Created
May 6, 2022 17:35
-
-
Save tcapelle/28ee549b119455f365312504fab45c42 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import wandb | |
import timm | |
import argparse | |
from fastai.vision.all import * | |
from fastai.callback.wandb import WandbCallback | |
from torchvision import models | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--batch_size', type=int, default=64) | |
parser.add_argument('--epochs', type=int, default=5) | |
parser.add_argument('--num_experiments', type=int, default=1) | |
parser.add_argument('--learning_rate', type=float, default=0.002) | |
parser.add_argument('--img_size', type=int, default=224) | |
parser.add_argument('--model_name', type=str, default='resnet18') | |
parser.add_argument('--seed', type=int, default=42) | |
parser.add_argument('--mixup', action='store_true') | |
parser.add_argument('--force_torchvision', action='store_true') | |
parser.add_argument('--wandb_project', type=str, default='fine_tune_timm') | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
set_seed(args.seed) | |
for _ in range(args.num_experiments): | |
with wandb.init(project=args.wandb_project, group="torchvision" if args.force_torchvision else "timm", config=args): | |
dataset_path = untar_data(URLs.PETS) | |
files = get_image_files(dataset_path/"images") | |
pat = re.compile('(^[a-zA-Z]+_*[a-zA-Z]+)') | |
labels = [pat.match(f.name)[0] for f in files] | |
dls = ImageDataLoaders.from_name_re(dataset_path, files, r'(^[a-zA-Z]+_*[a-zA-Z]+)', valid_pct=0.2, seed=42, item_tfms=Resize(224)) | |
cbs = [MixedPrecision(), WandbCallback(log_preds=False)] | |
if args.mixup: cbs.append(MixUp()) | |
if args.force_torchvision: | |
model_name = getattr(models, args.model_name) | |
else: | |
model_name = args.model_name | |
learn = vision_learner(dls, | |
model_name, | |
metrics=[accuracy], | |
cbs=cbs, | |
pretrained=True) | |
learn.fine_tune(args.epochs, args.learning_rate) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment