Last active
January 1, 2017 13:34
-
-
Save tasuten/e6bd03d85acf5846157c59d44b9a818c to your computer and use it in GitHub Desktop.
書き初め@2017
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fn is_prime(n: u64) -> bool { | |
return miller_rabin_test(n, | |
[2, 325, 9375, 28178, 450775, 9780504, 1795265022]); | |
} | |
fn miller_rabin_test(n: u64, bases: [u64; 7]) -> bool { | |
match n { | |
0 | 1 => return false, | |
2 | 3 => return true, | |
n if n & 1 == 0 => return false, | |
n => { | |
let mut d = n-1; | |
while d & 1 == 0 { | |
d >>= 1 ; | |
} | |
for base in bases.iter() { | |
let mut t = d; | |
let mut y = mod_pow(*base, t, n); | |
while t != n-1 && y != 1 && y != n-1 { | |
y = ( y * y ) % n; | |
t <<= 1; | |
} | |
if y != n-1 && t & 1 == 0 { | |
return false ; | |
} | |
} | |
return true; | |
} | |
} | |
} | |
fn mod_pow(base: u64, pow: u64, modulo: u64) -> u64{ | |
let mut result = 1; | |
let mut b = base; | |
let mut p = pow; | |
while p > 0 { | |
if p & 1 == 1 { | |
result = ( result * b ) % modulo; | |
} | |
b = (b * b) % modulo; | |
p >>= 1; | |
} | |
return result; | |
} | |
fn main() { | |
let new_year = 2017; | |
if is_prime(new_year) { | |
println!("{} is prime year!", new_year); | |
} else { | |
println!("{} is not prime year...", new_year); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
ミラー–ラビン素数判定法 - Wikipediaと
Deterministic variants of the Miller-Rabin primality test. Miller-Rabin SPRP bases recordsを参考にした