-
-
Save tazjel/1a7e0e97387cf5108d74577b3da98377 to your computer and use it in GitHub Desktop.
Scraper for food hygiene dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import requests | |
import pandas as pd | |
from bs4 import BeautifulSoup | |
categories = { | |
'7846': 'Mobile caterer', | |
'7838': 'Farmers/growers', | |
'14': 'Importers/Exporters', | |
'7843': 'Pub/bar/nightclub', | |
'4613': 'Retailers - other', | |
'1': 'Restaurant/Cafe/Canteen', | |
'7839': 'Manufacturers/packers', | |
'7844': 'Takeaway/sandwich shop', | |
'7': 'Distributors/Transporters', | |
'7841': 'Other catering premises', | |
'7845': 'School/college/university', | |
'5': 'Hospitals/Childcare/Caring Premises', | |
'7842': 'Hotel/bed & breakfast/guest house', | |
'7840': 'Retailers - supermarkets/hypermarkets', | |
} | |
base_url = 'http://ratings.food.gov.uk/enhanced-search/en-GB/%5E/%5E/Relevance/{category}/%5E/%5E/0/{page}/1000' | |
results = [] | |
for i, (cat_id, category) in enumerate(categories.items()): | |
category_progress = '({x}/{y})'.format(x=i+1, y=len(categories)) | |
page = 0 | |
while True: | |
request = requests.get(base_url.format(category=cat_id, page=page)) | |
if request.ok: | |
soup = BeautifulSoup(request.content, 'html5lib') | |
paging_total = soup.find('div', id='pagingTotal').text | |
print 'Category', category, category_progress, ' '.join(paging_total.split()) | |
for result in soup.find_all('div', class_='ResultRow'): | |
results.append({ | |
'category': category, | |
'name': result.find('div', class_='ResultsBusinessName').text.strip(), | |
'result_id': result.find('input', class_='ResultsFHRSID')['value'], | |
'latitude': result.find('input', class_='ResultsLatitude')['value'], | |
'longitude': result.find('input', class_='ResultsLongitude')['value'], | |
'address': result.find('div', class_='ResultsBusinessAddress').text.strip(), | |
'postcode': result.find('div', class_='ResultsBusinessPostcode').text.strip(), | |
'rating': result.find('div', class_='ratingColumnPadding').img['alt'], | |
'date': result.find('div', class_='ResultsRatingDate').text.strip(), | |
}) | |
if soup.find('input', id='SearchResults_uxPagerNext').get('disabled') == 'disabled': | |
break | |
else: | |
print 'Error', url | |
break | |
page += 1 | |
dataset = pd.DataFrame.from_dict(results).drop_duplicates() | |
dataset.to_csv('dataset.csv', index=False, encoding='utf-8') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment