Forked from xaedes/circle-circle-intersection-points-python.py
Created
April 5, 2020 20:36
-
-
Save tejastank/a56aaf2ea05576dc9f9bf0977558b1ef to your computer and use it in GitHub Desktop.
circle-circle-intersection-points-python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
# -*- coding: utf-8 -*- | |
from __future__ import division | |
import numpy as np | |
from math import cos, sin, pi, sqrt, atan2 | |
d2r = pi/180 | |
class Geometry(object): | |
def circle_intersection(self, circle1, circle2): | |
''' | |
@summary: calculates intersection points of two circles | |
@param circle1: tuple(x,y,radius) | |
@param circle2: tuple(x,y,radius) | |
@result: tuple of intersection points (which are (x,y) tuple) | |
''' | |
# return self.circle_intersection_sympy(circle1,circle2) | |
x1,y1,r1 = circle1 | |
x2,y2,r2 = circle2 | |
# http://stackoverflow.com/a/3349134/798588 | |
dx,dy = x2-x1,y2-y1 | |
d = sqrt(dx*dx+dy*dy) | |
if d > r1+r2: | |
print "#1" | |
return None # no solutions, the circles are separate | |
if d < abs(r1-r2): | |
print "#2" | |
return None # no solutions because one circle is contained within the other | |
if d == 0 and r1 == r2: | |
print "#3" | |
return None # circles are coincident and there are an infinite number of solutions | |
a = (r1*r1-r2*r2+d*d)/(2*d) | |
h = sqrt(r1*r1-a*a) | |
xm = x1 + a*dx/d | |
ym = y1 + a*dy/d | |
xs1 = xm + h*dy/d | |
xs2 = xm - h*dy/d | |
ys1 = ym - h*dx/d | |
ys2 = ym + h*dx/d | |
return (xs1,ys1),(xs2,ys2) | |
def circle_intersection_sympy(self, circle1, circle2): | |
from sympy.geometry import Circle, Point | |
x1,y1,r1 = circle1 | |
x2,y2,r2 = circle2 | |
c1=Circle(Point(x1,y1),r1) | |
c2=Circle(Point(x2,y2),r2) | |
intersection = c1.intersection(c2) | |
if len(intersection) == 1: | |
intersection.append(intersection[0]) | |
p1 = intersection[0] | |
p2 = intersection[1] | |
xs1,ys1 = p1.x,p1.y | |
xs2,ys2 = p2.x,p2.y | |
return (xs1,ys1),(xs2,ys2) | |
def test_circle_intersection(): | |
geom = Geometry() | |
np.testing.assert_almost_equal( | |
geom.circle_intersection((0,0,1),(2,0,1)), | |
((1,0),(1,0))) | |
np.testing.assert_almost_equal( | |
geom.circle_intersection((2,0,1),(0,0,1)), | |
((1,0),(1,0))) | |
np.testing.assert_almost_equal( | |
geom.circle_intersection((1,1,1),(3,1,1)), | |
((2,1),(2,1))) | |
np.testing.assert_almost_equal( | |
geom.circle_intersection((0,0,1),(cos(d2r*45)*2,0,1)), | |
((cos(d2r*45),-sin(d2r*45)), | |
(cos(d2r*45),+sin(d2r*45)))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment