Skip to content

Instantly share code, notes, and snippets.

View tawnkramer's full-sized avatar

Tawn Kramer tawnkramer

  • San Diego, CA
View GitHub Profile
adapted from http://wiki.tekkotsu.org/index.php/Sony_PlayStation_Eye_driver_install_instructions
sudo -s
cd /usr/src
apt-get update
apt-get install -y build-essential kernel-package linux-source libssl-dev
tar --bzip2 -xvf linux-source-*.tar.bz2
ln -s `find . -maxdepth 1 -type d -name "linux-source-*"` linux
#PS3 Eye Drivers
@tawnkramer
tawnkramer / intel path follow redme.txt
Last active April 25, 2019 03:29
Intel RealSense T265 Path follower on Donkey
Setup on the pi:
git clone https://github.com/tawnkramer/donkey donkey_tkramer
cd donkey_tkramer
git checkout dev
pip3 uninstall donkeycar
pip3 install .[pi]
donkey createcar --path ~/follow --template path_follower
cd ~/follow
python3 manage.py drive
@tawnkramer
tawnkramer / keras_quant.py
Created May 3, 2019 22:55 — forked from rocking5566/keras_quant.py
Quantization aware training in keras
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Conv2D, Flatten
from tensorflow.keras.optimizers import RMSprop
# download the mnist to the path '~/.keras/datasets/' if it is the first time to be called
# X shape (60,000 28x28), y shape (10,000, )
CAMERA_TYPE = "CSIC"
PCA9685_I2C_BUSNUM = 1
CONTROLLER_TYPE='F710'
"""
Usage:
train_imagenet.py --model="mymodel.h5" --data="/data/ImageNetDir" --resume
Note:
The idea here is to pre-train a network on imagenet, or some large corpus, and then transfer weights.
I used https://github.com/mf1024/ImageNet-Datasets-Downloader.git to create a large dataset:
`cd ImageNet-Datasets-Downloader
python downloader.py -data_root /data/ImageNetData -number_of_classes 1000 -images_per_class 1000`
* linux ubuntu only now
Get donkeycar, if you don't have it. If you do, just checkout dev.
* cd ~/projects
* git clone https://github.com/autorope/donkeycar
* cd donkeycar
* git checkout master
Install conda. Optional but recommended
* wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
@tawnkramer
tawnkramer / racer.py
Last active September 24, 2021 10:43
"""
Script to drive a keras TF model with the Virtual Race Environment.
Usage:
racer.py (--model=<model>) (--host=<ip_address>) (--name=<car_name>)
Options:
-h --help Show this screen.
"""
#!/usr/bin/env python3
"""
Usage:
simple_cv_racer.py --name=your_name
Options:
-h --help Show this screen.
"""