Last active
November 15, 2016 15:46
-
-
Save tgvdinesh/c0a7b4b7fb44aa0a5fd5c50183e0ee87 to your computer and use it in GitHub Desktop.
Binary search Tree data structure implementation in Java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package com.oracle.java; | |
public class BinarySearchTree { | |
private int treeHeight(Node root) { | |
if (root == null) return 0; | |
return (1 + Math.max(treeHeight(root.left), treeHeight(root.right))); | |
} | |
private boolean isBalancedNaive(Node node) { | |
if (root == null) return true; | |
int heightDifference = treeHeight(node.left) - treeHeight(node.right); | |
return Math.abs(heightDifference) <= 1 && isBalancedNaive(node.left) && isBalancedNaive(node.right); | |
} | |
private static Node root; | |
private BinarySearchTree() { | |
root = null; | |
} | |
private boolean find(int id) { | |
Node current = root; | |
while (current != null) { | |
if (current.data == id) { | |
return true; | |
} else if (current.data > id) { | |
current = current.left; | |
} else { | |
current = current.right; | |
} | |
} | |
return false; | |
} | |
private boolean delete(int id) { | |
Node parent = root; | |
Node current = root; | |
boolean isLeftChild = false; | |
while (current.data != id) { | |
parent = current; | |
if (current.data > id) { | |
isLeftChild = true; | |
current = current.left; | |
} else { | |
isLeftChild = false; | |
current = current.right; | |
} | |
if (current == null) { | |
return false; | |
} | |
} | |
//if i am here that means we have found the node | |
//Case 1: if node to be deleted has no children | |
if (current.left == null && current.right == null) { | |
if (current == root) { | |
root = null; | |
} | |
if (isLeftChild) { | |
parent.left = null; | |
} else { | |
parent.right = null; | |
} | |
} | |
//Case 2 : if node to be deleted has only one child | |
else if (current.right == null) { | |
if (current == root) { | |
root = current.left; | |
} else if (isLeftChild) { | |
parent.left = current.left; | |
} else { | |
parent.right = current.left; | |
} | |
} else if (current.left == null) { | |
if (current == root) { | |
root = current.right; | |
} else if (isLeftChild) { | |
parent.left = current.right; | |
} else { | |
parent.right = current.right; | |
} | |
} else { | |
//now we have found the minimum element in the right sub tree | |
Node successor = getSuccessor(current); | |
if (current == root) { | |
root = successor; | |
} else if (isLeftChild) { | |
parent.left = successor; | |
} else { | |
parent.right = successor; | |
} | |
successor.left = current.left; | |
} | |
return true; | |
} | |
private Node getSuccessor(Node deleteNode) { | |
Node successor = null; | |
Node successorParent = null; | |
Node current = deleteNode.right; | |
while (current != null) { | |
successorParent = successor; | |
successor = current; | |
current = current.left; | |
} | |
//check if successor has the right child, it cannot have left child for sure | |
// if it does have the right child, add it to the left of successorParent. | |
// successorParent | |
if (successor != deleteNode.right) { | |
successorParent.left = successor.right; | |
successor.right = deleteNode.right; | |
} | |
return successor; | |
} | |
private void insert(int id) { | |
Node newNode = new Node(id); | |
if (root == null) { | |
root = newNode; | |
return; | |
} | |
Node current = root; | |
Node parent; | |
while (true) { | |
parent = current; | |
if (id < current.data) { | |
current = current.left; | |
if (current == null) { | |
parent.left = newNode; | |
return; | |
} | |
} else { | |
current = current.right; | |
if (current == null) { | |
parent.right = newNode; | |
return; | |
} | |
} | |
} | |
} | |
private void display(Node root) { | |
if (root != null) { | |
display(root.left); | |
System.out.print(" " + root.data); | |
display(root.right); | |
} | |
} | |
public static void main(String arg[]) { | |
BinarySearchTree b = new BinarySearchTree(); | |
b.insert(3); | |
b.insert(8); | |
b.insert(1); | |
b.insert(4); | |
b.insert(6); | |
b.insert(2); | |
b.insert(10); | |
b.insert(9); | |
b.insert(20); | |
b.insert(25); | |
b.insert(15); | |
b.insert(16); | |
System.out.println("Original Tree : "); | |
b.display(BinarySearchTree.root); | |
System.out.println("\n Tree height (Sum of longest path edges from root to leaf) :"); | |
System.out.println(b.treeHeight(BinarySearchTree.root)); | |
System.out.println("\n Is the tree balanced (or) balance naive? "); | |
System.out.println(b.isBalancedNaive(BinarySearchTree.root)); | |
System.out.println(""); | |
System.out.println("Check whether Node with value 4 exists : " + b.find(4)); | |
System.out.println("Delete Node with no children (2) : " + b.delete(2)); | |
b.display(root); | |
System.out.println("\n Delete Node with one child (4) : " + b.delete(4)); | |
b.display(root); | |
System.out.println("\n Delete Node with Two children (10) : " + b.delete(10)); | |
b.display(root); | |
System.out.println("\n Tree height"); | |
System.out.println(b.treeHeight(BinarySearchTree.root)); | |
} | |
} | |
class Node { | |
int data; | |
Node left; | |
Node right; | |
Node(int data) { | |
this.data = data; | |
left = null; | |
right = null; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment