Skip to content

Instantly share code, notes, and snippets.

@teldridge11
Created November 11, 2016 18:49
Show Gist options
  • Save teldridge11/616deaa680b696b85d71936404f693ec to your computer and use it in GitHub Desktop.
Save teldridge11/616deaa680b696b85d71936404f693ec to your computer and use it in GitHub Desktop.
from pulp import *
# Creates a list of the Ingredients
Ingredients = ['TOMATO', 'LETTUCE', 'SPINACH', 'CARROT', 'SUNFLOWER', 'TOFU', 'CHICKPEAS', 'OIL']
kcal = {'TOMATO': 21,
'LETTUCE': 16,
'SPINACH': 40,
'CARROT': 41,
'SUNFLOWER': 585,
'TOFU': 120,
'CHICKPEAS': 164,
'OIL': 884}
protein = {'TOMATO': 0.85,
'LETTUCE': 1.62,
'SPINACH': 2.86,
'CARROT': 0.93,
'SUNFLOWER': 23.4,
'TOFU': 16,
'CHICKPEAS': 9,
'OIL': 0}
fat = {'TOMATO': 0.33,
'LETTUCE': 0.20,
'SPINACH': 0.39,
'CARROT': 0.24,
'SUNFLOWER': 48.7,
'TOFU': 5.0,
'CHICKPEAS': 2.6,
'OIL': 100.0}
carbs = {'TOMATO': 4.64,
'LETTUCE': 2.37,
'SPINACH': 3.63,
'CARROT': 9.58,
'SUNFLOWER': 15.0,
'TOFU': 3.0,
'CHICKPEAS': 27.0,
'OIL': 0.0}
sodium = {'TOMATO': 9.0,
'LETTUCE': 28.0,
'SPINACH': 65.0,
'CARROT': 69.0,
'SUNFLOWER': 3.80,
'TOFU': 120.0,
'CHICKPEAS': 78.0,
'OIL': 0.0}
cost = {'TOMATO': 1.0,
'LETTUCE': 0.75,
'SPINACH': 0.50,
'CARROT': 0.50,
'SUNFLOWER': 0.45,
'TOFU': 2.15,
'CHICKPEAS': 0.95,
'OIL': 2.00}
# Create the 'prob' variable to contain the problem data
prob = LpProblem("The Salad Problem", LpMinimize)
# A dictionary called 'ingredient_vars' is created to contain the referenced Variables
ingredient_vars = LpVariable.dicts("Ingr",Ingredients,0)
# The objective function is added to 'prob' first
prob += lpSum([kcal[i]*ingredient_vars[i] for i in Ingredients]), "Total kCal of Ingredients per salad"
# The constraints are added to 'prob'
prob += lpSum([protein[i] * ingredient_vars[i] for i in Ingredients]) >= 15.0, "ProteinRequirement"
prob += 8.0 >= lpSum([fat[i] * ingredient_vars[i] for i in Ingredients]) >= 2.0, "FatRequirement"
prob += lpSum([carbs[i] * ingredient_vars[i] for i in Ingredients]) >= 4.0, "CarbRequirement"
prob += lpSum([sodium[i] * ingredient_vars[i] for i in Ingredients]) <= 200.0, "SodiumRequirement"
prob += lpSum([lettuce[i] * ingredient_vars[i] + spinach[i] * ingredient_vars[i] for i in Ingredients]) / lpSum([lettuce[i] * ingredient_vars[i] + spinach[i] * ingredient_vars[i] + [tomato[i] * ingredient_vars[i] + carrot[i] * ingredient_vars[i] + sunflower[i] * ingredient_vars[i] + tofu[i] * ingredient_vars[i] + chickpeas[i] * ingredient_vars[i] + oil[i] * ingredient_vars[i] for i in Ingredients]) >= 0.40, "GreensRequirement"
prob.solve()
# The status of the solution is printed to the screen
print("Status:", LpStatus[prob.status])
# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
print(v.name, "=", v.varValue)
# The optimised objective function value is printed to the screen
print("Total kCal of Ingredients per salad = ", value(prob.objective))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment