-
-
Save taufikobet/80eee5f0fca5a1f79bbbf834ad622191 to your computer and use it in GitHub Desktop.
Use Apple's Vision framework from Python to detect text in images
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Use Apple's Vision Framework via PyObjC to detect text in images """ | |
import pathlib | |
import Quartz | |
import Vision | |
from Cocoa import NSURL | |
from Foundation import NSDictionary | |
# needed to capture system-level stderr | |
from wurlitzer import pipes | |
def image_to_text(img_path, lang="eng"): | |
input_url = NSURL.fileURLWithPath_(img_path) | |
with pipes() as (out, err): | |
# capture stdout and stderr from system calls | |
# otherwise, Quartz.CIImage.imageWithContentsOfURL_ | |
# prints to stderr something like: | |
# 2020-09-20 20:55:25.538 python[73042:5650492] Creating client/daemon connection: B8FE995E-3F27-47F4-9FA8-559C615FD774 | |
# 2020-09-20 20:55:25.652 python[73042:5650492] Got the query meta data reply for: com.apple.MobileAsset.RawCamera.Camera, response: 0 | |
input_image = Quartz.CIImage.imageWithContentsOfURL_(input_url) | |
vision_options = NSDictionary.dictionaryWithDictionary_({}) | |
vision_handler = Vision.VNImageRequestHandler.alloc().initWithCIImage_options_( | |
input_image, vision_options | |
) | |
results = [] | |
handler = make_request_handler(results) | |
vision_request = Vision.VNRecognizeTextRequest.alloc().initWithCompletionHandler_(handler) | |
error = vision_handler.performRequests_error_([vision_request], None) | |
return results | |
def make_request_handler(results): | |
""" results: list to store results """ | |
if not isinstance(results, list): | |
raise ValueError("results must be a list") | |
def handler(request, error): | |
if error: | |
print(f"Error! {error}") | |
else: | |
observations = request.results() | |
for text_observation in observations: | |
recognized_text = text_observation.topCandidates_(1)[0] | |
results.append([recognized_text.string(), recognized_text.confidence()]) | |
return handler | |
def main(): | |
import sys | |
import pathlib | |
img_path = pathlib.Path(sys.argv[1]) | |
if not img_path.is_file(): | |
sys.exit("Invalid image path") | |
img_path = str(img_path.resolve()) | |
results = image_to_text(img_path) | |
print(results) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment