Skip to content

Instantly share code, notes, and snippets.

@tatarize
Created May 5, 2023 22:36
Show Gist options
  • Save tatarize/f4361ebdd563de07d76ec5cb5226122d to your computer and use it in GitHub Desktop.
Save tatarize/f4361ebdd563de07d76ec5cb5226122d to your computer and use it in GitHub Desktop.
Lean Code for the Unit Square transformation from points (x1,x1), (x2,y2), (x3,y3), (x4,y4) to (0,0), (0,1), (1,1), (1,0).
import tactic
def transform : ℚ × ℚ × ℚ × ℚ × ℚ × ℚ × ℚ × ℚ × ℚ → ℚ × ℚ → ℚ × ℚ
| (a, b, c, d, e, f, g, h, i) (x, y) := ((a * x + b * y + c) / (g * x + h * y + i), (d * x + e * y + f) / (g * x + h * y + i))
def xy : ℚ × ℚ := (0, 0)
def xy' : ℚ × ℚ := (0, 1)
def x'y' : ℚ × ℚ := (1, 1)
def x'y : ℚ × ℚ := (1, 0)
example (x1 y1 x2 y2 x3 y3 x4 y4 a b c d e f g h i : ℚ)
: transform (a, b, c, d, e, f, g, h, i) xy = (x1, y1)
∧ transform (a, b, c, d, e, f, g, h, i) xy' = (x2, y2)
∧ transform (a, b, c, d, e, f, g, h, i) x'y' = (x3, y3)
∧ transform (a, b, c, d, e, f, g, h, i) x'y = (x4, y4)
→ false :=
begin
unfold xy xy' x'y' x'y transform,
simp only [mul_one, mul_neg, mul_zero, add_zero, zero_add, prod.ext_iff],
rintros ⟨⟨h1, h2⟩, ⟨h3, h4⟩, ⟨h5, h6⟩, ⟨h7, h8⟩⟩,
rw div_eq_iff at *,
rotate, sorry, sorry, sorry, sorry, sorry, sorry, sorry, sorry,
simp only [mul_one] at *,
rw h1 at h3 h5 h7,
rw h2 at h4 h6 h8,
rw ← eq_sub_iff_add_eq at h7,
rw h7 at h5,
rw ← eq_sub_iff_add_eq at h3,
rw h3 at h5,
rw ← eq_sub_iff_add_eq at h8,
rw h8 at h6,
rw ← eq_sub_iff_add_eq at h4,
rw h4 at h6,
-- solve for g and h
rw [← add_neg_eq_zero] at h5 h6,
simp only [left_distrib] at h5 h6,
rw (by ring: x4 * g + x4 * i - x1 * i + (x2 * h + x2 * i - x1 * i) + x1 * i + -(x3 * g + x3 * h + x3 * i) = g * (x4 - x3) + -(-i * (x4 - x3 + x2 - x1) - h * (x2 - x3))) at h5,
rw (by ring: y4 * g + y4 * i - y1 * i + (y2 * h + y2 * i - y1 * i) + y1 * i + -(y3 * g + y3 * h + y3 * i) = h * (y2 - y3) + -(-i * (y4 - y3 + y2 - y1) - g * (y4 - y3))) at h6,
rw [add_neg_eq_iff_eq_add] at h5 h6,
rw [← eq_div_iff] at h5 h6,
rotate, sorry, sorry,
rw (by ring: (0 + (-i * (y4 - y3 + y2 - y1) - g * (y4 - y3))) / (y2 - y3) = i * ((-y4 + y3 - y2 + y1) / (y2 - y3)) - g * ((y4 - y3) / (y2 - y3))) at h6,
rw (by ring: (0 + (-i * (x4 - x3 + x2 - x1) - h * (x2 - x3))) / (x4 - x3) = i * ((-x4 + x3 - x2 + x1) / (x4 - x3)) - h * ((x2 - x3) / (x4 - x3))) at h5,
generalize j_def: (-y4 + y3 - y2 + y1) / (y2 - y3) = j,
generalize k_def: (-x4 + x3 - x2 + x1) / (x4 - x3) = k,
generalize m_def: (y4 - y3) / (y2 - y3) = m,
generalize n_def: (x2 - x3) / (x4 - x3) = n,
rw [j_def] at h6,
rw [m_def] at h6,
rw [k_def] at h5,
rw [n_def] at h5,
have h9 : h = i * j - g * m,
sorry,
-- inplace rewrite h5 into h6 and vice-versa.
rw h5 at h6,
rw h9 at h5,
rw [← add_neg_eq_zero] at h5 h6,
rw (by ring: h + -(i * j - (i * k - h * n) * m) = h * (1 - n * m) + -(-(i * (k * m - j)))) at h6,
rw (by ring: g + -(i * k - (i * j - g * m) * n) = g * (1 - m * n) + -(-(i * (j * n - k)))) at h5,
rw ← eq_sub_iff_add_eq at h5 h6,
rw [← eq_div_iff] at h5 h6,
rotate, sorry, sorry,
simp at h5 h6,
rw (by ring: -(i * (k * m - j)) / (1 - n * m) = i * (j - k * m) / (1 - m * n)) at h6,
rw (by ring: -(i * (j * n - k)) / (1 - m * n) = i * (k - j * n) / (1 - m * n)) at h5,
sorry,
end
@tatarize
Copy link
Author

tatarize commented May 5, 2023

https://leanprover-community.github.io/lean-web-editor/#url=https%3A%2F%2Fgist.githubusercontent.com%2Ftatarize%2Ff4361ebdd563de07d76ec5cb5226122d%2Fraw%2F077066a6cecb785ad5c1d5a3d376b86b605e39ba%2Funitsquare.lean

        i = 1
        try:
            j = (y1 - y2 + y3 - y4) / (y2 - y3)
            k = (x1 - x2 + x3 - x4) / (x4 - x3)
            m = (y4 - y3) / (y2 - y3)
            n = (x2 - x3) / (x4 - x3)

            h = i * (j - k * m) / (1 - m * n)
            g = i * (k - j * n) / (1 - m * n)
        except ZeroDivisionError:
            h = 0.0
            g = 0.0

        c = x1 * i
        f = y1 * i
        a = x4 * (g + i) - x1 * i
        b = x2 * (h + i) - x1 * i
        d = y4 * (g + i) - y1 * i
        e = y2 * (h + i) - y1 * i

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment