Created
February 26, 2019 14:34
-
-
Save tbmreza/daf2ffe519e1a8eb4979636dcbc02aa7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.applications import densenet | |
from keras.preprocessing import image | |
from keras.applications.densenet import preprocess_input, decode_predictions | |
import numpy as np | |
from keras.layers import Dense, GlobalAveragePooling2D | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Model | |
from keras.optimizers import Adam | |
import os | |
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) | |
train_generator = train_datagen.flow_from_directory('pisang-train/', | |
target_size=(224,224), | |
color_mode='rgb', | |
batch_size=32, | |
class_mode='categorical', | |
shuffle=True) | |
category_dict = train_generator.class_indices | |
print(category_dict) | |
number_of_classes = len(category_dict) | |
base_model = densenet.DenseNet121(weights='densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', | |
include_top=False) | |
x = base_model.output | |
x = GlobalAveragePooling2D()(x) | |
x = Dense(512, activation='relu')(x) | |
x = Dense(512, activation='relu')(x) | |
x = Dense(256, activation='relu')(x) | |
preds = Dense(number_of_classes, activation='softmax')(x) | |
model = Model(inputs=base_model.input, outputs=preds) | |
# Print the updated layer names. | |
# for i,layer in enumerate(model.layers): print(i,layer.name) | |
# Set the first n_freeze layers of the network to be non-trainable. | |
n_freeze = 300 | |
for layer in model.layers[:n_freeze]: | |
layer.trainable=False | |
for layer in model.layers[n_freeze:]: | |
layer.trainable=True | |
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy']) | |
step_size_train = train_generator.n//train_generator.batch_size | |
model.fit_generator(generator=train_generator, | |
steps_per_epoch=step_size_train, | |
epochs=10) | |
# Without transfer learning. | |
default_model = densenet.DenseNet121(weights='densenet121_weights_tf_dim_ordering_tf_kernels.h5') | |
test_path = 'pisang-test/' | |
for directory in os.listdir(test_path): | |
# Load image. | |
img_path = test_path+directory | |
img = image.load_img(img_path, target_size=(224, 224)) | |
x = image.img_to_array(img) | |
x = np.expand_dims(x, axis=0) | |
x = preprocess_input(x) | |
preds = model.predict(x) | |
default_preds = default_model.predict(x) | |
# Printing results. | |
# Default 1000 classes (without transfer learning). | |
print(f"Without Transfer Learning Top-2 [{directory}]: \n{decode_predictions(default_preds, top=2)[0]}\n") | |
# Print transfer learning model top-1 | |
confidence_array = preds[0] | |
index_max = np.argmax(confidence_array) | |
# Get KEY (category) by VALUE (index_max) in dictionary | |
# mydict = {'george':16,'amber':19} | |
# print(list(mydict.keys())[list(mydict.values()).index(16)]) # Example in one line. | |
category_names = category_dict.keys() | |
category_values = category_dict.values() | |
category_at_index = list(category_values).index(index_max) | |
category_max = list(category_names)[category_at_index] | |
print(f"\nWith Transfer Learning [{directory}]: \nTop-1 (confidence)\n{category_max} ({max(confidence_array)*100}%)") | |
# Print transfer learning model all classes | |
print("\nClass (confidence)") | |
for category in category_dict: | |
category_index = category_dict[category] | |
value = confidence_array[category_index] * 100 | |
print(f"{category} ({value}%)") | |
print("\n============================\n") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment