir=expanduser(args.output_dir) | |
else: | |
output_dir=recipe_root | |
log_path_re = join(recipe_root, "outputs", "**", "train.log") | |
for log_path in glob.iglob(log_path_re, recursive=True): | |
datetime_re=re.compile(".*(?P<date>\d{4}-\d{2}-\d{2})/(?P<time>\d{2}-\d{2}-\d{2})/.*") | |
match=datetime_re.match(log_path) | |
with open(log_path, 'r', encoding='utf-8') as f: | |
ret = process_log(f) | |
df = ret["log"] | |
if df.empty: | |
continue | |
sns.set_style("whitegrid") | |
fig = plt.figure() | |
ax = fig.add_subplot(1, 1, 1) | |
title = f"{ret['training_type'].capitalize()} ({ret['model_name']})" | |
ax.set_title(title) | |
ax.set_xlabel("Epochs") | |
ax.set_ylabel("Loss") | |
for dataset in ["train_no_dev", "dev"]: | |
df[df["dataset"]==dataset].plot(x="epoch", y="loss", label=dataset, ax=ax) | |
os.makedirs(output_dir, exist_ok=True) | |
output_filename=join(output_dir, f"{match['date']}_{match['time']}_{ret['training_type']}.png") | |
plt.savefig(output_filename) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment