Last active
August 27, 2019 22:47
-
-
Save teh/6a7b372530f65c0b9fa8ed1a29f41af2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# source: https://google.github.io/bi-tempered-loss/ | |
# apache 2 licensed | |
import torch | |
def logT(u, t): | |
if t == 1: | |
return torch.log(u) | |
else: | |
return (torch.pow(u, 1.0 - t) - 1.0) / (1.0 - t) | |
def expT(u, t): | |
if t == 1: | |
return torch.exp(u) | |
else: | |
return torch.relu(torch.pow((1.0 + ((1.0 - t) * u)), (1.0 / (1.0 - t)))) | |
def computeNormalization(activations, t, numIters = 5): | |
mu, _ = torch.max(activations, -1, keepdim=True) | |
normalizedActivationsStep0 = activations - mu | |
normalizedActivations = normalizedActivationsStep0 | |
for i in range(numIters): | |
logtPartition = torch.sum(expT(normalizedActivations, t), -1, keepdim=True) | |
normalizedActivations = normalizedActivationsStep0 * torch.pow(logtPartition, 1 - t) | |
logtPartition = torch.sum(expT(normalizedActivations, t), -1, keepdim=True) | |
return mu - logT(1.0 / logtPartition, t) | |
def temperedSoftmax(activations, t, numIters = 5): | |
if t == 1.0: | |
normalizationConstants = torch.log(torch.sum(torch.exp(activations), -1, keepdim=True)) | |
else: | |
normalizationConstants = computeNormalization(activations, t, numIters) | |
diff = activations - normalizationConstants | |
return expT(diff, t) | |
def temperedSigmoid(activations, t, numIters = 5): | |
activations2d = torch.reshape(activations, [-1, 1]) | |
internalLogits = torch.cat([torch.zeros_like(activations2d), activations2d], 1) | |
return temperedSoftmax(internalLogits, t, numIters) | |
def bitemperedLogisticLoss(activations, labels, t1, t2, numIters = 5): | |
probabilities = temperedSoftmax(activations, t2, numIters) | |
lossValues = ( | |
labels * (logT(labels + 1e-10, t1) - logT(probabilities, t1)) | |
- ((1.0 / (2.0 - t1) * (torch.pow(labels, 2.0 - t1) - torch.pow(probabilities, 2.0 - t1))) | |
) | |
) | |
return torch.sum(lossValues, -1) | |
def bitemperedBinaryLogisticLoss(activations, labels, t1, t2, numIters = 5): | |
outShape = labels.shape | |
labels2d = torch.reshape(labels, [-1, 1]) | |
activations2d = torch.reshape(activations, [-1, 1]) | |
labels2d = torch.reshape(labels, [-1, 1]) | |
zeroLabel2d = 1.0 - labels2d | |
internalLabels = torch.cat([zeroLabel2d, labels2d], 1) | |
internalLogits = torch.cat([torch.zeros_like(activations2d), activations2d], 1) | |
losses = bitemperedLogisticLoss(internalLogits, internalLabels, t1, t2, numIters) | |
return torch.reshape(losses, outShape) | |
def main(): | |
N = 10 | |
labels = torch.ones(N) | |
activations = torch.arange(N).float() / N | |
loss = bitemperedBinaryLogisticLoss(activations, labels, 0.2, 0.8) | |
print(labels) | |
print(loss) | |
print(temperedSigmoid(activations, 1.0)) | |
assert torch.allclose(loss, torch.tensor([0.2956, 0.2636, 0.2336, 0.2056, 0.1798, 0.1562, 0.1347, 0.1154, 0.0980, | |
0.0827]), rtol=5e-3) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment