Last active
October 30, 2018 16:26
-
-
Save tejus-gupta/3065468317b8266358fe01e8ef0b987c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import yaml | |
import time | |
import shutil | |
import torch | |
import random | |
import argparse | |
import datetime | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as models | |
from torch.utils import data | |
from tqdm import tqdm | |
from ptsemseg.models import get_model | |
from ptsemseg.loss import get_loss_function | |
from ptsemseg.loader import get_loader | |
from ptsemseg.utils import get_logger | |
from ptsemseg.metrics import runningScore, averageMeter | |
from ptsemseg.augmentations import get_composed_augmentations | |
from ptsemseg.schedulers import get_scheduler | |
from ptsemseg.optimizers import get_optimizer | |
from tensorboardX import SummaryWriter | |
import sys | |
sys.path.append('/home/tejus/lane-seg-experiments/Segmentation/') | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from torchvision import datasets, models, transforms | |
from datasets.kitti.config import CONFIG | |
from datasets.kitti.kitti_loader import kittiLoader | |
from datasets.tusimple.tusimple_loader import tusimpleLoader | |
from CAN import CAN | |
from datasets.tusimple.augmentations import * | |
import torchvision | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import matplotlib.pyplot as plt | |
from metrics import runningScore | |
from datetime import datetime | |
import math | |
# Definitions | |
TRAIN_BATCH = 12 | |
VAL_BATCH = 12 | |
augmentations = Compose([RandomRotate(5), RandomHorizontallyFlip()]) | |
train_dataset = tusimpleLoader('/home/lanenet/train_set/', split="train", augmentations=augmentations) | |
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=TRAIN_BATCH, shuffle=True, num_workers=TRAIN_BATCH, pin_memory=True) | |
val_dataset = tusimpleLoader('/home/lanenet/train_set/', split="val", augmentations=None) | |
valloader = torch.utils.data.DataLoader(val_dataset, batch_size=VAL_BATCH, shuffle=False, num_workers=VAL_BATCH, pin_memory=True) | |
# imgs_sum = 0 | |
# labels_sum = 0 | |
# i = 0 | |
# for data in trainloader: | |
# i += 1 | |
# print(str(12*i)+'/3000') | |
# imgs, labels = data | |
# imgs_sum += torch.sum(imgs).item() | |
# labels_sum += torch.sum(labels).item() | |
# print(imgs_sum, labels_sum) | |
imgs_sum = 0 | |
labels_sum = 0 | |
i = 0 | |
for data in valloader: | |
i += 1 | |
print(str(12*i)+'/600') | |
imgs, labels = data | |
imgs_sum += torch.sum(imgs).item() | |
labels_sum += torch.sum(labels).item() | |
print(imgs_sum, labels_sum) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment