| | Grouping ||
First Header | Second Header | Third Header |
---|---|---|
Content | Long Cell | |
Content | Cell | Cell |
| New section | More | Data | | And more | And more || [ Table Caption ]
# umxRun now detects raw RAM, and runs sat and ind. worth speeding this bit up a bit? | |
m3 <- mxModel("independence", | |
# TODO: slightly inefficient, as this has an analytic solution | |
mxMatrix(name = "variableLoadings" , type="Diag", nrow = nVar, ncol = nVar, free=T, values = independenceStarts), | |
# labels = loadingsLabels), | |
mxAlgebra(name = "expCov", expression = variableLoadings %*% t(variableLoadings)), | |
mxMatrix(name = "expMean", type = "Full", nrow = 1, ncol = nVar, values = dataMeans, free = T, labels = meansLabels), | |
mxFIMLObjective(covariance = "expCov", means = "expMean", dimnames = manifests), | |
mxData(theData, type = "raw") | |
) |
| | Grouping ||
First Header | Second Header | Third Header |
---|---|---|
Content | Long Cell | |
Content | Cell | Cell |
| New section | More | Data | | And more | And more || [ Table Caption ]
x <- data.frame(matrix(ncol = 2, byrow = T, c( | |
-0.7, 0.2, | |
2.1, 2.7, | |
1.7, 2.3, | |
1.4, 0.8, | |
1.9, 2.0, | |
1.8, 1.0, | |
0.4, -0.4, | |
1.1, 0.3, | |
0.9, 0.4, |
# Above are some results from the a matrix of a | |
# trivariate cholesky with the above diag cells filled in | |
A = matrix(nrow = 3, byrow = T, c(.71, -.28, .15, -.28, .61, -.38, .15, -.38, .000001)) | |
[,1] [,2] [,3] | |
[1,] 0.71 -0.28 1.5e-01 | |
[2,] -0.28 0.61 -3.8e-01 | |
[3,] 0.15 -0.38 1.0e-06 | |
# Yeah... so that's wrong. that's the lower a matrix. |
persons = rnorm(100, 20,10) | |
nYearsToRun = 500 | |
births = deaths = pop = rep(NA,nYearsToRun) | |
for (y in 1:nYearsToRun) { | |
populationSize = length(persons) | |
persons = persons+1 # age everybody | |
# death | |
persons <- persons[persons < rnorm(populationSize, 77, 15)] |
if (identical(options[["Standard Errors"]], "Yes") && | |
identical(options[["Calculate Hessian"]], "No")) { | |
msg <- paste('The "Standard Errors" option is enabled and', | |
'the "Calculate Hessian" option is disabled. Generating', | |
'standard errors requires the Hessian calculation. Please', | |
'disable standard errors or enable the Hessian calculation.\n', | |
'You can do this with\n', | |
'model <- mxOption(model, "Standard Errors", "No")\n', | |
'or\n', | |
'model <- mxOption(model, "Calculate Hessian", "Yes")' |
setMethod("imxVerifyModel", "MxRAMModel", | |
function(model) { | |
if ((length(model$A) == 0) || | |
(length(model$S) == 0) || | |
(length(model$F) == 0)) { | |
msg <- paste("The RAM model", omxQuotes(model@name), | |
"does not contain any paths.", | |
" Are you just starting out? you need to add paths like", |
umxSaturated <- function(m1, evaluate = T) { | |
# Use case | |
# m1_sat = umxSaturated(m1) | |
# summary(m1, SaturatedLikelihood=m1_sat$SaturatedLikelihood, IndependenceLikelihood=m1_sat$IndependenceLikelihood) | |
manifests = m1@manifestVars | |
nVar = length(manifests) | |
theData = m1@data@observed | |
dataMeans = colMeans(theData) | |
meansLabels = paste("mean", 1:nVar, sep="") | |
loadingsLabels = paste("F", 1:nVar, "loading", sep="") |
#!/usr/bin/ruby | |
VERSION = 1.3 | |
require 'net/https' | |
require 'rubygems' | |
require 'json' | |
require 'cgi' | |
# set to true to force inline links | |
inline = false |
library(MASS) | |
library(ggplot2) | |
# move n around to alter sample size | |
# move r around to alter effect size | |
n = 1000; r = .5 | |
desiredCovMatrix = matrix(c(1,r,r, 1) ,nrow=2, ncol=2); | |
count = 1000 # number of replications | |
out = rep(NA,count) # array to store the results | |
for (i in 1:count) { |