Created
December 19, 2022 09:25
-
-
Save tecmaverick/389a36a5b26e94866a782032f3a439ea to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//Input Data | |
// studentid,coursename_with_attendance | |
// 01,CHEM:12|PHY:33|MATH:22 | |
// 02,CHEM:34|PHY:3 | |
// 03,MATH:12|COMP:45|CHEM:12 | |
// 04,MATH:67|PHY:76 | |
// 05,HIST:88|MARKT:33|BIOL:55 | |
// 06,BIOL:88|PHY:77 | |
// 07,BOTONY:34|ZOOL:77 | |
// 08,BOTONY:34|COMP:99 | |
// 09,HIST:36|COMP:66 | |
// 010,MATH:44|COMP:32|STAT:23 | |
// 011,COMP:44|STAT:66 | |
//Output Data | |
// +----------+--------------------+----------------+ | |
// |courseName|attendanceHoursTotal|studentsEnrolled| | |
// +----------+--------------------+----------------+ | |
// | CHEM| 58| 3| | |
// | MATH| 145| 4| | |
// | COMP| 286| 5| | |
// | HIST| 124| 2| | |
// | BIOL| 143| 2| | |
// | PHY| 189| 4| | |
// | MARKT| 33| 1| | |
// | BOTONY| 68| 2| | |
// | ZOOL| 77| 1| | |
// | STAT| 89| 2| | |
// +----------+--------------------+----------------+ | |
def main(args: Array[String]): Unit = { | |
val filePath = "file:///Users/abe/Personal/Apache Spark/Scripts/AjpRDDReverseMapping/data/data1.csv" | |
val spark = SparkSession.builder() | |
.master("local[3]") | |
.appName("Data Processor") | |
.config("spark.sql.shuffle.partitions", 2) | |
.getOrCreate() | |
val csv_rdd = spark.sparkContext.textFile(filePath) | |
val header = csv_rdd.first() | |
val csv_filtered_rdd = csv_rdd | |
.filter(x => x != header) | |
.map { row => | |
val fields = row.split(",") | |
val student_id = fields(0) | |
val courses_with_attendance = fields(1).split("\\|") | |
(student_id, courses_with_attendance) | |
} | |
.flatMapValues(x=>x) | |
.map{ | |
x=> | |
val course_attendance = x._2.split(":") | |
// StudentID, CourseName, CourseAttendanceHours | |
(x._1,course_attendance(0),course_attendance(1).toInt) | |
} | |
val df = spark.createDataFrame(csv_filtered_rdd) | |
.toDF("studentId","courseName","attendanceHours") | |
.groupBy("courseName") | |
.agg(sum("attendanceHours").alias("attendanceHoursTotal"), | |
count("studentId").alias("studentsEnrolled")) | |
.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment