| | Grouping ||
| First Header | Second Header | Third Header |
|---|---|---|
| Content | Long Cell | |
| Content | Cell | Cell |
| New section | More | Data | | And more | And more || [ Table Caption ]
| # umxRun now detects raw RAM, and runs sat and ind. worth speeding this bit up a bit? | |
| m3 <- mxModel("independence", | |
| # TODO: slightly inefficient, as this has an analytic solution | |
| mxMatrix(name = "variableLoadings" , type="Diag", nrow = nVar, ncol = nVar, free=T, values = independenceStarts), | |
| # labels = loadingsLabels), | |
| mxAlgebra(name = "expCov", expression = variableLoadings %*% t(variableLoadings)), | |
| mxMatrix(name = "expMean", type = "Full", nrow = 1, ncol = nVar, values = dataMeans, free = T, labels = meansLabels), | |
| mxFIMLObjective(covariance = "expCov", means = "expMean", dimnames = manifests), | |
| mxData(theData, type = "raw") | |
| ) |
| | Grouping ||
| First Header | Second Header | Third Header |
|---|---|---|
| Content | Long Cell | |
| Content | Cell | Cell |
| New section | More | Data | | And more | And more || [ Table Caption ]
| x <- data.frame(matrix(ncol = 2, byrow = T, c( | |
| -0.7, 0.2, | |
| 2.1, 2.7, | |
| 1.7, 2.3, | |
| 1.4, 0.8, | |
| 1.9, 2.0, | |
| 1.8, 1.0, | |
| 0.4, -0.4, | |
| 1.1, 0.3, | |
| 0.9, 0.4, |
| # Above are some results from the a matrix of a | |
| # trivariate cholesky with the above diag cells filled in | |
| A = matrix(nrow = 3, byrow = T, c(.71, -.28, .15, -.28, .61, -.38, .15, -.38, .000001)) | |
| [,1] [,2] [,3] | |
| [1,] 0.71 -0.28 1.5e-01 | |
| [2,] -0.28 0.61 -3.8e-01 | |
| [3,] 0.15 -0.38 1.0e-06 | |
| # Yeah... so that's wrong. that's the lower a matrix. |
| persons = rnorm(100, 20,10) | |
| nYearsToRun = 500 | |
| births = deaths = pop = rep(NA,nYearsToRun) | |
| for (y in 1:nYearsToRun) { | |
| populationSize = length(persons) | |
| persons = persons+1 # age everybody | |
| # death | |
| persons <- persons[persons < rnorm(populationSize, 77, 15)] |
| if (identical(options[["Standard Errors"]], "Yes") && | |
| identical(options[["Calculate Hessian"]], "No")) { | |
| msg <- paste('The "Standard Errors" option is enabled and', | |
| 'the "Calculate Hessian" option is disabled. Generating', | |
| 'standard errors requires the Hessian calculation. Please', | |
| 'disable standard errors or enable the Hessian calculation.\n', | |
| 'You can do this with\n', | |
| 'model <- mxOption(model, "Standard Errors", "No")\n', | |
| 'or\n', | |
| 'model <- mxOption(model, "Calculate Hessian", "Yes")' |
| setMethod("imxVerifyModel", "MxRAMModel", | |
| function(model) { | |
| if ((length(model$A) == 0) || | |
| (length(model$S) == 0) || | |
| (length(model$F) == 0)) { | |
| msg <- paste("The RAM model", omxQuotes(model@name), | |
| "does not contain any paths.", | |
| " Are you just starting out? you need to add paths like", |
| umxSaturated <- function(m1, evaluate = T) { | |
| # Use case | |
| # m1_sat = umxSaturated(m1) | |
| # summary(m1, SaturatedLikelihood=m1_sat$SaturatedLikelihood, IndependenceLikelihood=m1_sat$IndependenceLikelihood) | |
| manifests = m1@manifestVars | |
| nVar = length(manifests) | |
| theData = m1@data@observed | |
| dataMeans = colMeans(theData) | |
| meansLabels = paste("mean", 1:nVar, sep="") | |
| loadingsLabels = paste("F", 1:nVar, "loading", sep="") |
| #!/usr/bin/ruby | |
| VERSION = 1.3 | |
| require 'net/https' | |
| require 'rubygems' | |
| require 'json' | |
| require 'cgi' | |
| # set to true to force inline links | |
| inline = false |
| library(MASS) | |
| library(ggplot2) | |
| # move n around to alter sample size | |
| # move r around to alter effect size | |
| n = 1000; r = .5 | |
| desiredCovMatrix = matrix(c(1,r,r, 1) ,nrow=2, ncol=2); | |
| count = 1000 # number of replications | |
| out = rep(NA,count) # array to store the results | |
| for (i in 1:count) { |