Created
February 11, 2016 20:29
-
-
Save tatome/d491c8b1ec5ed8d4744c to your computer and use it in GitHub Desktop.
Simple Itty-Koch-Style Saliency Maps
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding=utf-8 | |
# | |
#!/usr/bin/python | |
# | |
# Copyright 2013 Johannes Bauer, Universitaet Hamburg | |
# | |
# This file is free software. Do with it whatever you like. | |
# It comes with no warranty, explicit or implicit, whatsoever. | |
# | |
# This python script implements an early version of Itti and Koch's | |
# saliency model. Specifically, it was written according to the | |
# information contained in the following paper: | |
# | |
# Laurent Itti, Christof Koch, and Ernst Niebur. A model of | |
# Saliency-Based visual attention for rapid scene analysis. IEEE | |
# Transactions on Pattern Analysis and Machine Intelligence, | |
# 20(11):1254–1259, 1998. | |
# | |
# If you find it useful or if you have any questions, do not | |
# hesitate to contact me at | |
# bauer at informatik dot uni dash hamburg dot de. | |
# | |
# For information on how to use this script, type | |
# > python saliency.py -h | |
# on the command line. | |
# | |
import math | |
import logging | |
import cv2 | |
import numpy | |
from scipy.ndimage.filters import maximum_filter | |
import os.path | |
import sys | |
if sys.version_info[0] != 2: | |
raise Exception("This script was written for Python version 2. You're running Python %s." % sys.version) | |
logger = logging.getLogger(__name__) | |
def features(image, channel, levels=9, start_size=(640,480), ): | |
""" | |
Extracts features by down-scaling the image levels times, | |
transforms the image by applying the function channel to | |
each scaled version and computing the difference between | |
the scaled, transformed versions. | |
image : the image | |
channel : a function which transforms the image into | |
another image of the same size | |
levels : number of scaling levels | |
start_size : tuple. The size of the biggest image in | |
the scaling pyramid. The image is first | |
scaled to that size and then scaled by half | |
levels times. Therefore, both entries in | |
start_size must be divisible by 2^levels. | |
""" | |
image = channel(image) | |
if image.shape != start_size: | |
image = cv2.resize(image, dsize=start_size) | |
scales = [image] | |
for l in xrange(levels - 1): | |
logger.debug("scaling at level %d", l) | |
scales.append(cv2.pyrDown(scales[-1])) | |
features = [] | |
for i in xrange(1, levels - 5): | |
big = scales[i] | |
for j in (3,4): | |
logger.debug("computing features for levels %d and %d", i, i + j) | |
small = scales[i + j] | |
srcsize = small.shape[1],small.shape[0] | |
dstsize = big.shape[1],big.shape[0] | |
logger.debug("Shape source: %s, Shape target :%s", srcsize, dstsize) | |
scaled = cv2.resize(src=small, dsize=dstsize) | |
features.append(((i+1,j+1),cv2.absdiff(big, scaled))) | |
return features | |
def intensity(image): | |
""" | |
Converts a color image into grayscale. | |
Used as `channel' argument to function `features' | |
""" | |
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
def makeGaborFilter(dims, lambd, theta, psi, sigma, gamma): | |
""" | |
Creates a Gabor filter (an array) with parameters labmbd, theta, | |
psi, sigma, and gamma of size dims. Returns a function which | |
can be passed to `features' as `channel' argument. | |
In some versions of OpenCV, sizes greater than (11,11) will lead | |
to segfaults (see http://code.opencv.org/issues/2644). | |
""" | |
def xpf(i,j): | |
return i*math.cos(theta) + j*math.sin(theta) | |
def ypf(i,j): | |
return -i*math.sin(theta) + j*math.cos(theta) | |
def gabor(i,j): | |
xp = xpf(i,j) | |
yp = ypf(i,j) | |
return math.exp(-(xp**2 + gamma**2*yp**2)/2*sigma**2) * math.cos(2*math.pi*xp/lambd + psi) | |
halfwidth = dims[0]/2 | |
halfheight = dims[1]/2 | |
kernel = numpy.array([[gabor(halfwidth - i,halfheight - j) for j in range(dims[1])] for i in range(dims[1])]) | |
def theFilter(image): | |
return cv2.filter2D(src = image, ddepth = -1, kernel = kernel, ) | |
return theFilter | |
def intensityConspicuity(image): | |
""" | |
Creates the conspicuity map for the channel `intensity'. | |
""" | |
fs = features(image = im, channel = intensity) | |
return sumNormalizedFeatures(fs) | |
def gaborConspicuity(image, steps): | |
""" | |
Creates the conspicuity map for the channel `orientations'. | |
""" | |
gaborConspicuity = numpy.zeros((60,80), numpy.uint8) | |
for step in range(steps): | |
theta = step * (math.pi/steps) | |
gaborFilter = makeGaborFilter(dims=(10,10), lambd=2.5, theta=theta, psi=math.pi/2, sigma=2.5, gamma=.5) | |
gaborFeatures = features(image = intensity(im), channel = gaborFilter) | |
summedFeatures = sumNormalizedFeatures(gaborFeatures) | |
gaborConspicuity += N(summedFeatures) | |
return gaborConspicuity | |
def rgConspicuity(image): | |
""" | |
Creates the conspicuity map for the sub channel `red-green conspicuity'. | |
of the color channel. | |
""" | |
def rg(image): | |
r,g,_,__ = cv2.split(image) | |
return cv2.absdiff(r,g) | |
fs = features(image = image, channel = rg) | |
return sumNormalizedFeatures(fs) | |
def byConspicuity(image): | |
""" | |
Creates the conspicuity map for the sub channel `blue-yellow conspicuity'. | |
of the color channel. | |
""" | |
def by(image): | |
_,__,b,y = cv2.split(image) | |
return cv2.absdiff(b,y) | |
fs = features(image = image, channel = by) | |
return sumNormalizedFeatures(fs) | |
def sumNormalizedFeatures(features, levels=9, startSize=(640,480)): | |
""" | |
Normalizes the feature maps in argument features and combines them into one. | |
Arguments: | |
features : list of feature maps (images) | |
levels : the levels of the Gaussian pyramid used to | |
calculate the feature maps. | |
startSize : the base size of the Gaussian pyramit used to | |
calculate the feature maps. | |
returns: | |
a combined feature map. | |
""" | |
commonWidth = startSize[0] / 2**(levels/2 - 1) | |
commonHeight = startSize[1] / 2**(levels/2 - 1) | |
commonSize = commonWidth, commonHeight | |
logger.info("Size of conspicuity map: %s", commonSize) | |
consp = N(cv2.resize(features[0][1], commonSize)) | |
for f in features[1:]: | |
resized = N(cv2.resize(f[1], commonSize)) | |
consp = cv2.add(consp, resized) | |
return consp | |
def N(image): | |
""" | |
Normalization parameter as per Itti et al. (1998). | |
returns a normalized feature map image. | |
""" | |
M = 8. # an arbitrary global maximum to which the image is scaled. | |
# (When saving saliency maps as images, pixel values may become | |
# too large or too small for the chosen image format depending | |
# on this constant) | |
image = cv2.convertScaleAbs(image, alpha=M/image.max(), beta=0.) | |
w,h = image.shape | |
maxima = maximum_filter(image, size=(w/10,h/1)) | |
maxima = (image == maxima) | |
mnum = maxima.sum() | |
logger.debug("Found %d local maxima.", mnum) | |
maxima = numpy.multiply(maxima, image) | |
mbar = float(maxima.sum()) / mnum | |
logger.debug("Average of local maxima: %f. Global maximum: %f", mbar, M) | |
return image * (M-mbar)**2 | |
def makeNormalizedColorChannels(image, thresholdRatio=10.): | |
""" | |
Creates a version of the (3-channel color) input image in which each of | |
the (4) channels is normalized. Implements color opponencies as per | |
Itti et al. (1998). | |
Arguments: | |
image : input image (3 color channels) | |
thresholdRatio : the threshold below which to set all color values | |
to zero. | |
Returns: | |
an output image with four normalized color channels for red, green, | |
blue and yellow. | |
""" | |
intens = intensity(image) | |
threshold = intens.max() / thresholdRatio | |
logger.debug("Threshold: %d", threshold) | |
r,g,b = cv2.split(image) | |
cv2.threshold(src=r, dst=r, thresh=threshold, maxval=0.0, type=cv2.THRESH_TOZERO) | |
cv2.threshold(src=g, dst=g, thresh=threshold, maxval=0.0, type=cv2.THRESH_TOZERO) | |
cv2.threshold(src=b, dst=b, thresh=threshold, maxval=0.0, type=cv2.THRESH_TOZERO) | |
R = r - (g + b) / 2 | |
G = g - (r + b) / 2 | |
B = b - (g + r) / 2 | |
Y = (r + g) / 2 - cv2.absdiff(r,g) / 2 - b | |
# Negative values are set to zero. | |
cv2.threshold(src=R, dst=R, thresh=0., maxval=0.0, type=cv2.THRESH_TOZERO) | |
cv2.threshold(src=G, dst=G, thresh=0., maxval=0.0, type=cv2.THRESH_TOZERO) | |
cv2.threshold(src=B, dst=B, thresh=0., maxval=0.0, type=cv2.THRESH_TOZERO) | |
cv2.threshold(src=Y, dst=Y, thresh=0., maxval=0.0, type=cv2.THRESH_TOZERO) | |
image = cv2.merge((R,G,B,Y)) | |
return image | |
def markMaxima(saliency): | |
""" | |
Mark the maxima in a saliency map (a gray-scale image). | |
""" | |
maxima = maximum_filter(saliency, size=(20,20)) | |
maxima = numpy.array(saliency == maxima, dtype=numpy.float64) * 255 | |
r = cv2.max(saliency, maxima) | |
g = saliency | |
b = saliency | |
marked = cv2.merge((b,g,r)) | |
return marked | |
if __name__ == "__main__": | |
logging.basicConfig(level=logging.DEBUG) | |
import argparse | |
import sys | |
parser = argparse.ArgumentParser(description = "Simple Itti-Koch-style conspicuity.") | |
parser.add_argument('--fileList', type=str, dest='fileList', action='store', help='Text file containing input file names, one per line.') | |
parser.add_argument('--inputFile', type=str, dest='inputFile', action='store', help='File to compute compute saliency list for. Need either --fileList or --inputFile.') | |
parser.add_argument('--intensityOutput', type=str, dest='intensityOutput', action='store', help="Filename for intensity conspicuity map,") | |
parser.add_argument('--gaborOutput', type=str, dest='gaborOutput', action='store', help="Filename for intensity conspicuity map,") | |
parser.add_argument('--rgOutput', type=str, dest='rgOutput', action='store', help="Filename for rg conspicuity map,") | |
parser.add_argument('--byOutput', type=str, dest='byOutput', action='store', help="Filename for by conspicuity map,") | |
parser.add_argument('--cOutput', type=str, dest='cOutput', action='store', help="Filename for color conspicuity map,") | |
parser.add_argument('--saliencyOutput', type=str, dest='saliencyOutput', action='store', help="Filename for saliency map,") | |
parser.add_argument("--markMaxima", action='store_true', help="Mark maximum saliency in output image.") | |
args = parser.parse_args() | |
if args.fileList is None and args.inputFile is None: | |
logger.error("Need either --fileList or --inputFile cmd line arguments.") | |
sys.exit() | |
elif args.fileList is not None and args.inputFile is not None: | |
logger.error("Need only one of --fileList or --inputFile cmd line arguments.") | |
sys.exit() | |
else: | |
if args.fileList: | |
# we are reading filenames from a file. | |
filenames = (filename[:-1] for filename in open(args.fileList)) # remove end-of line character | |
else: | |
# filenames were given on the command line. | |
filenames = [args.inputFile] | |
for filename in filenames: | |
im = cv2.imread(filename, cv2.COLOR_BGR2RGB) # assume BGR, convert to RGB---more intuitive code. | |
if im is None: | |
logger.fatal("Could not load file \"%s.\"", filename) | |
sys.exit() | |
intensty = intensityConspicuity(im) | |
gabor = gaborConspicuity(im, 4) | |
im = makeNormalizedColorChannels(im) | |
rg = rgConspicuity(im) | |
by = byConspicuity(im) | |
c = rg + by | |
saliency = 1./3 * (N(intensty) + N(c) + N(gabor)) | |
if args.markMaxima: | |
saliency = markMaxima(saliency) | |
def writeCond(outFileName, image): | |
name,_ = os.path.splitext(os.path.basename(filename)) | |
if outFileName and args.fileList: | |
cv2.imwrite(outFileName % name, image) | |
elif outFileName: | |
cv2.imwrite(outFileName, image) | |
writeCond(args.intensityOutput, intensty) | |
writeCond(args.gaborOutput, gabor) | |
writeCond(args.rgOutput, rg) | |
writeCond(args.byOutput, by) | |
writeCond(args.cOutput, .25 * c) | |
writeCond(args.saliencyOutput, saliency) |
The "size" of the saliency patches change. One patch corresponds to a 16x16 patch now, which is also stated by the original paper.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @maltesilber,
thanks for your interested in this script and potentially highlighting a bug.
It's been a long time since I wrote it. At this point, your understanding is probably as good as mine.
Have you tried your version of the code? Does it work? Are the results different?