Created
June 17, 2025 18:55
-
-
Save tatsuyax25/31f4fc3923e66e2a17653fdbfcbe74e4 to your computer and use it in GitHub Desktop.
You are given three integers n, m, k. A good array arr of size n is defined as follows: Each element in arr is in the inclusive range [1, m].
Exactly k indices i (where 1 <= i < n) satisfy the condition arr[i - 1] == arr[i].
Return the number of goo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* @param {number} n | |
* @param {number} m | |
* @param {number} k | |
* @return {number} | |
*/ | |
var countGoodArrays = function(n, m, k) { | |
const MOD = 1e9 + 7; // Large prime number for modulo operations to prevent overflow | |
// Function to compute (a^b) % MOD using binary exponentiation (efficient power calculation) | |
const modPow = (a, b) => { | |
let res = 1n, base = BigInt(a); | |
b = BigInt(b); | |
while (b > 0) { | |
if (b % 2n === 1n) // If the current exponent bit is set, multiply result | |
res = (res * base) % BigInt(MOD); | |
base = (base * base) % BigInt(MOD); // Square the base | |
b >>= 1n; // Divide exponent by 2 (shift right) | |
} | |
return res; | |
}; | |
// Function to compute modular inverse using Fermat’s little theorem: x^(MOD-2) % MOD | |
const modInv = (x) => modPow(x, MOD - 2); | |
// Compute factorials modulo MOD (for combinatorial calculations) | |
let fact = Array(n).fill(1n); | |
for (let i = 1; i < n; i++) { | |
fact[i] = (fact[i - 1] * BigInt(i)) % BigInt(MOD); | |
} | |
// Calculate the number of ways to arrange n elements with exactly k adjacent duplicates | |
const comb = (fact[n - 1] * modInv(fact[k]) % BigInt(MOD)) * modInv(fact[n - 1 - k]) % BigInt(MOD); | |
// Compute the final result using combinatorial properties | |
const result = comb * BigInt(m) % BigInt(MOD) * modPow(m - 1, n - 1 - k) % BigInt(MOD); | |
return Number(result); // Convert BigInt result back to a regular number for output | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment