Skip to content

Instantly share code, notes, and snippets.

@tcrapse
Forked from bigsnarfdude/dae_pytorch_cuda.py
Created March 20, 2019 23:22
Show Gist options
  • Save tcrapse/b04880d4bd179f182b9dd604ec7b76c8 to your computer and use it in GitHub Desktop.
Save tcrapse/b04880d4bd179f182b9dd604ec7b76c8 to your computer and use it in GitHub Desktop.
denoising autoencoder pytorch cuda
import os
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image
if not os.path.exists('./mlp_img'):
os.mkdir('./mlp_img')
def to_img(x):
x = x.view(x.size(0), 1, 28, 28)
return x
num_epochs = 20
batch_size = 128
learning_rate = 1e-3
def add_noise(img):
noise = torch.randn(img.size()) * 0.2
noisy_img = img + noise
return noisy_img
def plot_sample_img(img, name):
img = img.view(1, 28, 28)
save_image(img, './sample_{}.png'.format(name))
def min_max_normalization(tensor, min_value, max_value):
min_tensor = tensor.min()
tensor = (tensor - min_tensor)
max_tensor = tensor.max()
tensor = tensor / max_tensor
tensor = tensor * (max_value - min_value) + min_value
return tensor
def tensor_round(tensor):
return torch.round(tensor)
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda tensor:min_max_normalization(tensor, 0, 1)),
transforms.Lambda(lambda tensor:tensor_round(tensor))
])
dataset = MNIST('./data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 256),
nn.ReLU(True),
nn.Linear(256, 64),
nn.ReLU(True))
self.decoder = nn.Sequential(
nn.Linear(64, 256),
nn.ReLU(True),
nn.Linear(256, 28 * 28),
nn.Sigmoid())
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
model = autoencoder().cuda()
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate, weight_decay=1e-5)
for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img = img.view(img.size(0), -1)
noisy_img = add_noise(img)
noisy_img = Variable(noisy_img).cuda()
img = Variable(img).cuda()
# ===================forward=====================
output = model(noisy_img)
loss = criterion(output, img)
MSE_loss = nn.MSELoss()(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}, MSE_loss:{:.4f}'
.format(epoch + 1, num_epochs, loss.data[0], MSE_loss.data[0]))
if epoch % 10 == 0:
x = to_img(img.cpu().data)
x_hat = to_img(output.cpu().data)
x_noisy = to_img(noisy_img.cpu().data)
weights = to_img(model.encoder[0].weight.cpu().data)
save_image(x, './mlp_img/x_{}.png'.format(epoch))
save_image(x_hat, './mlp_img/x_hat_{}.png'.format(epoch))
save_image(x_noisy, './mlp_img/x_noisy_{}.png'.format(epoch))
save_image(weights, './filters/epoch_{}.png'.format(epoch))
torch.save(model.state_dict(), './sim_autoencoder.pth')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment