Last active
January 6, 2022 10:28
-
-
Save tatiana/b271fb3522686d301aa01cb3138179bb to your computer and use it in GitHub Desktop.
(A) Sample billing ETL pipeline
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
__author__ = "Kenten Danas" | |
from datetime import datetime | |
import pandas as pd | |
from airflow import DAG | |
from airflow.decorators import dag, task | |
from airflow.providers.snowflake.hooks.snowflake import SnowflakeHook | |
from airflow.providers.snowflake.transfers.s3_to_snowflake import S3ToSnowflakeOperator | |
from airflow.providers.amazon.aws.hooks.s3 import S3Hook | |
S3_BUCKET = 'bucket_name' | |
S3_FILE_PATH = '</path/to/file/' | |
SNOWFLAKE_CONN_ID = 'snowflake' | |
SNOWFLAKE_SCHEMA = 'schema_name' | |
SNOWFLAKE_STAGE = 'stage_name' | |
SNOWFLAKE_WAREHOUSE = 'warehouse_name' | |
SNOWFLAKE_DATABASE = 'database_name' | |
SNOWFLAKE_ROLE = 'role_name' | |
SNOWFLAKE_SAMPLE_TABLE = 'sample_table' | |
SNOWFLAKE_RESULTS_TABLE = 'result_table' | |
@task(task_id='extract_data') | |
def extract_data(): | |
# Join data from two tables and save to dataframe to process | |
query = '''' | |
SELECT * FROM billing_data | |
LEFT JOIN subscription_data | |
ON customer_id=customer_id | |
''' | |
# Make connection to Snowflake and execute query | |
hook = SnowflakeHook(snowflake_conn_id=SNOWFLAKE_CONN_ID) | |
conn = hook.get_conn() | |
cur = conn.cursor() | |
cur.execute(query) | |
results = cur.fetchall() | |
column_names = list(map(lambda t: t[0], cur.description)) | |
df = pd.DataFrame(results) | |
df.columns = column_names | |
return df.to_json() | |
@task(task_id='transform_data') | |
def transform_data(xcom: str) -> str: | |
# Transform data by pivoting | |
df = pd.read_json(xcom) | |
transformed_df = df.pivot_table(index='DATE', | |
values='CUSTOMER_NAME', | |
columns=['TYPE'], | |
aggfunc='count').reset_index() | |
transformed_str = transformed_df.to_string() | |
# Save results to S3 so they can be loaded back to Snowflake | |
s3_hook = S3Hook(aws_conn_id="s3_conn") | |
s3_hook.load_string(transformed_str, 'transformed_file_name.csv', bucket_name=S3_BUCKET, replace=True) | |
@dag(start_date=datetime(2021, 12, 1), schedule_interval='@daily', catchup=False) | |
def classic_billing_dag(): | |
load_subscription_data = S3ToSnowflakeOperator( | |
task_id='load_subscription_data', | |
snowflake_conn_id=SNOWFLAKE_CONN_ID, | |
s3_keys=[S3_FILE_PATH + '/subscription_data.csv'], | |
table=SNOWFLAKE_SAMPLE_TABLE, | |
schema=SNOWFLAKE_SCHEMA, | |
stage=SNOWFLAKE_STAGE, | |
file_format="(type = 'CSV',field_delimiter = ',')", | |
) | |
load_transformed_data = S3ToSnowflakeOperator( | |
task_id='load_transformed_data', | |
snowflake_conn_id=SNOWFLAKE_CONN_ID, | |
s3_keys=[S3_FILE_PATH + '/trasnformed_file_name.csv'], | |
table=SNOWFLAKE_RESULTS_TABLE, | |
schema=SNOWFLAKE_SCHEMA, | |
stage=SNOWFLAKE_STAGE, | |
file_format="(type = 'CSV',field_delimiter = ',')", | |
) | |
extracted_data = extract_data() | |
transformed_data = transform_data(extracted_data) | |
load_subscription_data >> extracted_data >> transformed_data >> load_transformed_data | |
classic_billing_dag = classic_billing_dag() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment