Created
November 20, 2019 14:30
-
-
Save thallysonjsa/71c519b78654e2bf8d773b7f36f1a654 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!doctype html> | |
<html lang="en"> | |
<head> | |
<meta charset="utf-8"> | |
<title>Profile report</title> | |
<meta name="description" content="Profile report generated by pandas-profiling. See GitHub."> | |
<meta name="author" content="pandas-profiling"> | |
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script> | |
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" | |
integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" crossorigin="anonymous"> | |
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap-theme.min.css" | |
integrity="sha384-fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r" crossorigin="anonymous"> | |
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" crossorigin="anonymous"></script> | |
<script> | |
$(function () { | |
$('[data-toggle="tooltip"]').tooltip() | |
}) | |
$("a[href^='#'].anchor").on('click', function(e) { | |
// prevent default anchor click behavior | |
e.preventDefault(); | |
// store hash | |
var hash = this.hash; | |
// animate | |
$('html, body').animate({ | |
scrollTop: $(hash).offset().top | |
}, 300, function(){ | |
// when done, add hash to url | |
// (default click behaviour) | |
window.location.hash = hash; | |
}); | |
}); | |
</script> | |
</head> | |
<body> | |
<meta charset="UTF-8"> | |
<style> | |
.variablerow { | |
border: 1px solid #e1e1e8; | |
border-top: hidden; | |
padding-top: 2em; | |
padding-bottom: 2em; | |
padding-left: 1em; | |
padding-right: 1em; | |
} | |
.headerrow { | |
border: 1px solid #e1e1e8; | |
background-color: #f5f5f5; | |
padding: 2em; | |
} | |
.namecol { | |
margin-top: -1em; | |
overflow-x: auto; | |
} | |
.dl-horizontal dt { | |
text-align: left; | |
padding-right: 1em; | |
white-space: normal; | |
} | |
.dl-horizontal dd { | |
margin-left: 0; | |
} | |
.ignore { | |
opacity: 0.4; | |
} | |
.container.pandas-profiling { | |
max-width:975px; | |
} | |
.col-md-12 { | |
padding-left: 2em; | |
} | |
.indent { | |
margin-left: 1em; | |
} | |
.center-img { | |
margin-left: auto !important; | |
margin-right: auto !important; | |
display: block; | |
} | |
/* Table example_values */ | |
table.example_values { | |
border: 0; | |
} | |
.example_values th { | |
border: 0; | |
padding: 0 ; | |
color: #555; | |
font-weight: 600; | |
} | |
.example_values tr, .example_values td{ | |
border: 0; | |
padding: 0; | |
color: #555; | |
} | |
/* STATS */ | |
table.stats { | |
border: 0; | |
} | |
.stats th { | |
border: 0; | |
padding: 0 2em 0 0; | |
color: #555; | |
font-weight: 600; | |
} | |
.stats tr { | |
border: 0; | |
} | |
.stats td{ | |
color: #555; | |
padding: 1px; | |
border: 0; | |
} | |
/* Sample table */ | |
table.sample { | |
border: 0; | |
margin-bottom: 2em; | |
margin-left:1em; | |
} | |
.sample tr { | |
border:0; | |
} | |
.sample td, .sample th{ | |
padding: 0.5em; | |
white-space: nowrap; | |
border: none; | |
} | |
.sample thead { | |
border-top: 0; | |
border-bottom: 2px solid #ddd; | |
} | |
.sample td { | |
width:100%; | |
} | |
/* There is no good solution available to make the divs equal height and then center ... */ | |
.histogram { | |
margin-top: 3em; | |
} | |
/* Freq table */ | |
table.freq { | |
margin-bottom: 2em; | |
border: 0; | |
} | |
table.freq th, table.freq tr, table.freq td { | |
border: 0; | |
padding: 0; | |
} | |
.freq thead { | |
font-weight: 600; | |
white-space: nowrap; | |
overflow: hidden; | |
text-overflow: ellipsis; | |
} | |
td.fillremaining{ | |
width:auto; | |
max-width: none; | |
} | |
td.number, th.number { | |
text-align:right ; | |
} | |
/* Freq mini */ | |
.freq.mini td{ | |
width: 50%; | |
padding: 1px; | |
font-size: 12px; | |
} | |
table.freq.mini { | |
width:100%; | |
} | |
.freq.mini th { | |
overflow: hidden; | |
text-overflow: ellipsis; | |
white-space: nowrap; | |
max-width: 5em; | |
font-weight: 400; | |
text-align:right; | |
padding-right: 0.5em; | |
} | |
.missing { | |
color: #a94442; | |
} | |
.alert, .alert > th, .alert > td { | |
color: #a94442; | |
} | |
/* Bars in tables */ | |
.freq .bar{ | |
float: left; | |
width: 0; | |
height: 100%; | |
line-height: 20px; | |
color: #fff; | |
text-align: center; | |
background-color: #337ab7; | |
border-radius: 3px; | |
margin-right: 4px; | |
} | |
.other .bar { | |
background-color: #999; | |
} | |
.missing .bar{ | |
background-color: #a94442; | |
} | |
.tooltip-inner { | |
width: 100%; | |
white-space: nowrap; | |
text-align:left; | |
} | |
.extrapadding{ | |
padding: 2em; | |
} | |
.pp-anchor{ | |
} | |
</style> | |
<div class="container pandas-profiling"> | |
<div class="row headerrow highlight"> | |
<h1>Overview</h1> | |
</div> | |
<div class="row variablerow"> | |
<div class="col-md-6 namecol"> | |
<p class="h4">Dataset info</p> | |
<table class="stats" style="margin-left: 1em;"> | |
<tbody> | |
<tr> | |
<th>Number of variables</th> | |
<td>44 </td> | |
</tr> | |
<tr> | |
<th>Number of observations</th> | |
<td>5729 </td> | |
</tr> | |
<tr> | |
<th>Total Missing (%)</th> | |
<td>0.1% </td> | |
</tr> | |
<tr> | |
<th>Total size in memory</th> | |
<td>1.9 MiB </td> | |
</tr> | |
<tr> | |
<th>Average record size in memory</th> | |
<td>352.0 B </td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="col-md-6 namecol"> | |
<p class="h4">Variables types</p> | |
<table class="stats" style="margin-left: 1em;"> | |
<tbody> | |
<tr> | |
<th>Numeric</th> | |
<td>9 </td> | |
</tr> | |
<tr> | |
<th>Categorical</th> | |
<td>16 </td> | |
</tr> | |
<tr> | |
<th>Boolean</th> | |
<td>0 </td> | |
</tr> | |
<tr> | |
<th>Date</th> | |
<td>0 </td> | |
</tr> | |
<tr> | |
<th>Text (Unique)</th> | |
<td>1 </td> | |
</tr> | |
<tr> | |
<th>Rejected</th> | |
<td>18 </td> | |
</tr> | |
<tr> | |
<th>Unsupported</th> | |
<td>0 </td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="col-md-12" style="padding-left: 1em;"> | |
<p class="h4">Warnings</p> | |
<ul class="list-unstyled"><li><a href="#pp_var_Date"><code>Date</code></a> has a high cardinality: 650 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_HomeTeam"><code>HomeTeam</code></a> has a high cardinality: 105 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AwayTeam"><code>AwayTeam</code></a> has a high cardinality: 105 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_BWH"><code>BWH</code></a> is highly correlated with <a href="#pp_var_B365H"><code>B365H</code></a> (ρ = 0.99532) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_BWD"><code>BWD</code></a> is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> (ρ = 0.91041) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_BWA"><code>BWA</code></a> is highly correlated with <a href="#pp_var_B365A"><code>B365A</code></a> (ρ = 0.98911) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_IWH"><code>IWH</code></a> is highly correlated with <a href="#pp_var_BWH"><code>BWH</code></a> (ρ = 0.97993) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_IWA"><code>IWA</code></a> is highly correlated with <a href="#pp_var_BWA"><code>BWA</code></a> (ρ = 0.9628) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_LBH"><code>LBH</code></a> is highly correlated with <a href="#pp_var_IWH"><code>IWH</code></a> (ρ = 0.98052) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_LBD"><code>LBD</code></a> is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> (ρ = 0.94553) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_LBA"><code>LBA</code></a> is highly correlated with <a href="#pp_var_IWA"><code>IWA</code></a> (ρ = 0.96628) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_PSH"><code>PSH</code></a> is highly correlated with <a href="#pp_var_LBH"><code>LBH</code></a> (ρ = 0.99133) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_PSD"><code>PSD</code></a> is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> (ρ = 0.91389) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_PSA"><code>PSA</code></a> is highly correlated with <a href="#pp_var_LBA"><code>LBA</code></a> (ρ = 0.98103) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_WHH"><code>WHH</code></a> is highly correlated with <a href="#pp_var_PSH"><code>PSH</code></a> (ρ = 0.99238) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_WHD"><code>WHD</code></a> is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> (ρ = 0.9143) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_WHA"><code>WHA</code></a> is highly correlated with <a href="#pp_var_PSA"><code>PSA</code></a> (ρ = 0.98027) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_VCH"><code>VCH</code></a> is highly correlated with <a href="#pp_var_WHH"><code>WHH</code></a> (ρ = 0.99551) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_VCD"><code>VCD</code></a> is highly correlated with <a href="#pp_var_LBD"><code>LBD</code></a> (ρ = 0.9038) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_VCA"><code>VCA</code></a> is highly correlated with <a href="#pp_var_WHA"><code>WHA</code></a> (ρ = 0.98578) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_BbMx>2.5"><code>BbMx>2.5</code></a> is highly skewed (γ1 = 53.968) <span class="label label-info">Skewed</span></li><li><a href="#pp_var_BbAv<2.5"><code>BbAv<2.5</code></a> is highly correlated with <a href="#pp_var_BbMx<2.5"><code>BbMx<2.5</code></a> (ρ = 0.99649) <span class="label label-primary">Rejected</span></li><li><a href="#pp_var_HS"><code>HS</code></a> has a high cardinality: 5689 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_HST"><code>HST</code></a> has a high cardinality: 5307 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_HF"><code>HF</code></a> has a high cardinality: 5669 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_HC"><code>HC</code></a> has a high cardinality: 5500 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_HY"><code>HY</code></a> has a high cardinality: 3071 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_HR"><code>HR</code></a> has a high cardinality: 89 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AS"><code>AS</code></a> has a high cardinality: 5689 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AST"><code>AST</code></a> has a high cardinality: 5307 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AF"><code>AF</code></a> has a high cardinality: 5669 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AC"><code>AC</code></a> has a high cardinality: 5500 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AY"><code>AY</code></a> has a high cardinality: 3071 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_AR"><code>AR</code></a> has a high cardinality: 89 distinct values <span class="label label-warning">Warning</span></li><li><a href="#pp_var_Result"><code>Result</code></a> has 1693 / 29.6% zeros <span class="label label-info">Zeros</span></li> </ul> | |
</div> | |
</div> | |
<div class="row headerrow highlight"> | |
<h1>Variables</h1> | |
</div> | |
<div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_ID">ID<br/> | |
<small>Categorical, Unique</small> | |
</p> | |
</div><div class="col-md-3 collapse in" id="minivalues8165890392595054672"><table border="1" class="dataframe example_values"> | |
<thead> | |
<tr style="text-align: right;"> | |
<th>First 3 values</th> | |
</tr> | |
</thead> | |
<tbody> | |
<tr> | |
<td>ITA070513#0</td> | |
</tr> | |
<tr> | |
<td>SPA230515#9</td> | |
</tr> | |
<tr> | |
<td>SPA301113#1</td> | |
</tr> | |
</tbody> | |
</table></div> | |
<div class="col-md-6 collapse in" id="minivalues8165890392595054672"><table border="1" class="dataframe example_values"> | |
<thead> | |
<tr style="text-align: right;"> | |
<th>Last 3 values</th> | |
</tr> | |
</thead> | |
<tbody> | |
<tr> | |
<td>SPA170114#0</td> | |
</tr> | |
<tr> | |
<td>SPA170912#0</td> | |
</tr> | |
<tr> | |
<td>ITA081114#1</td> | |
</tr> | |
</tbody> | |
</table></div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#values8165890392595054672,#minivalues8165890392595054672" aria-expanded="false" | |
aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 collapse" id="values8165890392595054672"> | |
<p class="h4">First 10 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">ENG010113#0</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">ENG010113#1</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">ENG010113#2</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">ENG010113#3</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">ENG010113#4</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Last 10 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">SPA311015#1</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">SPA311015#2</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">SPA311015#3</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">SPA311015#4</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">SPA311215#0</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_League">League<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class=""> | |
<th>Distinct count</th> | |
<td>4</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>0.1%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable1929801630370895766"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>Spain</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 26.3%"> | |
1507 | |
</div> | |
</td> | |
</tr><tr class=""> | |
<th>Italy</th> | |
<td> | |
<div class="bar" style="width:99%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 26.3%"> | |
1506 | |
</div> | |
</td> | |
</tr><tr class=""> | |
<th>England</th> | |
<td> | |
<div class="bar" style="width:99%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 26.3%"> | |
1506 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable1929801630370895766, #minifreqtable1929801630370895766" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable1929801630370895766"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">Spain</td> | |
<td class="number">1507</td> | |
<td class="number">26.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Italy</td> | |
<td class="number">1506</td> | |
<td class="number">26.3%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">England</td> | |
<td class="number">1506</td> | |
<td class="number">26.3%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Germany</td> | |
<td class="number">1210</td> | |
<td class="number">21.1%</td> | |
<td> | |
<div class="bar" style="width:80%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_Date">Date<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>650</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>11.3%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable1729928646548453174"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>30/03/13</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.5%"> | |
| |
</div> | |
29 | |
</td> | |
</tr><tr class=""> | |
<th>04/04/15</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.5%"> | |
| |
</div> | |
28 | |
</td> | |
</tr><tr class=""> | |
<th>11/05/14</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.5%"> | |
| |
</div> | |
26 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (647)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 98.6%"> | |
5646 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable1729928646548453174, #minifreqtable1729928646548453174" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable1729928646548453174"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">30/03/13</td> | |
<td class="number">29</td> | |
<td class="number">0.5%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">04/04/15</td> | |
<td class="number">28</td> | |
<td class="number">0.5%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">11/05/14</td> | |
<td class="number">26</td> | |
<td class="number">0.5%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">19/04/14</td> | |
<td class="number">25</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">19/05/13</td> | |
<td class="number">23</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">02/11/13</td> | |
<td class="number">21</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">17/10/15</td> | |
<td class="number">21</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">14/09/13</td> | |
<td class="number">21</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">08/02/14</td> | |
<td class="number">21</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">17/11/12</td> | |
<td class="number">21</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (640)</td> | |
<td class="number">5493</td> | |
<td class="number">95.9%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HomeTeam">HomeTeam<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>105</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>1.8%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-1335038612566161468"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>Getafe</th> | |
<td> | |
<div class="bar" style="width:2%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 1.3%"> | |
| |
</div> | |
76 | |
</td> | |
</tr><tr class=""> | |
<th>Liverpool</th> | |
<td> | |
<div class="bar" style="width:2%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 1.3%"> | |
| |
</div> | |
76 | |
</td> | |
</tr><tr class=""> | |
<th>Lazio</th> | |
<td> | |
<div class="bar" style="width:2%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 1.3%"> | |
| |
</div> | |
76 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (102)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 96.0%"> | |
5501 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-1335038612566161468, #minifreqtable-1335038612566161468" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-1335038612566161468"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">Getafe</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Liverpool</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Lazio</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Aston Villa</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Southampton</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Sunderland</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Malaga</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Swansea</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Man United</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Espanol</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (95)</td> | |
<td class="number">4969</td> | |
<td class="number">86.7%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AwayTeam">AwayTeam<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>105</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>1.8%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable6661291410119730063"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>Chievo</th> | |
<td> | |
<div class="bar" style="width:2%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 1.3%"> | |
| |
</div> | |
76 | |
</td> | |
</tr><tr class=""> | |
<th>Barcelona</th> | |
<td> | |
<div class="bar" style="width:2%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 1.3%"> | |
| |
</div> | |
76 | |
</td> | |
</tr><tr class=""> | |
<th>Sevilla</th> | |
<td> | |
<div class="bar" style="width:2%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 1.3%"> | |
| |
</div> | |
76 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (102)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 96.0%"> | |
5501 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable6661291410119730063, #minifreqtable6661291410119730063" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable6661291410119730063"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">Chievo</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Barcelona</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Sevilla</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Levante</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Genoa</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Fiorentina</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Arsenal</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">West Brom</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">West Ham</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">Vallecano</td> | |
<td class="number">76</td> | |
<td class="number">1.3%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (95)</td> | |
<td class="number">4969</td> | |
<td class="number">86.7%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_B365H">B365H<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>104</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>1.8%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>1.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>55</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>0.47648</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>0.038462</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>0.96154</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram-6090768774342719238"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABMUlEQVR4nO3bwWkDMRBA0Ti4pBSRnnx2Ty4iPSkNhI9tWFaR3rsbdPnMwKwvY4zxAfzp8%2BwHwMyuZz9gZV%2B3x8u/%2Bbl/H/AS3mWCQBAIBIFAEAgEgUAQCASBQHAHmYzbyVxMEAgCgSAQCAKBIBAIAoEgEAjuIC9450bB/2aCQBAIBIFAEAgEgUAQCASBQBAIhG0PhTsf/fwp63kmCIRtJ8hKdp6GRzNBIAgEwhIrlhWDo5ggEAQCQSAQBAJBIBAEAkEgEJa4g3C8XT9wNEEgTDdBXMWZyXSBsI4V1jIrFgSBQBAIBIFAEAiEyxhjnP0ImJUJAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAuEXmGweojNKC/cAAAAASUVORK5CYII%3D"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives-6090768774342719238,#minihistogram-6090768774342719238" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives-6090768774342719238"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles-6090768774342719238" | |
aria-controls="quantiles-6090768774342719238" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram-6090768774342719238" aria-controls="histogram-6090768774342719238" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common-6090768774342719238" aria-controls="common-6090768774342719238" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme-6090768774342719238" aria-controls="extreme-6090768774342719238" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles-6090768774342719238"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>0.038462</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>0.15385</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>0.34722</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>0.47619</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>0.5988</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>0.81967</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>0.96154</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>0.92308</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.25158</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.19231</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.40361</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>-0.38964</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>0.47648</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.15235</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>0.16071</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>2703.5</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.036984</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram-6090768774342719238"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df1RVdb7/8RdwEhTklwo2XkvLHwkSqSmF5g9swpHUNBPpTo33ZmlR5K9ZZtrNupVN6ugoXpOaaqhWkdbyV/5apjk1eueONdbhaFMwdism44yeE4qgAuf7h8vznRPeEfLD3pzj87FWS/h89uHz3u/gnBd7b/YJ8/l8PgEAAMCYcLsLAAAACDUELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgmMPuAi4Vbvdx/8fh4WFKTIzWsWPVamjw2VjVpYW%2B24fe24O%2B24fe2%2BN8fe/Uqb09tdiy6iUuPDxMYWFhCg8Ps7uUSwp9tw%2B9twd9tw%2B9t0dr6jsBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDgjZgffDBB8rMzNTMmTMbze3YsUNjx45Vv379lJ2drbfeeitgvri4WNnZ2erfv7/y8vJUWlrqnzt16pT%2B4z/%2BQ0OHDlVGRoYKCgrk8XhafH8AAEDoCMqA9cILL%2Bipp57SlVde2Wju008/1Zw5c1RQUKA//elPevTRR/Xkk09q//79kqRdu3Zp5cqVeu6557R3716NGDFC06dP18mTJyVJy5Ytk8vlUklJibZv3y6fz6d58%2BZZun8AACC4Oewu4MeIjIzUunXr9PTTT%2BvUqVMBc16vV9OmTdPNN98sSRo2bJh69eql/fv36/rrr1dJSYkmTJig9PR0SdLUqVNVXFys3bt3Kzs7W%2BvWrdOvfvUrXX755ZKkGTNmKCcnR999952Sk5Ot3VEgRP1s%2BR/sLqFZts4YbHcJAIJMUAasu%2B%2B%2B%2B/%2BcGzp0qIYOHer/vK6uTm632x%2BOXC6XRo8e7Z8PDw9Xnz595HQ61adPHx0/flypqan%2B%2BauvvlpRUVFyuVxNDliVlZVyu90BYw5HOyUlJUmSIiLCA/6FNei7fYK99w5HcNYd7H0PZvTeHq2p70EZsJpjyZIlateunT9Ueb1excXFBWwTFxcnj8cjr9crSYqNjQ2Yj42NbdZ1WCUlJSosLAwYy8/PV0FBwQ%2B%2Bbtsmf02YQ9/tE6y9T0iItruEixKsfQ8F9N4eraHvIRuwfD6flixZos2bN6u4uFiRkZEBcxd67MXIzc1VVlZWwJjD0U4eT7Wks8k6NratqqpqVF/fcFFroenou32CvffnfnaDTbD3PZjRe3ucr%2B92/YIUkgGroaFB8%2BbN06effqo33nhDXbt29c8lJCT4j1Sd4/V61bNnTyUmJvo/j47%2B//9Dvv/%2Be3Xo0KHJ6yclJflPB57jdh9XXV3gD1l9fUOjMbQ8%2Bm6fYO19MNb8j4K176GA3tujNfTd/pOULeCZZ57RF1980ShcSVLfvn3lcrn8n9fX1%2BvgwYNKT09X165dFRcXFzD/%2Beef6/Tp0%2Brbt69l9QMAgOAWcgHro48%2B0saNG1VUVKT4%2BPhG83l5eVq/fr0OHDigmpoarV69Wm3atNHw4cMVERGhSZMm6fnnn9e3334rj8ejX//61/rpT3%2Bqjh072rA3AAAgGAXlKcK0tDRJZ/9CUJJ27twpSXI6nXr77bd1/PhxjRgxIuAxAwcO1EsvvaShQ4dq1qxZmjFjho4ePaq0tDQVFRUpKipKklRQUKDq6mqNGzdOdXV1GjFihBYuXGjdzgEAgKAX5rvYK7rRJG73cf/HDke4EhKi5fFU236O%2BFJC3%2B3zw95zHyxr8D1vH3pvj/P1vVOn9rbUEnKnCAEAAOxGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhgV1wPrggw%2BUmZmpmTNnNprbsmWLxowZo379%2BmnChAn68MMP/XMNDQ1atmyZRo4cqYEDB%2Bqee%2B7R119/7Z/3er2aMWOGMjMzNWTIEM2fP1%2B1tbWW7BMAAAh%2BDrsL%2BLFeeOEFrVu3TldeeWWjuUOHDmnu3LkqLCzUDTfcoO3bt%2BvBBx/Utm3b1LlzZ73%2B%2BuvatGmTXnjhBSUnJ2vZsmXKz8/Xhg0bFBYWpscee0ynT5/W5s2bdebMGT388MNasmSJFixYYMOeArDbz5b/we4SmmXrjMF2lwBc8oL2CFZkZOT/GbDWrl2rYcOGadiwYYqMjNTYsWPVq1cvbdy4UZJUUlKiKVOm6Oqrr1ZMTIxmzpyp8vJyffLJJ/r73/%2BunTt3aubMmUpMTFRycrIeeOABvf322zpz5ozVuwkAAIJQ0Aasu%2B%2B%2BW%2B3btz/vnMvlUkpKSsBYSkqKnE6namtrVVZWFjAfExOjK6%2B8Uk6nU4cOHVJERIR69%2B7tn09NTdXJkyf117/%2BtWV2BgAAhJSgPUX4z3i9XsXFxQWMxcXFqaysTN9//718Pt955z0ej%2BLj4xUTE6OwsLCAOUnyeDxNWr%2ByslJutztgzOFop6SkJElSRER4wL%2BwBn23D723lsMR2G/6bj16b4/W1PeQDFiS5PP5fvT8hR57ISUlJSosLAwYy8/PV0FBQcBYbGzbi1oHPw59tw%2B9t0ZCQnTA5/TdPvTeHq2h7yEZsBISEuT1egPGvF6vEhMTFR8fr/Dw8PPOd%2BjQQYmJiTpx4oTq6%2BsVERHhn5OkDh06NGn93NxcZWVlBYw5HO3k8VRLOpusY2PbqqqqRvX1DT9qH9F89N0%2B9N5aPNfYj97b43x9/%2BEvHFYJyYDVt29flZaWBow5nU7l5OQoMjJSPXv2lMvl0qBBgyRJVVVV%2Buqrr3TttdeqS5cu8vl8%2Buyzz5Samup/bGxsrLp3796k9ZOSkvynA89xu4%2Brri7wh6y%2BvqHRGFoefbcPvbcGzzWtB723R2vou/0nKVvApEmTtHfvXr3//vs6deqU1q1bpy%2B//FJjx46VJOXl5am4uFjl5eU6ceKElixZoj59%2BigtLU2JiYnKzs7W8uXLdezYMR05ckSrVq3SxIkT5XCEZB4FAACGBW1iSEtLkyTV1dVJknbu3Cnp7NGmXr16acmSJVq0aJEqKirUo0cPrVmzRp06dZIkTZ48WW63W3fddZeqq6uVkZERcM3Uk08%2Bqccff1wjR47UZZddpltvvfW8NzMFAAA4nzDfxV7RjSZxu4/7P3Y4wpWQEC2Pp9r2Q5iXEvpunx/2Pthu3Blszt1olO95%2B9B7e5yv7506nf%2BWTi0tJE8RAgAA2ImABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYFrIB6%2BDBg7r77rt1/fXXa/DgwZozZ46OHTsmSdq3b58mTpyo/v37KycnRxs3bgx4bHFxsbKzs9W/f3/l5eWptLTUjl0AAABBKiQDVl1dne677z5dd9112rt3rzZv3qxjx45p4cKFqqys1AMPPKDJkydr3759mj9/vh577DE5nU5J0q5du7Ry5Uo999xz2rt3r0aMGKHp06fr5MmTNu8VAAAIFiEZsNxut9xut8aNG6c2bdooISFBP/3pT3Xo0CFt2rRJ3bp108SJExUZGanMzExlZWVp7dq1kqSSkhJNmDBB6enpioqK0tSpUyVJu3fvtnOXAABAEHHYXUBLSE5OVp8%2BfVRSUqKHH35YtbW12rFjh4YPHy6Xy6WUlJSA7VNSUrR161ZJksvl0ujRo/1z4eHh6tOnj5xOp3Jycpq0fmVlpdxud8CYw9FOSUlJkqSIiPCAf2EN%2Bm4fem8thyOw3/TdevTeHq2p7yEZsMLDw7Vy5UpNmTJFv/vd7yRJgwYN0uzZs/XAAw8oOTk5YPv4%2BHh5PB5JktfrVVxcXMB8XFycf74pSkpKVFhYGDCWn5%2BvgoKCgLHY2LZN/powJ1T7fv38bXaXgFYiISE64PNQ/Z4PBvTeHq2h7yEZsE6fPq3p06dr1KhR/uunnnjiCc2ZM6dJj/f5fBe1fm5urrKysgLGHI528niqJZ1N1rGxbVVVVaP6%2BoaLWgtNR99xqeC5xn703h7n6/sPf%2BGwSkgGrH379umbb77RrFmzFBERofbt26ugoEDjxo3TTTfdJK/XG7C9x%2BNRYmKiJCkhIaHRvNfrVc%2BePZu8flJSkv904Dlu93HV1QX%2BkNXXNzQaQ8uj7wh1PNe0HvTeHq2h7/afpGwB9fX1amhoCDgSdfr0aUlSZmZmo9sulJaWKj09XZLUt29fuVyugK918OBB/zwAAMCFhGTA6tevn9q1a6eVK1eqpqZGHo9Hq1ev1sCBAzVu3DhVVFRo7dq1OnXqlPbs2aM9e/Zo0qRJkqS8vDytX79eBw4cUE1NjVavXq02bdpo%2BPDh9u4UAAAIGiEZsBISEvTb3/5WH3/8sYYOHapbb71VUVFRWrp0qTp06KA1a9botdde04ABA/TMM89o8eLFuuaaayRJQ4cO1axZszRjxgwNGjRIe/fuVVFRkaKiomzeKwAAECzCfBd7RTeaxO0%2B7v/Y4QhXQkK0PJ5q288RX0pCve8/W/4Hu0tAK7F1xmBJof8935rRe3ucr%2B%2BdOrW3pZaQPIIFAABgJwIWAACAYZYHrKysLBUWFurbb7%2B1emkAAABLWB6wbr/9dm3ZskU333yzpk6dqh07dqiurs7qMgAAAFqM5QErPz9fW7Zs0VtvvaWePXvqmWee0bBhw7R48WIdPnzY6nIAAACMs%2B0arNTUVM2dO1e7d%2B/Wo48%2BqrfeekujR4/WPffco08//dSusgAAAC6abQHrzJkz2rJli%2B69917NnTtXycnJmjdvnvr06aMpU6Zo06ZNdpUGAABwUSx/L8Ly8nKtW7dO69evV3V1tbKzs/W73/1OAwYM8G8zcOBALVy4UGPGjLG6PAAAgItmecDKyclR9%2B7dNW3aNN12222Kj49vtM2wYcN07Ngxq0sDAAAwwvKAVVxcrEGDBl1wu08%2B%2BcSCagAAAMyz/Bqs3r17a/r06dq5c6d/7JVXXtG9994rr9drdTkAAADGWR6wFi1apOPHj6tHjx7%2BseHDh6uhoUHPPvus1eUAAAAYZ/kpwg8//FCbNm1SQkKCf6xbt25asmSJbr31VqvLAQAAMM7yI1i1tbWKjIxsXEh4uGpqaqwuBwAAwDjLA9bAgQP17LPP6vvvv/ePfffdd3riiScCbtUAAAAQrCw/Rfjoo4/q3//933XjjTcqJiZGDQ0Nqq6uVteuXfXqq69aXQ4AAIBxlgesrl276t1339Xvf/97ffXVVwoPD1f37t01ZMgQRUREWF0OAACAcZYHLElq06aNbr75ZjuWBgAAaHGWB6yvv/5aS5cu1RdffKHa2tpG8%2B%2B9957VJQEAABhlyzVYlZWVGjJkiNq1a2f18gAAAC3O8oBVWlqq9957T4mJiVYvDQAAYAnLb9PQoUMHjlwBAICQZnnAmjZtmgoLC%2BXz%2BaxeGgAAwBKWnyL8/e9/r48//ljvvPOO/uVf/kXh4YEZ780337S6JAAAAKMsD1gxMTEaOnSo1csCAABYxvKAtWjRIquXBAAAsJTl12BJ0l//%2BletXLlS8%2BbN84/9%2Bc9/tqMUAAAA4ywPWPv27dPYsWO1Y8cObd68WdLZm4/efffd3GQUAACEBMsD1rJly/TLX/5SmzZtUlhYmKSz70/47LPPatWqVVaXAwAAYJzlAevzzz9XXl6eJPkDliSNGjVK5eXlVpcDAABgnOUBq3379ud9D8LKykq1adPG6nIAAACMszxg9e/fX88884xOnDjhHzt8%2BLDmzp2rG2%2B80epyAAAAjLP8Ng3z5s3TL37xC2VkZKi%2Bvl79%2B/dXTU2NevbsqWeffdbqcgAAAIyzPGB17txZmzdv1p49e3T48GFFRUWpe/fuGjx4cMA1WQAAAMHK8oAlSZdddpluvvlmO5YGAABocZYHrKysrH96pIp7YQEAgGBnecAaPXp0QMCqr6/X4cOH5XQ69Ytf/MLqcgAAAIyzPGDNmTPnvOPbt2/XH//4R4urAQAAMM%2BW9yI8n5tvvlnvvvuu3WUAAABctFYTsA4ePCifz2f0a65evVpDhgzRddddpylTpuibb76RdPb9ECdOnKj%2B/fsrJydHGzduDHhccXGxsrOz1b9/f%2BXl5am0tNRoXQAAILRZfopw8uTJjcZqampUXl6uW265xdg6r7/%2BujZu3Kji4mIlJSVp%2BfLleuWVV3TffffpgQce0Pz58zVmzBh99NFHuv/%2B%2B9W9e3elpaVp165dWrlypV588UX17t1bxcXFmj59unbs2KF27doZqw8AAIQuywNWt27dGv0VYWRkpCZOnKg77rjD2DovvfSS5s6dq6uuukqStGDBAknSb3/7W3Xr1k0TJ06UJGVmZiorK0tr165VWlqaSkpKNGHCBKWnp0uSpk6dquLiYu3evVs5OTnG6gMAAKHL8oBlxd3av/vuO33zzTf6/vvvNXr0aB09elQZGRlauHChXC6XUlJSArZPSUnR1q1bJUkul0ujR4/2z4WHh6tPnz5yOp0ELAAA0CSWB6z169c3edvbbrvtR61x5MgRSdK2bdv08ssvy%2BfzqaCgQAsWLFBtba2Sk5MDto%2BPj5fH45Ekeb1excXFBczHxcX555uisrJSbrc7YMzhaKekpCRJUkREeMC/sAZ9x6XC4Qj8Xud73nr03h6tqe%2BWB6z58%2BeroaGh0QXtYWFhAWNhYWE/OmCd%2BzpTp071h6mHHnpI9957rzIzM5v8%2BB%2BrpKREhYWFAWP5%2BfkqKCgIGIuNbXtR6%2BDHoe8IdQkJ0QGf8z1vH3pvj9bQd8sD1osvvqiXXnpJ06dPV%2B/eveXz%2BfSXv/xFL7zwgn7%2B858rIyPjotfo2LGjJCk2NtY/1qVLF/l8Pp05c0Zerzdge4/Ho8TERElSQkJCo3mv16uePXs2ef3c3FxlZWUFjDkc7eTxVEs6m6xjY9uqqqpG9fUNTd8xXBT6jksFzzX2o/f2OF/ff/gLh1VsuQarqKgo4DTd9ddfr65du%2Bqee%2B7R5s2bL3qNzp07KyYmRocOHVJqaqokqaKiQpdddpmGDRumDRs2BGxfWlrqv6i9b9%2B%2BcrlcGj9%2BvKSzd5o/ePCg/6L4pkhKSvKfDjzH7T6uurrAH7L6%2BoZGY2h59B2hjuea1oPe26M19N3yk5Rffvllo2ucpLNHmyoqKoys4XA4NHHiRD3//PP63//9Xx09elSrVq3SmDFjNH78eFVUVGjt2rU6deqU9uzZoz179mjSpEmSpLy8PK1fv14HDhxQTU2NVq9erTZt2mj48OFGagMAAKHP8iNYXbp00bPPPquHH35YCQkJkqSqqiqtWLFCV1xxhbF1Zs%2BerdOnT%2BuOO%2B7QmTNnlJ2drQULFig6Olpr1qzRU089pSeeeEJdunTR4sWLdc0110iShg4dqlmzZmnGjBk6evSo0tLSVFRUpKioKGO1AQCA0BbmM3379Av48MMPNXv2bFVVVSk6Olrh4eE6ceKEoqKitGrVKt14441WlmMZt/u4/2OHI1wJCdHyeKptP4R5KQn1vv9s%2BR/sLgGtxNYZgyWF/vd8a0bv7XG%2Bvnfq1N6eWqxecMiQIXr//fe1Z88eHTlyRD6fT8nJybrpppvUvr09TQAAADDJ8oAlSW3bttXIkSN15MgRde3a1Y4SAACtQLAdeT13dBC4EMsDVm1trR5//HG9%2B%2B67ks7%2BBV9VVZVmzZqlX//61wG3VgDsFGxP/ACA1sPyvyJcvHixDh06pCVLlig8/P8vX19fryVLllhdDgAAgHGWB6zt27drxYoVGjVqlP9Nn2NjY7Vo0SLt2LHD6nIAAACMszxgVVdXq1u3bo3GExMTdfLkSavLAQAAMM7ygHXFFVfoj3/8o6TA9/zbtm2bfvKTn1hdDgAAgHGWX%2BR%2B55136qGHHtLtt9%2BuhoYGvfzyyyotLdX27ds1f/58q8sBAAAwzvKAlZubK4fDoddee00RERF6/vnn1b17dy1ZskSjRo2yuhwAAADjLA9Yx44d0%2B23367bb7/d6qUBAAAsYfk1WCNHjpTF784DAABgKcsDVkZGhrZu3Wr1sgAAAJax/BTh5ZdfrqefflpFRUW64oordNlllwXML1261OqSAAAAjLI8YJWVlemqq66SJHk8HquXBwAAaHGWBayZM2dq2bJlevXVV/1jq1atUn5%2BvlUlAMAlgffRBOxn2TVYu3btajRWVFRk1fIAAACWsSxgne8vB/lrQgAAEIosC1jn3tj5QmMAAADBzvLbNAAAAIQ6AhYAAIBhlv0V4ZkzZzR79uwLjnEfLAAAEOwsC1gDBgxQZWXlBccAAACCnWUB6x/vfwUAABDKuAYLAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGGWvVUO8LPlf7C7BAAALMERLAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGDYJRGwnnnmGfXu3dv/%2Bb59%2BzRx4kT1799fOTk52rhxY8D2xcXFys7OVv/%2B/ZWXl6fS0lKrSwYAAEEs5APWoUOHtGHDBv/nlZWVeuCBBzR58mTt27dP8%2BfP12OPPSan0ylJ2rVrl1auXKnnnntOe/fu1YgRIzR9%2BnSdPHnSrl0AAABBJqQDVkNDgx5//HFNmTLFP7Zp0yZ169ZNEydOVGRkpDIzM5WVlaW1a9dKkkpKSjRhwgSlp6crKipKU6dOlSTt3r3bjl0AAABBKKTv5P7mm28qMjJSY8aM0fLlyyVJLpdLKSkpAdulpKRo69at/vnRo0f758LDw9WnTx85nU7l5OQ0ad3Kykq53e6AMYejnZKSkiRJERHhAf8CAIKDw9G0522e5%2B3RmvoesgHr73//u1auXKlXX301YNzr9So5OTlgLD4%2BXh6Pxz8fFxcXMB8XF%2Befb4qSkhIVFhYGjOXn56ugoCBgLDa2bZO/JgDAfgkJ0c3anud5e7SGvodswFq0aJEmTJigHj166JtvvmnWY30%2B30WtnZubq6ysrIAxh6OdPJ5qSWeTdWxsW1VV1ai%2BvuGi1gIAWOfc8/iF8Dxvj/P1vbmh2JSQDFj79u3Tn//8Z23evLnRXEJCgrxeb8CYx%2BNRYmLi/znv9XrVs2fPJq%2BflJTkPx14jtt9XHV1gT9k9fUNjcYAAK1Xc5%2BzeZ63R2vou/0nKVvAxo0bdfToUY0YMUIZGRmaMGGCJCkjI0O9evVqdNuF0tJSpaenS5L69u0rl8vln6uvr9fBgwf98wAAABcSkgHrkUce0fbt27VhwwZt2LBBRUVFkqQNGzZozJgxqqio0Nq1a3Xq1Cnt2bNHe/bs0aRJkyRJeXl5Wr9%2BvQ4cOKCamhqtXr1abdq00fDhw23cIwAAEExC8hRhXFxcwIXqdXV1kqTOnTtLktasWaOnnnpKTzzxhLp06aLFixfrmmuukSQNHTpUs2bN0owZM3T06FGlpaWpqKhIUVFR1u8IAAAISmG%2Bi72iG03idh/3f%2BxwhCshIVoeT7Xt54it9LPlf7C7BAC4KFtnDG7Sdpfq87zdztf3Tp3a21JLSJ4iBAAAsBMBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhDrsLAAAgWPxs%2BR/sLqFZts4YbHcJlyyOYAEAABhGwAIAADCMgAUAAGBYyAasiooK5efnKyMjQ5mZmXrkkUdUVVUlSTp06JB%2B/vOfa8CAAbrlllv00ksvBTx2y5YtGjNmjPr166cJEyboww8/tGMXAABAkArZgDV9%2BnTFxsZq165deuedd/TFF1/oV7/6lWprazVt2jTdcMMN%2BuCDD7Rs2TKtWbNGO3bskHQ2fM2dO1dz5szRf//3f2vKlCl68MEHdeTIEZv3CAAABIuQDFhVVVXq27evZs%2BerejoaHXu3Fnjx4/X/v379f777%2BvMmTO6//771a5dO6WmpuqOO%2B5QSUmJJGnt2rUaNmyYhmGTfDAAAA1MSURBVA0bpsjISI0dO1a9evXSxo0bbd4rAAAQLEIyYMXGxmrRokXq2LGjf%2Bzbb79VUlKSXC6XevfurYiICP9cSkqKSktLJUkul0spKSkBXy8lJUVOp9Oa4gEAQNC7JO6D5XQ69dprr2n16tXaunWrYmNjA%2Bbj4%2BPl9XrV0NAgr9eruLi4gPm4uDiVlZU1eb3Kykq53e6AMYejnZKSkiRJERHhAf8CANASHI5L63WmNb2%2BhnzA%2Buijj3T//fdr9uzZyszM1NatW8%2B7XVhYmP9jn893UWuWlJSosLAwYCw/P18FBQUBY7GxbS9qHQAA/pmEhGi7S7BFa3h9DemAtWvXLv3yl7/UY489pttuu02SlJiYqC%2B//DJgO6/Xq/j4eIWHhyshIUFer7fRfGJiYpPXzc3NVVZWVsCYw9FOHk%2B1pLPJOja2raqqalRf3/Aj9gwAgAs797pzqTjf66tdITNkA9bHH3%2BsuXPn6je/%2BY2GDBniH%2B/bt6/eeOMN1dXVyeE4u/tOp1Pp6en%2B%2BXPXY53jdDqVk5PT5LWTkpL8pwPPcbuPq64uMEzV1zc0GgMAwJRL9TWmNby%2B2n%2BSsgXU1dVpwYIFmjNnTkC4kqRhw4YpJiZGq1evVk1NjT755BOtW7dOeXl5kqRJkyZp7969ev/993Xq1CmtW7dOX375pcaOHWvHrgAAgCAU5rvYC45aof379%2Btf//Vf1aZNm0Zz27ZtU3V1tR5//HGVlpaqY8eOuvfee3XnnXf6t9mxY4eWLl2qiooK9ejRQ/Pnz9fAgQMvqia3%2B7j/Y4cjXAkJ0fJ4qm1P2FYKtjdJBYBgd6m92fP5Xl87dWpvSy0hGbBaIwIWAQsArEbAsi9ghew1WJcKQgsAAK1PSF6DBQAAYCcCFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCM%2B2ABABCiguleiaF2U1SOYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbDOo6KiQvfdd58yMjI0YsQILV68WA0NDXaXBQAAgoTD7gJao4ceekipqanauXOnjh49qmnTpqljx476t3/7N7tLAwAAQYAjWD/gdDr12Wefac6cOWrfvr26deumKVOmqKSkxO7SAABAkOAI1g%2B4XC516dJFcXFx/rHU1FQdPnxYJ06cUExMzAW/RmVlpdxud8CYw9FOSUlJkqSIiPCAfwEAuNQ5HBf/mtiaXl8JWD/g9XoVGxsbMHYubHk8niYFrJKSEhUWFgaMPfjgg3rooYcknQ1gv/vdi8rNzfWHrh9r/9OjLurxl5LKykqVlJQY6Tuah97bg77bh97bw%2BTr68WyP%2BK1Qj6f76Ien5ubq3feeSfgv9zcXP%2B82%2B1WYWFho6NcaFn03T703h703T703h6tqe8cwfqBxMREeb3egDGv16uwsDAlJiY26WskJSXZnpwBAIB9OIL1A3379tW3336rY8eO%2BcecTqd69Oih6OhoGysDAADBgoD1AykpKUpLS9PSpUt14sQJlZeX6%2BWXX1ZeXp7dpQEAgCARsXDhwoV2F9Ha3HTTTdq8ebP%2B8z//U%2B%2B%2B%2B64mTpyoe%2B65R2FhYcbWiI6O1qBBgzgqZjH6bh96bw/6bh96b4/W0vcw38Ve0Q0AAIAAnCIEAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyA1UIqKip03333KSMjQyNGjNDixYvV0NBw3m2Li4uVnZ2t/v37Ky8vT6WlpRZXGzqa0/c33nhD2dnZ6tevn8aNG6edO3daXG1oaU7vz/nuu%2B/Ur18/rVy50qIqQ09z%2Bl5eXq677rpL6enpGjZsmF555RVriw0xTe19Q0ODVqxYoaysLPXr109jxozRli1bbKg4dHzwwQfKzMzUzJkz/%2Bl2DQ0NWrZsmUaOHKmBAwfqnnvu0ddff21NkT60iPHjx/sWLFjgq6qq8h0%2BfNh3yy23%2BF566aVG27333nu%2B66%2B/3nfgwAFfTU2Nb82aNb7Bgwf7qqurbag6%2BDW179u2bfMNGDDAt3//ft/p06d9b731li81NdX31Vdf2VB1aGhq7//Rgw8%2B6BswYIBvxYoVFlUZepra95qaGt/w4cN9L7zwgu/kyZO%2BTz75xJeTk%2BMrKyuzoerQ0NTev/baa74hQ4b4ysvLfXV1db5du3b5UlJSfIcOHbKh6uBXVFTku%2BWWW3yTJ0/2zZgx459uW1xc7BsxYoSvrKzMd/z4cd%2BTTz7pGzNmjK%2BhoaHF6%2BQIVgtwOp367LPPNGfOHLVv317dunXTlClTVFJS0mjbkpISTZgwQenp6YqKitLUqVMlSbt377a67KDXnL7X1tZq1qxZGjBggC677DLdcccdio6O1oEDB2yoPPg1p/fn7NmzR2VlZRo%2BfLh1hYaY5vR969atiomJ0dSpU9W2bVtde%2B212rx5s66%2B%2BmobKg9%2Bzem9y%2BXSgAEDdNVVVykiIkIjRoxQfHy8/vKXv9hQefCLjIzUunXrdOWVV15w25KSEk2ZMkVXX321YmJiNHPmTJWXl%2BuTTz5p8ToJWC3A5XKpS5cuiouL84%2Blpqbq8OHDOnHiRKNtU1JS/J%2BHh4erT58%2BcjqdltUbKprT93HjxunOO%2B/0f15VVaXq6molJydbVm8oaU7vpbMB98knn9Tjjz8uh8NhZakhpTl9/%2Bijj9SrVy/NmzdP119/vUaNGqWNGzdaXXLIaE7vhw8frv/5n//RoUOHdPr0ab333nuqqanRoEGDrC47JNx9991q3779Bberra1VWVlZwGtsTEyMrrzySkteYwlYLcDr9So2NjZg7NwPocfjabTtP/6Antv2h9vhwprT93/k8/m0YMECpaen84T3IzW396tWrdJ1112nG264wZL6QlVz%2Bn7kyBG99957yszM1AcffKBp06Zp7ty5OnjwoGX1hpLm9P6WW25Rbm6ubrvtNqWlpWn27NlatGiRLr/8csvqvRR9//338vl8tr3G8qtjC/H5fC2yLf655vbyzJkzeuSRR1RWVqbi4uIWqurS0NTel5WVae3atdq0aVMLV3RpaGrffT6fUlNTNWbMGEnS%2BPHj9eabb2rbtm0Bv%2BGj6Zra%2B/Xr12v9%2BvVau3atevfurX379mn27Nm6/PLLde2117ZwlbDrNZYjWC0gMTFRXq83YMzr9SosLEyJiYkB4wkJCefd9ofb4cKa03fp7OHjadOm6W9/%2B5tef/11dezY0apSQ05Te%2B/z%2BbRw4UI99NBD6tSpk9VlhpzmfM936tSp0WmVLl26yO12t3idoag5vX/ttdeUm5ura6%2B9VpGRkRo%2BfLhuuOEGTtG2sPj4eIWHh5/3/1OHDh1afH0CVgvo27evvv32Wx07dsw/5nQ61aNHD0VHRzfa1uVy%2BT%2Bvr6/XwYMHlZ6eblm9oaI5fff5fJo5c6YcDodeeeUVJSQkWF1uSGlq7//2t7/pT3/6k1asWKGMjAxlZGTo3Xff1Ysvvqjx48fbUXpQa873/NVXX63PP/884Lf5iooKdenSxbJ6Q0lzet/Q0KD6%2BvqAsdOnT1tS56UsMjJSPXv2DHiNraqq0ldffWXJkUMCVgtISUlRWlqali5dqhMnTqi8vFwvv/yy8vLyJEmjRo3S/v37JUl5eXlav369Dhw4oJqaGq1evVpt2rThL6t%2BhOb0fdOmTSorK9NvfvMbRUZG2ll2SGhq7zt37qw9e/Zow4YN/v%2BysrI0efJkFRUV2bwXwac53/Njx46Vx%2BPR888/r9raWm3evFkul0tjx461cxeCVnN6n5WVpXXr1umzzz5TXV2dPvzwQ%2B3bt08jR460cxdC0nfffadRo0b573WVl5en4uJilZeX68SJE1qyZIn69OmjtLS0Fq%2BFa7BayIoVK/TYY49p8ODBiomJ0eTJk/1/tXb48GGdPHlSkjR06FDNmjVLM2bM0NGjR5WWlqaioiJFRUXZWX7Qamrf3377bVVUVDS6qH3cuHF66qmnLK87FDSl9xEREercuXPA49q2bauYmBhOGf5ITf2eT05O1po1a/T000/rv/7rv/STn/xEq1at0hVXXGFn%2BUGtqb2fNm2a6urqlJ%2Bfr2PHjqlLly566qmndOONN9pZftA6F47q6uokyX%2BTaKfTqTNnzujw4cP%2BI4STJ0%2BW2%2B3WXXfdperqamVkZKiwsNCSOsN8XGENAABgFKcIAQAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMCw/wfE0QMMJvsmVgAAAABJRU5ErkJggg%3D%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common-6090768774342719238"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.4761904761904762</td> | |
<td class="number">217</td> | |
<td class="number">3.8%</td> | |
<td> | |
<div class="bar" style="width:6%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.5</td> | |
<td class="number">202</td> | |
<td class="number">3.5%</td> | |
<td> | |
<div class="bar" style="width:5%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.5235602094240838</td> | |
<td class="number">183</td> | |
<td class="number">3.2%</td> | |
<td> | |
<div class="bar" style="width:5%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4</td> | |
<td class="number">163</td> | |
<td class="number">2.8%</td> | |
<td> | |
<div class="bar" style="width:5%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4545454545454545</td> | |
<td class="number">162</td> | |
<td class="number">2.8%</td> | |
<td> | |
<div class="bar" style="width:5%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.6944444444444444</td> | |
<td class="number">157</td> | |
<td class="number">2.7%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4878048780487805</td> | |
<td class="number">151</td> | |
<td class="number">2.6%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4347826086956522</td> | |
<td class="number">149</td> | |
<td class="number">2.6%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4166666666666667</td> | |
<td class="number">144</td> | |
<td class="number">2.5%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4444444444444444</td> | |
<td class="number">140</td> | |
<td class="number">2.4%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (93)</td> | |
<td class="number">4006</td> | |
<td class="number">69.9%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme-6090768774342719238"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.038461538461538464</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:7%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.047619047619047616</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:7%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.05263157894736842</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:27%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.05882352941176471</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:40%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.06666666666666668</td> | |
<td class="number">15</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.9259259259259258</td> | |
<td class="number">20</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.9345794392523364</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:40%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.9433962264150942</td> | |
<td class="number">10</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.9523809523809524</td> | |
<td class="number">16</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:80%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.9615384615384616</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:10%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_B365D">B365D<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>49</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>0.9%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>1.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>55</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>0.26401</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>0.058824</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>0.57803</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram7979093565014169473"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABIklEQVR4nO3dwQ2CQBBAUTSWZBH25NmeLMKe1gbMj5AQEN%2B7k8zlZ5a97GmMMSbgo/PWA8CeXbYe4Miu9%2Bfsb16P2wqTsJQNAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEDygM8OSB3H4bTYIBIFAEAgEgUAQCIS/vcVyI8U3bBAIAoEgEAiH%2BAfxP8FaDhHIkSyJ/fW4rTAJ0%2BSIBWl3G8RxiT05jTHG1kPAXjliQRAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQHgDoTUUNTaRnsYAAAAASUVORK5CYII%3D"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives7979093565014169473,#minihistogram7979093565014169473" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives7979093565014169473"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles7979093565014169473" | |
aria-controls="quantiles7979093565014169473" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram7979093565014169473" aria-controls="histogram7979093565014169473" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common7979093565014169473" aria-controls="common7979093565014169473" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme7979093565014169473" aria-controls="extreme7979093565014169473" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles7979093565014169473"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>0.058824</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>0.15385</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>0.2381</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>0.28571</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>0.30303</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>0.3125</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>0.57803</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>0.51921</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.064935</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.052421</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.19855</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>1.9129</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>0.26401</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.040092</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>-1.3486</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>1498</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.002748</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram7979093565014169473"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1yUZd7H8S8wiQoMgom2aOJ6CgRNSzFyxUOtmqVZHqBnKzctDyRBWqZ2sNIOq66luCadLZ9iNTM1zTIPnax9rLUG1C3RVpc0ppwJQVCBef7oaZ5G3RXkcg74eb9e8yKvaw6/6zf39PrOfd/cBLlcLpcAAABgTLCvCwAAAKhvCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDCLrws4X9jtR3xdwjkTHByk6OgwHT5cpupql6/LCXj00zx6ahb9NIt%2BmnVyP5s1i/BNHT55VdQrwcFBCgoKUnBwkK9LqRfop3n01Cz6aRb9NMtf%2BknAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABgWsAFr9%2B7duvXWW3XZZZcpJSVFWVlZstvt%2Buyzz9SxY0clJSV53NavX%2B9%2B7NKlSzVgwAB169ZN6enpys/Pd88dO3ZMDz74oHr37q3k5GRlZmbK4XD4YokAACBABWTAOn78uG677Tb16NFD27Zt09q1a/Xjjz9q5syZkqTY2FjZbDaP26BBgyRJmzZt0sKFC/WnP/1Jn3zyifr27avx48fr6NGjkqT58%2BeroKBAeXl52rBhg1wul6ZNm%2BarpQIAgAAUkAGrvLxc2dnZGjdunBo0aKDo6GhdffXV%2Buabb8742Ly8PN1www3q0qWLGjZsqLFjx0qSNm/erMrKSq1YsUITJ07URRddpCZNmigrK0tbtmzR999/f66XBQAA6omADFiRkZEaMWKELJaf/1b13r179eabb7r3UpWVlSkjI0PJycn63e9%2BpxdffFEu189/QLOgoEAJCQnu5woODlZ8fLxsNpv279%2BvI0eOqFOnTu75tm3bqmHDhiooKPDiCgEAQCCz%2BLqAuigqKtKAAQNUWVmpkSNHKjMzU7t371aHDh106623av78%2Bfrb3/6mu%2B66SxERERo%2BfLicTqciIyM9nicyMlIOh0NOp1OSZLVaPeatVmutzsMqLi6W3W73GLNYGismJuYsV%2BrfQkKCPX6ibuinefTULPppFv00y1/6GdAB65dzrf75z3/qwQcf1L333qt58%2BbplVdecd%2BnV69eSktL08qVKzV8%2BHBJcu/N%2BnfONH8meXl5ysnJ8RjLyMhQZmZmnZ7X31mtjXxdQr1Sn/t5%2BYx3fF1CrWyfPdDXJfil%2BryN%2BgL9NMvX/QzogCVJQUFBiouLU3Z2ttLS0jRjxgxFR0d73Cc2NlYbNmyQJEVFRbn3VP3C6XSqffv27sc5nU6FhYW553/66Sc1bdq0xjWNGjVK/fr18xizWBrL4Sir1doCRUhIsKzWRiopKVdVVbWvywl49NP/1NfP7tliGzWLfpp1cj%2BjosLO/KBzICAD1rZt2zRz5kytX79ewcE/7wL85efWrVtVXl6um266yX3/vXv3qlWrVpKkxMREFRQUaNiwYZKkqqoq7dy5U8OHD1erVq0UGRmpgoICxcbGSpK%2B/vprHT9%2BXImJiTWuLyYm5pTDgXb7EVVW1u8PTlVVdb1fozfRT//B%2B3B6bKNm0U%2BzfN3PgDzgm5iYqNLSUs2ZM0fl5eU6fPiwFi5cqMsvv1wRERF68skn9dFHH%2BnEiRP6%2BOOP9cYbbyg9PV2SlJ6erlWrVmnHjh0qLy/X4sWL1aBBA/Xp00chISEaOXKknnnmGR08eFAOh0N//vOfdfXVV%2BvCCy/08aoBAECgCMg9WBEREXrhhRc0a9Ys9ezZU40bN1bPnj01e/ZsNW/eXNOnT9ejjz6qgwcP6sILL9T06dP1%2B9//XpLUu3dv3X333crKytKPP/6opKQk5ebmqmHDhpKkzMxMlZWVaejQoaqsrFTfvn3d19cCAACoiSBXXc/oRo3Y7Ud8XcI5Y7EEKyoqTA5HGbu3DTgf%2BjnoqY99XUKtrM%2B60tcl%2BJXzYRv1Jvpp1sn9bNYswid1BOQhQgAAAH9GwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYFrABa/fu3br11lt12WWXKSUlRVlZWbLb7ZKkbdu2afjw4erWrZsGDx6s1atXezx26dKlGjBggLp166b09HTl5%2Be7544dO6YHH3xQvXv3VnJysjIzM%2BVwOLy6NgAAENgCMmAdP35ct912m3r06KFt27Zp7dq1%2BvHHHzVz5kwVFxdr4sSJSktL07Zt2zRjxgw98MADstlskqRNmzZp4cKF%2BtOf/qRPPvlEffv21fjx43X06FFJ0vz581VQUKC8vDxt2LBBLpdL06ZN8%2BVyAQBAgAnIgFVeXq7s7GyNGzdODRo0UHR0tK6%2B%2Bmp98803WrNmjeLi4jR8%2BHCFhoYqJSVF/fr10/LlyyVJeXl5uuGGG9SlSxc1bNhQY8eOlSRt3rxZlZWVWrFihSZOnKiLLrpITZo0UVZWlrZs2aLvv//el0sGAAABxOLrAs5GZGSkRowY4f733r179eabb2rQoEEqKChQQkKCx/0TEhK0fv16SVJBQYGuueYa91xwcLDi4%2BNls9kUHx%2BvI0eOqFOnTu75tm3bqmHDhiooKFDz5s1rVF9xcbH7cOUvLJbGiomJqfVaA0FISLDHT9QN/fQ/Fgvvxa%2BxjZpFP83yl34GZMD6RVFRkQYMGKDKykqNHDlSmZmZuv32208JQk2aNHGfR%2BV0OhUZGekxHxkZKYfDIafTKUmyWq0e81artVbnYeXl5SknJ8djLCMjQ5mZmTV%2BjkBktTbydQn1Cv30H1FRYb4uwS%2BxjZpFP83ydT8DOmDFxsbKZrPpn//8px588EHde%2B%2B9NXqcy%2BWq0/yZjBo1Sv369fMYs1gay%2BEoq9Pz%2BquQkGBZrY1UUlKuqqpqX5cT8Oin/6mvn92zxTZqFv006%2BR%2B%2BuoLUkAHLEkKCgpSXFycsrOzlZaWptTUVPeeqF84HA5FR0dLkqKiok6Zdzqdat%2B%2Bvfs%2BTqdTYWH//4b89NNPatq0aY1riomJOeVwoN1%2BRJWV9fuDU1VVXe/X6E3003/wPpwe26hZ9NMsX/czIA/4btu2TQMGDFB19f83Ljj456V07tzZ47ILkpSfn68uXbpIkhITE1VQUOCeq6qq0s6dO9WlSxe1atVKkZGRHvNff/21jh8/rsTExHO5JAAAUI8EZMBKTExUaWmp5syZo/Lych0%2BfFgLFy7U5ZdfrvT0dBUVFWn58uU6duyYtm7dqq1bt2rkyJGSpPT0dK1atUo7duxQeXm5Fi9erAYNGqhPnz4KCQnRyJEj9cwzz%2BjgwYNyOBz685//rKuvvloXXnihj1cNAAACRUAeIoyIiNALL7ygWbNmqWfPnmrcuLF69uyp2bNnq2nTplqyZIlmzZqlhx9%2BWLGxsZozZ44uueQSSVLv3r119913KysrSz/%2B%2BKOSkpKUm5urhg0bSpIyMzNVVlamoUOHqrKyUn379tXMmTN9uFoAABBoglx1PaMbNWK3H/F1CeeMxRKsqKgwORxlnD9gwPnQz0FPfezrEmplfdaVvi7Br5wP26g30U%2BzTu5ns2YRPqkjIA8RAgAA%2BDMCFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMCwgA1YRUVFysjIUHJyslJSUnTfffeppKRE//rXv9SxY0clJSV53J5//nn3Y9etW6frrrtOXbt21Q033KCPPvrIPVddXa358%2Berf//%2B6t69u8aMGaMDBw74YokAACBABWzAGj9%2BvKxWqzZt2qSVK1fqm2%2B%2B0ZNPPumet9lsHrcxY8ZIknbt2qWpU6dqypQp%2BvTTTzV69GjdeeedOnTokCRp2bJlWrNmjXJzc7V582bFxcUpIyNDLpfLJ%2BsEAACBJyADVklJiRITEzV58mSFhYWpRYsWGjZsmLZv337Gxy5fvlypqalKTU1VaGiohgwZog4dOmj16tWSpLy8PI0ePVpt27ZVeHi4srOzVVhYqC%2B//PJcLwsAANQTFl8XcDasVqsef/xxj7GDBw8qJibG/e97771Xn3zyiSorKzVixAhlZmbqggsuUEFBgVJTUz0em5CQIJvNpoqKCu3Zs0cJCQnuufDwcLVu3Vo2m02XXnppjeorLi6W3W73GLNYGnvUV5%2BEhAR7/ETd0E//Y7HwXvwa26hZ9NMsf%2BlnQAask9lsNr366qtavHixGjRooK5du%2Brqq6/W7NmztWvXLk2aNEkWi0V33XWXnE6nIiMjPR4fGRmpPXv26KeffpLL5TrtvMPhqHE9eXl5ysnJ8RjLyMhQZmbm2S8yAFitjXxdQr1CP/1HVFSYr0vwS2yjZtFPs3zdz4APWJ9//rkmTJigyZMnKyUlRZL0%2Buuvu%2Bc7d%2B6scePGacmSJbrrrrsk6YznU9X1fKtRo0apX79%2BHmMWS2M5HGV1el5/FRISLKu1kUpKylVVVe3rcgIe/fQ/9fWze7bYRs2in2ad3E9ffUEK6IC1adMm3XPPPXrggQd0/fXX/9v7xcbG6ocffpDL5VJUVJScTqfHvNPpVHR0tJo0aaLg4ODTzjdt2rTGdcXExJxyONBuP6LKyvr9wamqqq73a/Qm%2Buk/eB9Oj23ULPpplq/7GbAHfL/44gtNnTpVTz/9tEe42rZtmxYvXuxx37179yo2NlZBQUFKTExUfn6%2Bx7zNZlOXLl0UGhqq9u3bq6CgwD1XUlKi/fv3q3Pnzud2QQAAoN4IyIBVWVmp%2B%2B%2B/X1OmTFGvXr085iIiIrRo0SK99dZbOnHihGw2m55//nmlp6dLkkaOHKlPPvlEW7Zs0bFjx7RixQp9%2B%2B23GjJkiCQpPT1dS5cuVWFhoUpLSzV37lzFx8crKSnJ6%2BsEAACBKSAPEe7YsUOFhYWaNWuWZs2a5TH3zjvvaP78%2BcrJydGDDz6oiIgI3Xzzzbr11lslSR06dNDcuXP1%2BOOPq6ioSO3atdOSJUvUrFkzSVJaWprsdrtuvvlmlZWVKTk5%2BZQT1gEAAP6TIBdX0PQKu/2Ir0s4ZyyWYEVFhcnhKOP8AQPOh34OeupjX5dQK%2BuzrvR1CX7lfNhGvYl%2BmnVyP5s1i/BJHQF5iBAAAMCfEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAzzesDq16%2BfcnJydPDgQW%2B/NAAAgFd4PWDdeOONWrduna666iqNHTtW7777riorK71dBgAAwDnj9YCVkZGhdevW6a9//avat2%2Bvxx57TKmpqZozZ4727dvn7XIAAACM89k5WJ06ddLUqVO1efNmTZ8%2BXX/96191zTXXaMyYMfrqq698VRYAAECd%2BSxgnThxQuvWrdPtt9%2BuqVOnqnnz5po2bZri4%2BM1evRorVmzxlelAQAA1InF2y9YWFioFStWaNWqVSorK9OAAQP08ssv67LLLnPfp3v37po5c6auu%2B46b5cHAABQZ14PWIMHD1abNm00btw4XX/99WrSpMkp90lNTdXhw4e9XRoAAIARXg9YS5cuVY8ePc54vy%2B//NIL1QAAAJjn9XOwOnbsqPHjx2vjxo3usZdeekm33367nE6nt8sBAAAwzusB6/HHH9eRI0fUrl0791ifPn1UXV2tJ554wtvlAAAAGOf1Q4QfffSR1qxZo6ioKPdYXFyc5s6dq2uvvdbb5QAAABjn9T1YFRUVCg0NPbWQ4GCVl5d7uxwAAADjvB6wunfvrieeeEI//fSTe%2Bz777/Xww8/7HGpBgAAgEDl9UOE06dP12233aYrrrhC4eHhqq6uVllZmVq1aqVXXnnF2%2BUAAAAY5/WA1apVK7399tv64IMPtH//fgUHB6tNmzbq1auXQkJCavw8RUVFeuyxx7R9%2B3aFhISod%2B/emj59uqxWq3bt2qXZs2dr165datq0qdLS0nTbbbe5H7tu3TotXrxY//rXv9SmTRvdfffd6tWrlySpurpaTz/9tNauXauSkhJ17txZM2fOVKtWrYz3AgAA1E8%2B%2BVM5DRo00FVXXaXbbrtNo0ePVmpqaq3ClSSNHz9eVqtVmzZt0sqVK/XNN9/oySefVEVFhcaNG6eePXvqww8/1Pz587VkyRK9%2B%2B67kqRdu3Zp6tSpmjJlij799FONHj1ad955pw4dOiRJWrZsmdasWaPc3Fxt3rxZcXFxysjIkMvlMt4HAABQP3k9YB04cEBZWVkaPHiw%2Bvfvf8qtJkpKSpSYmKjJkycrLCxMLVq00LBhw7R9%2B3Zt2bJFJ06c0IQJE9S4cWN16tRJI0aMUF5eniRp%2BfLlSk1NVWpqqkJDQzVkyBB16NBBq1evliTl5eVp9OjRatu2rcLDw5Wdna3CwkIufAoAAGrMJ%2BdgFRcXq1evXmrcuPFZPYfVatXjjz/uMXbw4EHFxMSooKBAHTt29NgjlpCQoOXLl0uSCgoKlJqa6vHYhIQE2Ww2VVRUaM%2BePUpISHDPhYeHq3Xr1rLZbLr00kvPql4AAHB%2B8XrAys/P1/vvv6/o6Ghjz2mz2fTqq69q8eLFWr9%2BvaxWq8d8kyZN5HQ6VV1dLafTqcjISI/5yMhI7dmzRz/99JNcLtdp5x0OR43rKS4ult1u9xizWBorJiamlisLDCEhwR4/UTf00/9YLLwXv8Y2ahb9NMtf%2Bun1gNW0adOz3nN1Op9//rkmTJigyZMnKyUlRevXrz/t/YKCgtz/fabzqep6vlVeXp5ycnI8xjIyMpSZmVmn5/V3VmsjX5dQr9BP/xEVFebrEvwS26hZ9NMsX/fT6wFr3LhxysnJ0eTJkz1Cz9nYtGmT7rnnHj3wwAO6/vrrJUnR0dH69ttvPe7ndDrVpEkTBQcHKyoq6pS/eeh0OhUdHe2%2Bz%2BnmmzZtWuO6Ro0apX79%2BnmMWSyN5XCU1WJ1gSMkJFhWayOVlJSrqqra1%2BUEPPrpf%2BrrZ/dssY2aRT/NOrmfvvqC5PWA9cEHH%2BiLL77QypUr1bJlSwUHe%2B7Ce/3112v0PF988YWmTp2qp59%2B2n2JBUlKTEzUa6%2B9psrKSlksPy/PZrOpS5cu7vn8/HyP57LZbBo8eLBCQ0PVvn17FRQUqEePHpJ%2BPqF%2B//796ty5c43XGBMTc8rhQLv9iCor6/cHp6qqut6v0Zvop//gfTg9tlGz6KdZvu6n1wNWeHi4evfuXafnqKys1P33368pU6Z4hCtJSk1NVXh4uBYvXqyxY8fq66%2B/1ooVKzRnzhxJ0siRIzV8%2BHBt2bJFV1xxhdasWaNvv/1WQ4YMkSSlp6crNzdXvXv3VvPmzTV37lzFx8crKSmpTjUDAIDzR5ArAC/wtH37dv3Xf/2XGjRocMrcO%2B%2B8o7KyMj300EPKz8/XhRdeqNtvv1033XST%2Bz7vvvuu5s2bp6KiIrVr104zZsxQ9%2B7dJf18/tXChQv1%2Buuvq6ysTMnJyXrkkUfUokWLOtVstx%2Bp0%2BP9mcUSrKioMDkcZXz7MuB86Oegpz72dQm1sj7rSl%2BX4FfOh23Um%2BinWSf3s1mzCJ/U4ZOAtXfvXr399tv67rvv3Jdb%2BPvf/66uXbt6uxSvIWChps6HfhKwAtv5sI16E/00y18Cltd/h3Hbtm0aMmSI3n33Xa1du1bSzxcfveWWW/T%2B%2B%2B97uxwAAADjvB6w5s%2Bfr3vuuUdr1qxx/xZhq1at9MQTT2jRokXeLgcAAMA4rwesr7/%2BWunp6ZI8r001cOBAFRYWerscAAAA47wesCIiIlRRUXHKeHFx8WlPWgcAAAg0Xg9Y3bp102OPPabS0lL32L59%2BzR16lRdccUV3i4HAADAOK9fB2vatGm69dZblZycrKqqKnXr1k3l5eVq3769nnjiCW%2BXAwAAYJzXA1aLFi20du1abd26Vfv27VPDhg3Vpk0bXXnllXX%2B0zkAAAD%2BwOsBS5IuuOACXXXVVb54aQAAgHPO6wGrX79%2B/3FPFdfCAgAAgc7rAeuaa67xCFhVVVXat2%2BfbDabbr31Vm%2BXAwAAYJzXA9aUKVNOO75hwwZ99tlnXq4GAADAPK9fpuHfueqqq/T222/7ugwAAIA685uAtXPnTvng704DAAAY5/VDhGlpaaeMlZeXq7CwUL///e%2B9XQ4AAIBxXg9YcXFxp/wWYWhoqIYPH64RI0Z4uxwAAADjvB6wuFo7AACo77wesFatWlXj%2B15//fXnsBIAAIBzw%2BsBa8aMGaqurj7lhPagoCCPsaCgIAIWAAAISF4PWM8995xeeOEFjR8/Xh07dpTL5dI//vEPPfvss/rDH/6g5ORkb5cEAABglE/OwcrNzVXz5s3dY5dffrlatWqlMWPGaO3atd4uCQAAwCivXwfr22%2B/VWRk5CnjVqtVRUVF3i4HAADAOK8HrNjYWD3xxBNyOBzusZKSEs2bN08XX3yxt8sBAAAwzuuHCKdPn67JkycrLy9PYWFhCg4OVmlpqRo2bKhFixZ5uxwAAADjvB6wevXqpS1btmjr1q06dOiQXC6Xmjdvrt/97neKiIjwdjkAAADGeT1gSVKjRo3Uv39/HTp0SK1atfJFCQAAAOeM18/Bqqio0NSpU9W1a1cNGjRI0s/nYI0dO1YlJSXeLgcAAMA4rwesOXPmaNeuXZo7d66Cg///5auqqjR37lxvlwMAAGCc1wPWhg0btGDBAg0cOND9R5%2BtVqsef/xxvfvuu94uBwAAwDivB6yysjLFxcWdMh4dHa2jR496uxwAAADjvB6wLr74Yn322WeS5PG3B9955x395je/8XY5AAAAxnn9twhvuukmTZo0STfeeKOqq6v14osvKj8/Xxs2bNCMGTO8XQ4AAIBxXg9Yo0aNksVi0auvvqqQkBA988wzatOmjebOnauBAwd6uxwAAADjvB6wDh8%2BrBtvvFE33nijt18aAADAK7x%2BDlb//v09zr2qiw8//FApKSnKzs72GF%2B5cqUuueQSJSUledy%2B%2BuorSVJ1dbXmz5%2Bv/v37q3v37hozZowOHDjgfrzT6VRWVpZSUlLUq1cvzZgxQxUVFUZqBgAA9Z/XA1ZycrLWr19f5%2Bd59tlnNWvWLLVu3fq08927d5fNZvO4de7cWZK0bNkyrVmzRrm5udq8ebPi4uKUkZHhDn4PPPCAysvLtXbtWr3xxhsqLCzkGl0AAKDGvH6I8KKLLtLs2bOVm5uriy%2B%2BWBdccIHH/Lx582r0PKGhoVqxYoVmz56tY8eO1aqGvLw8jR49Wm3btpUkZWdnKzk5WV9%2B%2BaVatmypjRs36s0331R0dLQkaeLEibrrrrs0derUU%2BoFAAA4mdcD1p49e/Tb3/5WkuRwOM76eW655Zb/OH/w4EH98Y9/VH5%2BvqxWqzIzMzV06FBVVFRoz549SkhIcN83PDxcrVu3ls1m05EjRxQSEqKOHTu65zt16qSjR49q7969HuP/TnFxsex2u8eYxdJYMTExtVxlYAgJCfb4ibqhn/7HYuG9%2BDW2UbPop1n%2B0k%2BvBazs7GzNnz9fr7zyints0aJFysjIMP5a0dHRiouL091336127drpvffe07333quYmBj99re/lcvlUmRkpMdjIiMj5XA41KRJE4WHh7uvMv/LnFTzQJiXl6ecnByPsYyMDGVmZtZxZf7Nam3k6xLqFfrpP6Kiwnxdgl9iGzWLfprl6356LWBt2rTplLHc3NxzErD69OmjPn36uP89ePBgvffee1q5cqWmTJkiSf/xRPu6noQ/atQo9evXz2PMYmksh6OsTs/rr0JCgmW1NlJJSbmqqqp9XU7Ao5/%2Bp75%2Bds8W26hZ9NOsk/vpqy9IXgtYpwstpn6bsCZiY2OVn5%2BvJk2aKDg4WE6n02Pe6XSqadOmio6OVmlpqaqqqhQSEuKek6SmTZvW6LViYmJOORxotx9RZWX9/uBUVVXX%2BzV6E/30H7wPp8c2ahb9NMvX/fTaAcpfH3L7T2MmvPbaa1q3bp3HWGFhoVq1aqXQ0FC1b99eBQUF7rmSkhLt379fnTt3Vnx8vFwul3bv3u2et9lsslqtatOmzTmpFwAA1C/18oy648eP69FHH5XNZtOJEye0du1affDBB0pLS5Mkpaena%2BnSpSosLFRpaanmzp2r%2BPh4JSUlKTo6WgMGDNBTTz2lw4cP69ChQ1q0aJGGDx8ui8XrvxMAAAACUMAmhqSkJElSZWWlJGnjxo2Sft7bdMstt6isrEx33XWX7Ha7WrZsqUWLFikxMVGSlHENVO8AABMdSURBVJaWJrvdrptvvlllZWVKTk72OCn9kUce0UMPPaT%2B/fvrggsu0LXXXnvKxUwBAAD%2BnSCXl06ESkhI0KBBgzzG1q9ff8pYTa%2BDFWjs9iO%2BLuGcsViCFRUVJoejjPMHDDgf%2BjnoqY99XUKtrM%2B60tcl%2BJXzYRv1Jvpp1sn9bNYswjd1eOuFLrvsMhUXF59xDAAAINB5LWD9%2BvpXAAAA9Vm9PMkdAADAlwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYFhAB6wPP/xQKSkpys7OPmVu3bp1uu6669S1a1fdcMMN%2Buijj9xz1dXVmj9/vvr376/u3btrzJgxOnDggHve6XQqKytLKSkp6tWrl2bMmKGKigqvrAkAAAS%2BgA1Yzz77rGbNmqXWrVufMrdr1y5NnTpVU6ZM0aeffqrRo0frzjvv1KFDhyRJy5Yt05o1a5Sbm6vNmzcrLi5OGRkZcrlckqQHHnhA5eXlWrt2rd544w0VFhZq7ty5Xl0fAAAIXAEbsEJDQ7VixYrTBqzly5crNTVVqampCg0N1ZAhQ9ShQwetXr1akpSXl6fRo0erbdu2Cg8PV3Z2tgoLC/Xll1/qhx9%2B0MaNG5Wdna3o6Gg1b95cEydO1BtvvKETJ054e5kAACAAWXxdwNm65ZZb/u1cQUGBUlNTPcYSEhJks9lUUVGhPXv2KCEhwT0XHh6u1q1by2az6ciRIwoJCVHHjh3d8506ddLRo0e1d%2B9ej3HAnwx66mNflwAA%2BD8BG7D%2BE6fTqcjISI%2BxyMhI7dmzRz/99JNcLtdp5x0Oh5o0aaLw8HAFBQV5zEmSw%2BGo0esXFxfLbrd7jFksjRUTE3M2y/F7ISHBHj9RN/TT/1gsvBe/xjZqFv00y1/6WS8DliT3%2BVRnM3%2Bmx55JXl6ecnJyPMYyMjKUmZlZp%2Bf1d1ZrI1%2BXUK/QT/8RFRXm6xL8EtuoWfTTLF/3s14GrKioKDmdTo8xp9Op6OhoNWnSRMHBwaedb9q0qaKjo1VaWqqqqiqFhIS45ySpadOmNXr9UaNGqV%2B/fh5jFktjORxlZ7skvxYSEiyrtZFKSspVVVXt63ICHv30P/X1s3u22EbNop9mndxPX31BqpcBKzExUfn5%2BR5jNptNgwcPVmhoqNq3b6%2BCggL16NFDklRSUqL9%2B/erc%2BfOio2Nlcvl0u7du9WpUyf3Y61Wq9q0aVOj14%2BJiTnlcKDdfkSVlfX7g1NVVV3v1%2BhN9NN/8D6cHtuoWfTTLF/3s14e8B05cqQ%2B%2BeQTbdmyRceOHdOKFSv07bffasiQIZKk9PR0LV26VIWFhSotLdXcuXMVHx%2BvpKQkRUdHa8CAAXrqqad0%2BPBhHTp0SIsWLdLw4cNlsdTLPAoAAAwL2MSQlJQkSaqsrJQkbdy4UdLPe5s6dOiguXPn6vHHH1dRUZHatWunJUuWqFmzZpKktLQ02e123XzzzSorK1NycrLHOVOPPPKIHnroIfXv318XXHCBrr322tNezBQAAOB0glx1PaMbNWK3H/F1CeeMxRKsqKgwORxl7N424Gz7yWUazp31WVf6ugS/wmfeLPpp1sn9bNYswid11MtDhAAAAL5EwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGWXxdAOCvBj31sa9LAAAEKPZgAQAAGFZvA1bHjh2VmJiopKQk9%2B3RRx%2BVJG3btk3Dhw9Xt27dNHjwYK1evdrjsUuXLtWAAQPUrVs3paenKz8/3xdLAAAAAapeHyJ855131LJlS4%2Bx4uJiTZw4UTNmzNB1112nzz//XBMmTFCbNm2UlJSkTZs2aeHChXruuefUsWNHLV26VOPHj9e7776rxo0b%2B2glAAAgkNTbPVj/zpo1axQXF6fhw4crNDRUKSkp6tevn5YvXy5JysvL0w033KAuXbqoYcOGGjt2rCRp8%2BbNviwbAAAEkHq9B2vevHn6%2B9//rtLSUg0aNEj33XefCgoKlJCQ4HG/hIQErV%2B/XpJUUFCga665xj0XHBys%2BPh42Ww2DR48uEavW1xcLLvd7jFmsTRWTExMHVfkn0JCgj1%2BAvWNxcK2/Wt85s2in2b5Sz/rbcC69NJLlZKSoieffFIHDhxQVlaWHn74YTmdTjVv3tzjvk2aNJHD4ZAkOZ1ORUZGesxHRka652siLy9POTk5HmMZGRnKzMw8y9UEBqu1ka9LAM6JqKgwX5fgl/jMm0U/zfJ1P%2BttwMrLy3P/d9u2bTVlyhRNmDBBl1122Rkf63K56vTao0aNUr9%2B/TzGLJbGcjjK6vS8/iokJFhWayOVlJSrqqra1%2BUAxtXXz%2B7Z4jNvFv006%2BR%2B%2BuoLUr0NWCdr2bKlqqqqFBwcLKfT6THncDgUHR0tSYqKijpl3ul0qn379jV%2BrZiYmFMOB9rtR1RZWb8/OFVV1fV%2BjTg/sV2fHp95s%2BinWb7uZ7084Ltz50498cQTHmOFhYVq0KCBUlNTT7nsQn5%2Bvrp06SJJSkxMVEFBgXuuqqpKO3fudM8DAACcSb0MWE2bNlVeXp5yc3N1/Phx7du3T08//bRGjRqloUOHqqioSMuXL9exY8e0detWbd26VSNHjpQkpaena9WqVdqxY4fKy8u1ePFiNWjQQH369PHtogAAQMCol4cImzdvrtzcXM2bN88dkIYNG6bs7GyFhoZqyZIlmjVrlh5%2B%2BGHFxsZqzpw5uuSSSyRJvXv31t13362srCz9%2BOOPSkpKUm5urho2bOjjVQEAgEAR5KrrGd2oEbv9iK9LOGcslmBFRYXJ4SirV%2BcP8LcI8Yv1WVf6ugS/Ul8/875CP806uZ/NmkX4pI56eYgQAADAlwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADDM4usCcP4Y9NTHvi4BAACvYA8WAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGMZvEQLAGQTab8Cuz7rS1yUA5z32YAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjD%2BVE%2BAC7U94AABwPmAPFgAAgGEELAAAAMMIWKdRVFSkO%2B64Q8nJyerbt6/mzJmj6upqX5cFAAACBOdgncakSZPUqVMnbdy4UT/%2B%2BKPGjRunCy%2B8UH/84x99XRoAAAgA7ME6ic1m0%2B7duzVlyhRFREQoLi5Oo0ePVl5enq9LAwAAAYI9WCcpKChQbGysIiMj3WOdOnXSvn37VFpaqvDw8DM%2BR3Fxsex2u8eYxdJYMTExxusFgJNZLOf2u3NISLDHT9QN/TTLX/pJwDqJ0%2BmU1Wr1GPslbDkcjhoFrLy8POXk5HiM3XnnnZo0aZK5Qv/P9tkDjT9nbRUXFysvL0%2BjRo0iRBpAP82jp2YVFxfr5Zefo5%2BG0E%2Bz/KWfxOXTcLlcdXr8qFGjtHLlSo/bqFGjDFXnf%2Bx2u3Jyck7Za4ezQz/No6dm0U%2Bz6KdZ/tJP9mCdJDo6Wk6n02PM6XQqKChI0dHRNXqOmJgYvoUAAHAeYw/WSRITE3Xw4EEdPnzYPWaz2dSuXTuFhYX5sDIAABAoCFgnSUhIUFJSkubNm6fS0lIVFhbqxRdfVHp6uq9LAwAAASJk5syZM31dhL/53e9%2Bp7Vr1%2BrRRx/V22%2B/reHDh2vMmDEKCgrydWl%2BKywsTD169GAvnyH00zx6ahb9NIt%2BmuUP/Qxy1fWMbgAAAHjgECEAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQs1EhRUZHuuOMOJScnq2/fvpozZ46qq6tPe9%2BysjJNmTJFHTt2VGFhoZcrDQy16edrr72mAQMGqGvXrho6dKg2btzo5Wr9X0376XK5lJOTo759%2B6pr164aPHiwVq1a5YOK/Vttts9ffP/99%2BratasWLlzopSoDR037uXDhQsXHxyspKcnj9sMPP/igav9Wm220sLBQN998s7p06aLU1FS99NJLXqmRgIUamTRpkpo3b66NGzfqxRdf1MaNG/Xyyy%2Bfcr/vv/9eN9xwg0JCQnxQZeCoaT83bNigefPm6bHHHtPf/vY3/eEPf1BWVpYOHDjgg6r9V037%2BfLLL2vVqlV6/vnntX37dk2aNEnTpk3Tzp07fVC1/6ppP39t1qxZfO7/jdr0c%2BjQobLZbB63Cy%2B80MsV%2B7%2Ba9rSiokJjx45VamqqPv30Uy1cuFArVqzwzpd/F3AGX331lSs%2BPt7ldDrdY//93//tGjBgwCn33bVrl%2Bu9995zHThwwNWhQwfXnj17vFlqQKhNP1etWuVatmyZx1iPHj1cq1evPud1Bora9HPbtm2uHTt2eIx1797d9dZbb53zOgNFbfr5iy1btrgGDhzomjx5smvBggXeKDNg1KafCxYscE2dOtWb5QWk2vR05cqVrmuvvdab5bmxBwtnVFBQoNjYWEVGRrrHOnXqpH379qm0tNTjvpdccomuuuoqb5cYUGrTz6FDh%2Bqmm25y/7ukpERlZWVq3ry51%2Br1d7XpZ8%2BePdWlSxdJP3%2BzffXVVxUcHKwrrrjCqzX7s9r0U/q5j4888ogeeughWSwWb5YaEGrbz3/84x9KS0tTt27dNHjwYH300UfeLDcg1Kann3/%2BuTp06KBp06bp8ssv18CBA7V69Wqv1EnAwhk5nU5ZrVaPsV82bIfD4YuSAtrZ9tPlcun%2B%2B%2B9Xly5d1KNHj3NaYyA5m37ef//9uvTSS/XCCy9o0aJFatas2TmvM1DUtp%2BLFi3SpZdeqp49e3qlvkBTm362aNFCrVq10pNPPqmPP/5YI0aM0Pjx47V3716v1RsIatPTQ4cO6f3331dKSoo%2B/PBDjRs3TlOnTvXKaQEELNSIy%2BXydQn1Sm37eeLECU2ZMkV79uzR008/fY6qCly17eesWbO0Y8cOZWRkaPz48ZyDdZKa9nPPnj1avny57rvvvnNcUWCraT9HjBihBQsWqHXr1mrUqJFGjx6t%2BPh4r%2B1xCSQ17anL5VKnTp103XXXqVGjRho2bJg6d%2B6sd9555xxXSMBCDURHR8vpdHqMOZ1OBQUFKTo62kdVBa7a9rOiokLjxo3Td999p2XLlnHC60nOdvts2LChbrzxRnXu3FkrVqw412UGjJr20%2BVyaebMmZo0aRJ7AP%2BDuv7/MzY2VsXFxeeqvIBUm542a9ZMERERHmOxsbGy2%2B3nvE4CFs4oMTFRBw8e1OHDh91jNptN7dq1U1hYmA8rC0y16afL5VJ2drYsFoteeuklRUVFebtcv1ebfo4fP17Lli3zGAsKCuLcoV%2BpaT%2B/%2B%2B47/c///I8WLFig5ORkJScn6%2B2339Zzzz2nYcOG%2BaJ0v1Sb7fMvf/mLtm3b5jFWWFioVq1aeaXWQFGbnrZt21Zff/21xx6voqIixcbGnvM6CVg4o4SEBCUlJWnevHkqLS1VYWGhXnzxRaWnp0uSBg4cqO3bt/u4ysBRm36uWbPGfVgwNDTUl2X7rdr0s1u3bsrNzdXOnTtVWVmpTZs2adu2berbt68vl%2BBXatrPFi1aaOvWrXrrrbfct379%2BiktLU25ubk%2BXoX/qM326XQ69fDDD2vv3r06duyYXnjhBe3fv5/AepLa9HTIkCFyOBx65plnVFFRobVr16qgoEBDhgw553XytQ01smDBAj3wwAO68sorFR4errS0NPdvt%2B3bt09Hjx6V9PM3sMWLF7u/LQwdOlRBQUGaMGGCJk6c6LP6/U1N%2B/nGG2%2BoqKjolJPahw4dqlmzZnm9bn9V036OGTNGJ06c0B133KEjR46oZcuWmjVrFr9FeJKa9DMkJEQtWrTweFyjRo0UHh7OIcOT1HT7nDx5siRp9OjRcjqdateunV566aVT%2Boya97R58%2BZasmSJZs%2Berb/85S/6zW9%2Bo0WLFuniiy8%2B5zUGuTh7GQAAwCgOEQIAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYf8Ltcj2AQXB6c8AAAAASUVORK5CYII%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common7979093565014169473"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.29411764705882354</td> | |
<td class="number">834</td> | |
<td class="number">14.6%</td> | |
<td> | |
<div class="bar" style="width:55%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.30303030303030304</td> | |
<td class="number">655</td> | |
<td class="number">11.4%</td> | |
<td> | |
<div class="bar" style="width:43%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2857142857142857</td> | |
<td class="number">632</td> | |
<td class="number">11.0%</td> | |
<td> | |
<div class="bar" style="width:42%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2777777777777778</td> | |
<td class="number">424</td> | |
<td class="number">7.4%</td> | |
<td> | |
<div class="bar" style="width:28%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.3125</td> | |
<td class="number">367</td> | |
<td class="number">6.4%</td> | |
<td> | |
<div class="bar" style="width:24%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.26666666666666666</td> | |
<td class="number">308</td> | |
<td class="number">5.4%</td> | |
<td> | |
<div class="bar" style="width:20%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.25</td> | |
<td class="number">260</td> | |
<td class="number">4.5%</td> | |
<td> | |
<div class="bar" style="width:17%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.3076923076923077</td> | |
<td class="number">252</td> | |
<td class="number">4.4%</td> | |
<td> | |
<div class="bar" style="width:17%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2631578947368421</td> | |
<td class="number">221</td> | |
<td class="number">3.9%</td> | |
<td> | |
<div class="bar" style="width:15%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2309468822170901</td> | |
<td class="number">196</td> | |
<td class="number">3.4%</td> | |
<td> | |
<div class="bar" style="width:13%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (38)</td> | |
<td class="number">1525</td> | |
<td class="number">26.6%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme7979093565014169473"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.05882352941176471</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:9%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.06666666666666668</td> | |
<td class="number">15</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:65%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.07692307692307693</td> | |
<td class="number">13</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:56%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.08333333333333333</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:31%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.09090909090909093</td> | |
<td class="number">23</td> | |
<td class="number">0.4%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.4166666666666667</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4201680672268908</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4444444444444444</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.4761904761904762</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.5780346820809249</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_B365A">B365A<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>104</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>1.8%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>1.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>55</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>0.31066</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>0.019608</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>0.92593</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram-188412083082064991"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABNUlEQVR4nO3dwanCQBRAURVLsojf01/bk0XY09iAXKIQMibn7IXZXN48Q/Q8xhgn4K3L1geAmV23PsBWbv%2BPjz/zvP%2BtcBJmZoJAEAgEgUAQCITDLunf%2BHSxt9T/PhMEgkAgCASCQCDsYkn/5qk4LGGCQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFA2MX7ILPy642/b7pAvPzETFyxIAgEgkAgCATCdEv60fnmay4mCASBQBAIBIFAsKTvgP8tWY8JAkEgEAQCQSAQLOkH5Gn9cgJhkaNG5YoFQSAQXLFYzR6uZecxxtj6EDArVywIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAILyOZI29bG0QNAAAAAElFTkSuQmCC"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives-188412083082064991,#minihistogram-188412083082064991" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives-188412083082064991"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles-188412083082064991" | |
aria-controls="quantiles-188412083082064991" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram-188412083082064991" aria-controls="histogram-188412083082064991" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common-188412083082064991" aria-controls="common-188412083082064991" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme-188412083082064991" aria-controls="extreme-188412083082064991" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles-188412083082064991"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>0.019608</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>0.076923</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>0.19048</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>0.28571</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>0.4</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>0.65359</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>0.92593</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>0.90632</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.20952</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.17138</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.55165</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>0.46806</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>0.31066</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.1329</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>0.8286</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>1762.7</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.029371</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram-188412083082064991"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3RU9b3//1cmAwkk5CYk2BwUlEtJiCkgxAaEEFBQCghGQjyt5VQUJJrFrQsRPIKHChU4WoGDRJeXqEcj6OEmKD%2BugtAesUWTgFVSPGoKZgozBkK4JJnfH36ddgyVGfNhb2Z4PtZyxXw%2Be89%2B78%2BHPXnN3js7EV6v1ysAAAAY47C7AAAAgHBDwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhjntLuBy4XKdCHhZhyNCSUkxOn68Vo2N3otYFf4Z5sBejL%2B9GH/7MQfmtGvXxpbtcgbrEuRwRCgiIkIOR4TdpVy2mAN7Mf72YvztxxyEPgIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABjmtLsA4FJ1/ey37S4hKJum9LO7BADA/8MZLAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwLCQDVi7du1Sdna2pk6d2qRv8%2BbNGjlypHr27KmhQ4fq9ddf9%2BsvKSnR0KFD1atXLxUUFKi8vNzXd%2BbMGf37v/%2B7BgwYoKysLBUVFcntdl/0/QEAAOEjJAPWM888o/nz5%2Bvqq69u0vfRRx9pxowZKioq0vvvv6%2BHHnpIjz76qPbt2ydJ2rZtm5YuXarHH39ce/bs0aBBgzRp0iSdOnVKkvTEE0%2BooqJCpaWleuedd%2BT1ejVr1ixL9w8AAIS2kAxYUVFRWr169XkDlsfj0cSJEzVkyBA5nU4NHDhQXbt29QWs0tJSjRkzRpmZmYqOjtaECRMkSdu3b1d9fb1Wr16tyZMn68orr1RCQoKmTJmiHTt26KuvvrJ0HwEAQOgKyYB11113qU2bNuftGzBggAoLC33f19fXy%2BVyKSUlRZJUUVGhtLQ0X7/D4VD37t1VVlamzz//XCdOnFB6erqv/9prr1V0dLQqKiou0t4AAIBw47S7gItt8eLFat26tW699VZJ35zhio%2BP91smPj5ebrdbHo9HkhQXF%2BfXHxcXF9R9WNXV1XK5XH5tTmdrJScnB7R%2BZKTD7yusF4pj73SGXs3/DMeAvRh/%2BzEHoS9sA5bX69XixYu1YcMGlZSUKCoqyq/vQus2R2lpqZYtW%2BbXVlhYqKKioqBeJy6uVbPqwOUlMTHG7hKM4xiwF%2BNvP%2BYgdIVlwGpsbNSsWbP00Ucf6dVXX1WHDh18fYmJib4zVd/yeDzq0qWLkpKSfN/HxPz9h9XXX3%2BtK664IuDt5%2BfnKzc316/N6Wwtt7s2oPUjIx2Ki2ulmpo6NTQ0BrxdmBOKnxoD/fcVCjgG7MX42485MMeuD59hGbAee%2Bwxffrpp3r11VeVkJDg19ejRw9VVFRo9OjRkqSGhgYdOHBAeXl56tChg%2BLj41VRUaHU1FRJ0ieffKKzZ8%2BqR48eAW8/OTm5yeVAl%2BuE6uuDO0gaGhqDXgeXr3D8t8IxYC/G337MQegKvY/pF/DBBx9o3bp1Ki4ubhKuJKmgoEBr1qzR/v37VVdXpxUrVqhly5bKyclRZGSkxo4dq6efflpHjhyR2%2B3Wf/7nf%2Bqmm25S27ZtbdgbAAAQikLyDFZGRoakb35DUJK2bNkiSSorK9Mbb7yhEydOaNCgQX7r9OnTR88995wGDBigadOmacqUKTp27JgyMjJUXFys6OhoSVJRUZFqa2s1atQo1dfXa9CgQZo7d651OwcAAEJehLe5d3QjIC7XiYCXdTodSkyMkdtdy6lhmzidDt20eJfdZYStTVP6fW8/x4C9GH/7MQfmtGt3/sc6XWxhd4kQAADAbgQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGOa0uwBcPm558j27SwAAwBKcwQIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDQjpg7dq1S9nZ2Zo6dWqTvo0bN2rEiBHq2bOnxowZo927d/v6Ghsb9cQTT2jw4MHq06eP7r77bn3xxRe%2Bfo/HoylTpig7O1v9%2B/fX7Nmzdfr0aUv2CQAAhL6QDVjPPPOM5s%2Bfr6uvvrpJ38GDBzVz5kzNmDFDv//97zV%2B/Hjdf//9Onr0qCTplVde0fr161VcXKzt27erY8eOKiwslNfrlSQ9/PDDqqur04YNG/TGG2%2BosrJSixcvtnT/AABA6ArZgBUVFaXVq1efN2CtWrVKAwcO1MCBAxUVFaWRI0eqa9euWrdunSSptLRU48eP17XXXqvY2FhNnTpVlZWV%2BvDDD/W3v/1NW7Zs0dSpU5WUlKSUlBRNnjxZb7zxhs6dO2f1bgIAgBAUsgHrrrvuUps2bc7bV1FRobS0NL%2B2tLQ0lZWV6fTp0zp06JBff2xsrK6%2B%2BmqVlZXp4MGDioyMVLdu3Xz96enpOnXqlP7yl79cnJ0BAABhJSyf5O7xeBQfH%2B/XFh8fr0OHDunrr7%2BW1%2Bs9b7/b7VZCQoJiY2MVERHh1ydJbrc7oO1XV1fL5XL5tTmdrZWcnBzQ%2BpGRDr%2BvQLhxOr//3zbHgL0Yf/sxB6EvLAOWJN/9VD%2Bk/0LrXkhpaamWLVvm11ZYWKiioqKgXicurlWz6gAuVYmJMQEtxzFgL8bffsxB6ArLgJWYmCiPx%2BPX5vF4lJSUpISEBDkcjvP2X3HFFUpKStLJkyfV0NCgyMhIX58kXXHFFQFtPz8/X7m5uX5tTmdrud21Aa0fGelQXFwr1dTUqaGhMaB1gFByoWOBY8BejL/9mANzAv1AZ1pYBqwePXqovLzcr62srEzDhw9XVFSUunTpooqKCvXt21eSVFNTo88//1zXXXedUlNT5fV69fHHHys9Pd23blxcnDp16hTQ9pOTk5tcDnS5Tqi%2BPriDpKGhMeh1gFAQ6L9rjgF7Mf72Yw5CV1he3B07dqz27NmjHTt26MyZM1q9erU%2B%2B%2BwzjRw5UpJUUFCgkpISVVZW6uTJk1q8eLG6d%2B%2BujIwMJSUlaejQoXryySd1/PhxHT16VMuXL1deXp6czrDMowAAwLCQTQwZGRmSpPr6eknSli1bJH1ztqlr165avHixFixYoKqqKnXu3FkrV65Uu3btJEnjxo2Ty%2BXSL37xC9XW1iorK8vvnqlHH31UjzzyiAYPHqwWLVroZz/72XkfZgoAAHA%2BEd7m3tGNgLhcJwJe1ul0KDExRm53bVidGr7lyffsLgGXiE1T%2Bn1vf7geA6GC8bcfc2BOu3bnf6TTxRaWlwgBAADsRMACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhlkesHJzc7Vs2TIdOXLE6k0DAABYwvKAdfvtt2vjxo0aMmSIJkyYoM2bN6u%2Bvt7qMgAAAC4aywNWYWGhNm7cqNdff11dunTRY489poEDB2rRokU6fPiw1eUAAAAYZ9s9WOnp6Zo5c6a2b9%2Buhx56SK%2B//rpuvfVW3X333froo4/sKgsAAKDZbAtY586d08aNG3XPPfdo5syZSklJ0axZs9S9e3eNHz9e69evb9brHzhwQHfddZeuv/569evXTzNmzNDx48clSXv37lVeXp569eql4cOHa926dX7rlpSUaOjQoerVq5cKCgpUXl7erFoAAMDlxWn1BisrK7V69WqtWbNGtbW1Gjp0qF588UX17t3bt0yfPn00d%2B5cjRgx4gdto76%2BXvfee6/GjBmjZ599VrW1tZo%2Bfbrmzp2rOXPmaPLkyZo9e7ZGjBihDz74QPfdd586deqkjIwMbdu2TUuXLtWzzz6rbt26qaSkRJMmTdLmzZvVunVrU8MAAADCmOVnsIYPH64dO3Zo4sSJevfdd7Vo0SK/cCVJAwcO9J1t%2BiFcLpdcLpdGjRqlli1bKjExUTfddJMOHjyo9evXq2PHjsrLy1NUVJSys7OVm5urVatWSZJKS0s1ZswYZWZmKjo6WhMmTJAkbd%2B%2B/YfvNAAAuKxYHrBKSkq0adMmjR8/XgkJCf90uQ8//PAHbyMlJUXdu3dXaWmpamtrdezYMW3evFk5OTmqqKhQWlqa3/JpaWm%2By4Df7Xc4HOrevbvKysp%2BcD0AAODyYvklwm7dumnSpEnKy8vTkCFDJEkvvPCC3nvvPS1atOh7Q1egHA6Hli5dqvHjx%2BvFF1%2BUJPXt21fTp0/X5MmTlZKS4rd8QkKC3G63JMnj8Sg%2BPt6vPz4%2B3tcfiOrqarlcLr82p7O1kpOTA1o/MtLh9xUIN07n9//b5hiwF%2BNvP%2BYg9FkesBYsWKATJ06oc%2BfOvracnBzt2rVLCxcu1MKFC5u9jbNnz2rSpEkaNmyYJk2apFOnTmnevHmaMWNGQOt7vd5mbb%2B0tFTLli3zayssLFRRUVFQrxMX16pZdQCXqsTEmICW4xiwF%2BNvP%2BYgdFkesHbv3q3169crMTHR19axY0ctXrxYP/vZz4xsY%2B/evfryyy81bdo0RUZGqk2bNioqKtKoUaN04403yuPx%2BC3vdruVlJQkSUpMTGzS7/F41KVLl4C3n5%2Bfr9zcXL82p7O13O7agNaPjHQoLq6Vamrq1NDQGPB2gVBxoWOBY8BejL/9mANzAv1AZ5rlAev06dOKiopq0u5wOFRXV2dkGw0NDWpsbPQ7E3X27FlJUnZ2tv7nf/7Hb/ny8nJlZmZKknr06KGKigqNHj3a91oHDhxQXl5ewNtPTk5ucjnQ5Tqh%2BvrgDpKGhsag1wFCQaD/rjkG7MX42485CF2WX9zt06ePFi5cqK%2B//trX9tVXX2nevHlNfpvwh%2BrZs6dat26tpUuXqq6uTm63WytWrFCfPn00atQoVVVVadWqVTpz5ox27typnTt3auzYsZKkgoICrVmzRvv371ddXZ1WrFihli1bKicnx0htAAAg/EV4m3vDUZC%2B%2BOIL/epXv1JVVZViY2PV2Nio2tpadejQQS%2B99FKTG9B/qPLycv32t7/Vxx9/rJYtW6pv37568MEHlZKSovfff1/z589XZWWlUlNTNX36dN18882%2Bdf/7v/9bxcXFOnbsmDIyMjR37lx17dq1WfW4XCcCXtbpdCgxMUZud21YfXK55cn37C4Bl4hNU/p9b3%2B4HgOhgvG3H3NgTrt2bWzZruUBS/rmct27776rzz//XA6HQ506dVL//v0VGRlpdSmWIWARsPB3BKxLG%2BNvP%2BbAHLsCluX3YElSy5YtfY9oAAAACDeWB6wvvvhCS5Ys0aeffqrTp0836d%2B6davVJQEAABhlecB66KGHVF1drf79%2B/O3/QAAQFiyPGCVl5dr69atvudOAQAAhBvLH9NwxRVXcOYKAACENcsD1sSJE7Vs2bJm/zkaAACAS5Xllwjfffdd/fGPf9Sbb76pf/mXf5HD4Z/xXnvtNatLAgAAMMrygBUbG6sBAwZYvVkAAADLWB6wFixYYPUmAQAALGX5PViS9Je//EVLly7VrFmzfG1/%2BtOf7CgFAADAOMsD1t69ezVy5Eht3rxZGzZskPTNw0fvuusuHjIKAADCguUB64knntCvf/1rrV%2B/XhEREZKkDh06aOHChVq%2BfLnV5QAAABhnecD65JNPVFBQIEm%2BgCVJw4YNU2VlpdXlAAAAGGd5wGrTps15/wZhdXW1WrZsaXU5AAAAxlkesHr16qXHHntMJ0%2Be9LUdPnxYM2fO1E9/%2BlOrywEAADDO8sc0zJo1S7/85S%2BVlZWlhoYG9erVS3V1derSpYsWLlxodTkAAADGWR6w2rdvrw0bNmjnzp06fPiwoqOj1alTJ/Xr18/vniwAAIBQZXnAkqQWLVpoyJAhdmwaAADgorM8YOXm5n7vmSqehQUAAEKd5QHr1ltv9QtYDQ0NOnz4sMrKyvTLX/7S6nIAAACMszxgzZgx47zt77zzjv7whz9YXA0AAIB5tvwtwvMZMmSI3nrrLbvLAAAAaLZLJmAdOHBAXq/X7jIAAACazfJLhOPGjWvSVldXp8rKSt18881WlwMAAGCc5QGrY8eOTX6LMCoqSnl5ebrjjjusLgcAAMA4ywMWT2sHAADhzvKAtWbNmoCXve222y5iJQAAABeH5QFr9uzZamxsbHJDe0REhF9bREQEAQsAAIQkywPWs88%2Bq%2Beee06TJk1St27d5PV69ec//1nPPPOMfv7znysrK8vqkgAAAIyy5R6s4uJipaSk%2BNquv/56dejQQXfffbc2bNhgdUkAAABGWf4crM8%2B%2B0zx8fFN2uPi4lRVVWV1OQAAAMZZHrBSU1O1cOFCud1uX1tNTY2WLFmiq666yupyAAAAjLP8EuFDDz2k6dOnq7S0VDExMXI4HDp58qSio6O1fPlyq8sBAAAwzvKA1b9/f%2B3YsUM7d%2B7U0aNH5fV6lZKSohtvvFFt2rSxuhwAAADjLA9YktSqVSsNHjxYR48eVYcOHewoAQAA4KKx/B6s06dPa%2BbMmerZs6duueUWSd/cgzVhwgTV1NQY3daKFSvUv39//eQnP9H48eP15ZdfSpL27t2rvLw89erVS8OHD9e6dev81ispKdHQoUPVq1cvFRQUqLy83GhdAAAgvFkesBYtWqSDBw9q8eLFcjj%2BvvmGhgYtXrzY2HZeeeUVrVu3TiUlJdq9e7c6d%2B6sF154QdXV1Zo8ebLGjRunvXv3avbs2Xr44YdVVlYmSdq2bZuWLl2qxx9/XHv27NGgQYM0adIknTp1ylhtAAAgvFkesN555x099dRTGjZsmO%2BPPsfFxWnBggXavHmzse0899xzmjp1qq655hrFxsZqzpw5mjNnjtavX6%2BOHTsqLy9PUVFRys7OVm5urlatWiVJKi0t1ZgxY5SZmano6GhNmDBBkrR9%2B3ZjtQEAgPBmecCqra1Vx44dm7QnJSUZO0v01Vdf6csvv9TXX3%2BtW2%2B9VVlZWSoqKtLx48dVUVGhtLQ0v%2BXT0tJ8lwG/2%2B9wONS9e3ffGS4AAIALsfwm96uuukp/%2BMMflJWV5fe3B99%2B%2B2396Ec/MrKNo0eP%2Bl7z%2Beefl9frVVFRkebMmaPTp0/7PUVekhISEnzP5fJ4PE0ehBofH%2B/33K4Lqa6ulsvl8mtzOlsrOTk5oPUjIx1%2BX4Fwc8uT79ldQlD%2Bvxk32l2CpXgPsh9zEPosD1h33nmnHnjgAd1%2B%2B%2B1qbGzU888/r/Lycr3zzjuaPXu2kW18G9wmTJjgC1MPPPCA7rnnHmVnZwe8/g9VWlqqZcuW%2BbUVFhaqqKgoqNeJi2vVrDoAmJGYGGN3CbbgPch%2BzEHosjxg5efny%2Bl06uWXX1ZkZKSefvppderUSYsXL9awYcOMbKNt27aSvrm361upqanyer06d%2B6cPB6P3/Jut1tJSUmSpMTExCb9Ho9HXbp0CXj7%2Bfn5ys3N9WtzOlvL7a4NaP3ISIfi4lqppqZODQ2NAW8XwMUR6LEbLngPsh9zYI5dH5AsD1jHjx/X7bffrttvv/2ibaN9%2B/aKjY3VwYMHlZ6eLkmqqqpSixYtNHDgQK1du9Zv%2BfLycmVmZkqSevTooYqKCo0ePVrSN7/deODAAeXl5QW8/eTk5CaXA12uE6qvD%2B4gaWhoDHodAOZdrsch70H2Yw5Cl%2BUXdwcPHtzsS3AX4nQ6lZeXp6efflr/93//p2PHjmn58uUaMWKERo8eraqqKq1atUpnzpzRzp07tXPnTo0dO1aSVFBQoDVr1mj//v2qq6vTihUr1LJlS%2BXk5FzUmgEAQPiw/AxWVlaWNm3apFtvvfWibmf69Ok6e/as7rjjDp07d05Dhw7VnDlzFBMTo5UrV2r%2B/PmaN2%2BeUlNTtWjRIv34xz%2BWJA0YMEDTpk3TlClTdOzYMWVkZKi4uFjR0dEXtV4AABA%2BIrwX%2B3TSd8ybN0%2BbN29Wu3btdNVVV6lFixZ%2B/UuWLLGyHMu4XCcCXtbpdCgxMUZud21YnRoOtd8cA761aUo/u0uwVLi%2BB4US5sCcdu3s%2BTvHlp/BOnTokK655hpJCurRBwAAAKHCsoA1depUPfHEE3rppZd8bcuXL1dhYaFVJQAAAFjCspvct23b1qStuLjYqs0DAABYxrKAdb5bvSy%2B/QsAAMASll0i/PYPO1%2BoDcHhxnEAAC49/JEjAAAAwwhYAAAAhll2ifDcuXOaPn36BdvC9TlYAADg8mFZwOrdu7eqq6sv2AYAABDqLAtY//j8KwAAgHDGPVgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGXRYB67HHHlO3bt183%2B/du1d5eXnq1auXhg8frnXr1vktX1JSoqFDh6pXr14qKChQeXm51SUDAIAQFvYB6%2BDBg1q7dq3v%2B%2Brqak2ePFnjxo3T3r17NXv2bD388MMqKyuTJG3btk1Lly7V448/rj179mjQoEGaNGmSTp06ZdcuAACAEOO0u4CLqbGxUY888ojGjx%2BvJ598UpK0fv16dezYUXl5eZKk7Oxs5ebmatWqVcrIyFBpaanGjBmjzMxMSdKECRNUUlKi7du3a/jw4bbtCwD73PLke3aXEJRNU/rZXQJw2QvrM1ivvfaaoqKiNGLECF9bRUWF0tLS/JZLS0vzXQb8br/D4VD37t19Z7gAAAAuJGzPYP3tb3/T0qVL9dJLL/m1ezwepaSk%2BLUlJCTI7Xb7%2BuPj4/364%2BPjff2BqK6ulsvl8mtzOlsrOTk5oPUjIx1%2BXwEgGE5n8947eA%2ByH3MQ%2BsI2YC1YsEBjxoxR586d9eWXXwa1rtfrbda2S0tLtWzZMr%2B2wsJCFRUVBfU6cXGtmlUHgMtTYmKMkdfhPch%2BzEHoCsuAtXfvXv3pT3/Shg0bmvQlJibK4/H4tbndbiUlJf3Tfo/Hoy5dugS8/fz8fOXm5vq1OZ2t5XbXBrR%2BZKRDcXGtVFNTp4aGxoC3CwCSAn6v%2BWd4D7Ifc2COqQ8cwQrLgLVu3TodO3ZMgwYNkvT3M1JZWVn61a9%2B1SR4lZeX%2B25q79GjhyoqKjR69GhJUkNDgw4cOOC7KT4QycnJTS4HulwnVF8f3EHS0NAY9DoAYOp9g/cg%2BzEHoSssL%2B4%2B%2BOCDeuedd7R27VqtXbtWxcXFkqS1a9dqxIgRqqqq0qpVq3TmzBnt3LlTO3fu1NixYyVJBQUFWrNmjfbv36%2B6ujqtWLFCLVu2VE5Ojo17BAAAQklYnsGKj4/3u1G9vr5ektS%2BfXtJ0sqVKzV//nzNmzdPqampWrRokX784x9LkgYMGKBp06ZpypQpOnbsmDIyMlRcXKzo6GjrdwQAAISkCG9z7%2BhGQFyuEwEv63Q6lJgYI7e79oKnhkPt%2BTwALr7mPgcrmPcgXBzMgTnt2rWxZbtheYkQAADATgQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMc9pdAADArFuefM/uEgK2aUo/u0sALgrOYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAw8I2YFVVVamwsFBZWVnKzs7Wgw8%2BqJqaGknSwYMH9fOf/1y9e/fWzTffrOeee85v3Y0bN2rEiBHq2bOnxowZo927d9uxCwAAIESFbcCaNGmS4uLitG3bNr355pv69NNP9dvf/lanT5/WxIkTdcMNN2jXrl164okntHLlSm3evFnSN%2BFr5syZmjFjhn7/%2B99r/Pjxuv/%2B%2B3X06FGb9wgAAISKsAxYNTU16tGjh6ZPn66YmBi1b99eo0eP1r59%2B7Rjxw6dO3dO9913n1q3bq309HTdcccdKi0tlSStWrVKAwcO1MCBAxUVFaWRI0eqa9euWrdunc17BQAAQkVYBqy4uDgtWLBAbdu29bUdOXJEycnJqqioULdu3RQZGWDy%2BRAAAAvsSURBVOnrS0tLU3l5uSSpoqJCaWlpfq%2BXlpamsrIya4oHAAAhz2l3AVYoKyvTyy%2B/rBUrVmjTpk2Ki4vz609ISJDH41FjY6M8Ho/i4%2BP9%2BuPj43Xo0KGAt1ddXS2Xy%2BXX5nS2VnJyckDrR0Y6/L4CQLhyOnmfOx9%2BDoS%2BsA9YH3zwge677z5Nnz5d2dnZ2rRp03mXi4iI8P2/1%2Btt1jZLS0u1bNkyv7bCwkIVFRUF9Tpxca2aVQcAXOoSE2PsLuGSxs%2BB0BXWAWvbtm369a9/rYcffli33XabJCkpKUmfffaZ33Iej0cJCQlyOBxKTEyUx%2BNp0p%2BUlBTwdvPz85Wbm%2BvX5nS2lttdG9D6kZEOxcW1Uk1NnRoaGgPeLgCEmkDfFy83/Bwwx64QH7YB649//KNmzpyp3/3ud%2Brfv7%2BvvUePHnr11VdVX18vp/Ob3S8rK1NmZqav/9v7sb5VVlam4cOHB7zt5OTkJpcDXa4Tqq8P7iBpaGgMeh0ACCW8x30/fg6ErrC8uFtfX685c%2BZoxowZfuFKkgYOHKjY2FitWLFCdXV1%2BvDDD7V69WoVFBRIksaOHas9e/Zox44dOnPmjFavXq3PPvtMI0eOtGNXAABACIrwNveGo0vQvn379K//%2Bq9q2bJlk763335btbW1euSRR1ReXq62bdvqnnvu0Z133ulbZvPmzVqyZImqqqrUuXNnzZ49W3369GlWTS7XiYCXdTodSkyMkdtde8FPLrc8%2BV6z6gIAO22a0s/uEi5JwfwcwPdr166NLdsNy4B1KSJgAUBTBKzzI2CZY1fACstLhAAAAHYiYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMC9s/9gwAuPSF2l%2Bj4MnzCBRnsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDeA4WAAAB4rldCBRnsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhjntLgAAAFwctzz5nt0lBGzTlH52l2AUZ7AAAAAMI2CdR1VVle69915lZWVp0KBBWrRokRobG%2B0uCwAAhAguEZ7HAw88oPT0dG3ZskXHjh3TxIkT1bZtW/3bv/2b3aUBAIAQwBms7ygrK9PHH3%2BsGTNmqE2bNurYsaPGjx%2Bv0tJSu0sDAAAhgjNY31FRUaHU1FTFx8f72tLT03X48GGdPHlSsbGxF3yN6upquVwuvzans7WSk5MDqiEy0uH3FQCAcOd0htfPPALWd3g8HsXFxfm1fRu23G53QAGrtLRUy5Yt82u7//779cADDwRUQ3V1tV588Vnl5%2BdfMJTt%2B82wgF4TwamurlZpaWlAcwDzGH97Mf72Yw5CX3jFRUO8Xm%2Bz1s/Pz9ebb77p919%2Bfn7A67tcLi1btqzJWTBYhzmwF%2BNvL8bffsxB6OMM1nckJSXJ4/H4tXk8HkVERCgpKSmg10hOTuYTBwAAlzHOYH1Hjx49dOTIER0/ftzXVlZWps6dOysmJsbGygAAQKggYH1HWlqaMjIytGTJEp08eVKVlZV6/vnnVVBQYHdpAAAgRETOnTt3rt1FXGpuvPFGbdiwQf/xH/%2Bht956S3l5ebr77rsVERFhWQ0xMTHq27cvZ81sxBzYi/G3F%2BNvP%2BYgtEV4m3tHNwAAAPxwiRAAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAKWTaqqqnTvvfcqKytLgwYN0qJFi9TY2HjeZUtKSjR06FD16tVLBQUFKi8vt7ja8BPM%2BL/66qsaOnSoevbsqVGjRmnLli0WVxuegpmDb3311Vfq2bOnli5dalGV4SuY8a%2BsrNQvfvELZWZmauDAgXrhhResLTYMBTr%2BjY2Neuqpp5Sbm6uePXtqxIgR2rhxow0VI2he2GL06NHeOXPmeGtqaryHDx/23nzzzd7nnnuuyXJbt271Xn/99d79%2B/d76%2BrqvCtXrvT269fPW1tba0PV4SPQ8X/77be9vXv39u7bt8979uxZ7%2Buvv%2B5NT0/3fv755zZUHV4CnYN/dP/993t79%2B7tfeqppyyqMnwFOv51dXXenJwc7zPPPOM9deqU98MPP/QOHz7ce%2BjQIRuqDh%2BBjv/LL7/s7d%2B/v7eystJbX1/v3bZtmzctLc178OBBG6pGMDiDZYOysjJ9/PHHmjFjhtq0aaOOHTtq/PjxKi0tbbJsaWmpxowZo8zMTEVHR2vChAmSpO3bt1tddtgIZvxPnz6tadOmqXfv3mrRooXuuOMOxcTEaP/%2B/TZUHj6CmYNv7dy5U4cOHVJOTo51hYapYMZ/06ZNio2N1YQJE9SqVStdd9112rBhg6699lobKg8PwYx/RUWFevfurWuuuUaRkZEaNGiQEhIS9Oc//9mGyhEMApYNKioqlJqaqvj4eF9benq6Dh8%2BrJMnTzZZNi0tzfe9w%2BFQ9%2B7dVVZWZlm94SaY8R81apTuvPNO3/c1NTWqra1VSkqKZfWGo2DmQPom6D766KN65JFH5HQ6rSw1LAUz/h988IG6du2qWbNm6frrr9ewYcO0bt06q0sOK8GMf05Ojv73f/9XBw8e1NmzZ7V161bV1dWpb9%2B%2BVpeNIBGwbODxeBQXF%2BfX9u2B5na7myz7jwfht8t%2BdzkELpjx/0der1dz5sxRZmYmb27NFOwcLF%2B%2BXD/5yU90ww03WFJfuAtm/I8ePaqtW7cqOztbu3bt0sSJEzVz5kwdOHDAsnrDTTDjf/PNNys/P1%2B33XabMjIyNH36dC1YsEBXXnmlZfXih%2BGjoE28Xu9FWRaBCXZMz507pwcffFCHDh1SSUnJRarq8hLoHBw6dEirVq3S%2BvXrL3JFl5dAx9/r9So9PV0jRoyQJI0ePVqvvfaa3n77bb%2Bz6whOoOO/Zs0arVmzRqtWrVK3bt20d%2B9eTZ8%2BXVdeeaWuu%2B66i1wlmoMzWDZISkqSx%2BPxa/N4PIqIiFBSUpJfe2Ji4nmX/e5yCFww4y99c3lq4sSJ%2Butf/6pXXnlFbdu2tarUsBXoHHi9Xs2dO1cPPPCA2rVrZ3WZYSuYY6Bdu3Zq06aNX1tqaqpcLtdFrzNcBTP%2BL7/8svLz83XdddcpKipKOTk5uuGGG7hMGwIIWDbo0aOHjhw5ouPHj/vaysrK1LlzZ8XExDRZtqKiwvd9Q0ODDhw4oMzMTMvqDTfBjL/X69XUqVPldDr1wgsvKDEx0epyw1Kgc/DXv/5V77//vp566illZWUpKytLb731lp599lmNHj3ajtLDQjDHwLXXXqtPPvnE74xLVVWVUlNTLas33AQz/o2NjWpoaPBrO3v2rCV1onkIWDZIS0tTRkaGlixZopMnT6qyslLPP/%2B8CgoKJEnDhg3Tvn37JEkFBQVas2aN9u/fr7q6Oq1YsUItW7bkN6maIZjxX79%2BvQ4dOqTf/e53ioqKsrPssBLoHLRv3147d%2B7U2rVrff/l5uZq3LhxKi4utnkvQlcwx8DIkSPldrv19NNP6/Tp09qwYYMqKio0cuRIO3chpAUz/rm5uVq9erU%2B/vhj1dfXa/fu3dq7d68GDx5s5y4gANyDZZOnnnpKDz/8sPr166fY2FiNGzfO99tqhw8f1qlTpyRJAwYM0LRp0zRlyhQdO3ZMGRkZKi4uVnR0tJ3lh7xAx/%2BNN95QVVVVk5vaR40apfnz51tedzgJZA4iIyPVvn17v/VatWql2NhYLhk2U6DHQEpKilauXKnf/OY3%2Bq//%2Bi/96Ec/0vLly3XVVVfZWX7IC3T8J06cqPr6ehUWFur48eNKTU3V/Pnz9dOf/tTO8hGACC93UAMAABjFJUIAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMOz/B3HcSIhHe4GDAAAAAElFTkSuQmCC"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common-188412083082064991"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.25</td> | |
<td class="number">210</td> | |
<td class="number">3.7%</td> | |
<td> | |
<div class="bar" style="width:6%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.3333333333333333</td> | |
<td class="number">170</td> | |
<td class="number">3.0%</td> | |
<td> | |
<div class="bar" style="width:5%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2777777777777778</td> | |
<td class="number">164</td> | |
<td class="number">2.9%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.26666666666666666</td> | |
<td class="number">161</td> | |
<td class="number">2.8%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.29411764705882354</td> | |
<td class="number">159</td> | |
<td class="number">2.8%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2857142857142857</td> | |
<td class="number">149</td> | |
<td class="number">2.6%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.16666666666666666</td> | |
<td class="number">144</td> | |
<td class="number">2.5%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.3225806451612903</td> | |
<td class="number">136</td> | |
<td class="number">2.4%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2</td> | |
<td class="number">131</td> | |
<td class="number">2.3%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.21052631578947367</td> | |
<td class="number">130</td> | |
<td class="number">2.3%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (93)</td> | |
<td class="number">4120</td> | |
<td class="number">71.9%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme-188412083082064991"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.0196078431372549</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.024390243902439025</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:8%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.029411764705882363</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:42%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.03448275862068965</td> | |
<td class="number">17</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:65%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.038461538461538464</td> | |
<td class="number">26</td> | |
<td class="number">0.5%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.8333333333333334</td> | |
<td class="number">14</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.8474576271186441</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:78%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.8547008547008548</td> | |
<td class="number">10</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:71%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.8771929824561404</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:29%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.9259259259259258</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:8%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BWH"><s>BWH</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_B365H"><code>B365H</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.99532</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BWD"><s>BWD</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.91041</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BWA"><s>BWA</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_B365A"><code>B365A</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.98911</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_IWH"><s>IWH</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_BWH"><code>BWH</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.97993</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_IWD">IWD<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>54</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>0.9%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>1.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>55</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>0.27682</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>0.090909</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>1</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram8865931551049526692"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABC0lEQVR4nO3cwQkCQRAAQU8MySDMybc5GYQ5jQlIo4LcIlX/hfk08xl2m5k5AC8d9x4AVnbae4C9nK/3j988bpcfTMLKbBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgfAXn1d/8xE1vMMGgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgbDcNa/LXFZig0AQCASBQNhmZvYeAlZlg0AQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUB4AlNBDmG/uWNDAAAAAElFTkSuQmCC"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives8865931551049526692,#minihistogram8865931551049526692" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives8865931551049526692"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles8865931551049526692" | |
aria-controls="quantiles8865931551049526692" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram8865931551049526692" aria-controls="histogram8865931551049526692" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common8865931551049526692" aria-controls="common8865931551049526692" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme8865931551049526692" aria-controls="extreme8865931551049526692" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles8865931551049526692"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>0.090909</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>0.17241</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>0.25641</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>0.28986</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>0.30303</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>0.3125</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>1</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>0.90909</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.04662</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.059705</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.21568</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>56.205</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>0.27682</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.036468</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>3.9617</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>1570.7</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.0035646</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram8865931551049526692"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfXxT9d3/8XeTSIG26R20uIqUASKlhQFCsXJxU6agDBBWKd2mMsGBVGsLKCIDUVF0wFApF1Ld3FAvzQUypFXEITfzpm4Xbro0wJSCw3VgKySUlhZom98f/syWgdLaQw4Jr%2Bfj0Ufl%2Bz3n5PP9kOI755wmYV6v1ysAAAAYxmJ2AQAAAKGGgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBbGYXcLGoqjpudgkXPIslTHFxETp6tFZNTV6zy7no0H9z0X9z0X9znc/%2Bd%2BwYZejxmiskzmA9%2Buij6tmzp%2B/PpaWlysrKUv/%2B/TVmzBht2rTJb/u1a9dq1KhR6t%2B/v3JyclRWVuabO3nypBYuXKihQ4cqPT1deXl5crvdAVvLxcxiCVNYWJgsljCzS7ko0X9z0X9z0X9zhWL/gz5g7dmzR6%2B%2B%2Bqrvz5WVlZo5c6YmT56s0tJSzZ8/XwsWLJDT6ZQkbdu2TStXrtQvfvELvffeexoxYoRmzJihEydOSJJWrFghl8slh8OhLVu2yOv1at68eaasDQAABKegDlhNTU164IEHNGXKFN9YcXGxkpOTlZWVpfDwcGVkZCgzM1Pr1q2TJDkcDk2cOFF9%2B/ZV27ZtNW3aNEnS9u3b1dDQoPXr12vmzJm69NJLFRMTo/z8fO3YsUOff/65GUsEAABBKKgD1ssvv6zw8HCNHTvWN%2BZyuZSSkuK3XUpKiu8y4H/OWywW9erVS06nUwcPHtTx48fVu3dv33y3bt3Utm1buVyu87waAAAQKoL2JvcvvvhCK1eu1PPPP%2B837vF4lJiY6DcWExPju4/K4/EoOjrabz46Olput1sej0eSZLfb/ebtdnuL7sOqrKxUVVWV35jN1l4JCQnNPsbFyGq1%2BH1HYNF/c9F/c9F/c4Vi/4M2YC1ZskQTJ05U9%2B7d9Y9//KNF%2B3q93/wbCueaPxeHw6HCwkK/sdzcXOXl5bXquBcLu72d2SVc1Oi/uei/uei/uUKp/0EZsEpLS/WXv/xFJSUlZ8zFxsb6zkR9xe12Ky4u7mvnPR6PevTo4dvG4/EoIiLCN3/s2DHFx8c3u77s7GxlZmb6jdls7eV21zb7GBcjq9Uiu72dqqvr1NjYZHY5Fx36by76by76b67z2f/Y2Ihzb3QeBGXA2rRpk44cOaIRI0ZI%2BtcZp/T0dN12221nBK%2BysjL17dtXkpSamiqXy6UJEyZIkhobG7V7925lZWWpc%2BfOio6OlsvlUlJSkiTp448/1qlTp5Samtrs%2BhISEs64HFhVdVwNDfzQNkdjYxO9MhH9Nxf9Nxf9N1co9T8oL3bed9992rJli1599VW9%2BuqrKioqkiS9%2BuqrGjt2rCoqKrRu3TqdPHlSO3fu1M6dOzVp0iRJUk5OjjZu3KgPP/xQdXV1Wr16tdq0aaPhw4fLarVq0qRJevrpp3Xo0CG53W798pe/1LXXXqsOHTqYuWQAABBEgvIMVnR0tN%2BN6g0NDZKkTp06SZLWrFmjxYsX68EHH1RSUpKWLl2qK6%2B8UpI0dOhQzZo1S/n5%2BTpy5IjS0tJUVFSktm3bSpLy8vJUW1ur8ePHq6GhQSNGjNCiRYsCu0AAABDUwrytvaMbzcJH5ZybzWZRbGyE3O7akDlFHEzov7nov7nov7nOZ//5qBwAAIAQQcACAAAwGAELAADAYEF5kzsQCNc/8a7ZJbTI5vxrzC4BAPD/cQYLAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYEEbsPbu3atbb71VAwYMUEZGhvLz81VVVaU//vGP6tmzp9LS0vy%2BNm/e7Nt37dq1GjVqlPr376%2BcnByVlZX55k6ePKmFCxdq6NChSk9PV15entxutxlLBAAAQSooA9apU6d02223adCgQSotLVVJSYmOHDmiRYsWSZKSkpLkdDr9vq6//npJ0rZt27Ry5Ur94he/0HvvvacRI0ZoxowZOnHihCRpxYoVcrlccjgc2rJli7xer%2BbNm2fWUgEAQBAKyoBVV1engoICTZ8%2BXW3atFFcXJyuvfZaffLJJ%2Bfc1%2BFwaOLEierbt6/atm2radOmSZK2b9%2BuhoYGrV%2B/XjNnztSll16qmJgY5efna8eOHfr888/P97IAAECIsJldwLcRHR2tm266yffn/fv363e/%2B53vLFVtba1yc3O1a9cutWnTRrfddpumTJmisLAwuVwu3XDDDb59LRaLevXqJafTqV69eun48ePq3bu3b75bt25q27atXC6XEhMTm1VfZWWlqqqq/MZstvZKSEhozbJDntVq8fuOlrHZWtc3%2Bm8u%2Bm8u%2Bm%2BuUOx/UAasr1RUVGjUqFFqaGjQpEmTlJeXp7179%2BqKK67QrbfeqhUrVuhPf/qT7r77bkVFRSkrK0sej0fR0dF%2Bx4mOjpbb7ZbH45Ek2e12v3m73d6i%2B7AcDocKCwv9xnJzc5WXl/ctV3pxsdvbmV1CUIqNjTDkOPTfXPTfXPTfXKHU/6AOWF/da/X3v/9dCxcu1L333qvly5fr%2Beef920zZMgQTZ48WRs2bFBWVpYkyev1fuNxzzV/LtnZ2crMzPQbs9nay%2B2ubdVxQ53VapHd3k7V1XVqbGwyu5yg09rnF/03F/03F/031/nsv1EvPlsqqAOWJIWFhSk5OVkFBQWaPHmy5s%2Bfr7i4OL9tkpKStGXLFklSbGys70zVVzwej3r06OHbz%2BPxKCLiX38hx44dU3x8fLNrSkhIOONyYFXVcTU08EPbHI2NTfTqWzCqZ/TfXPTfXPTfXKHU/6C82FlaWqpRo0apqelffwkWy5dL2blzp/7nf/7Hb/v9%2B/erc%2BfOkqTU1FS5XC7fXGNjo3bv3q2%2Bffuqc%2BfOio6O9pv/%2BOOPderUKaWmpp7PJQEAgBASlAErNTVVNTU1Wrp0qerq6nT06FGtXLlSV111laKiovT444/rnXfe0enTp/Xuu%2B/qlVdeUU5OjiQpJydHGzdu1Icffqi6ujqtXr1abdq00fDhw2W1WjVp0iQ9/fTTOnTokNxut375y1/q2muvVYcOHUxeNQAACBZBeYkwKipKv/71r7V48WINHjxY7du31%2BDBg/XII48oMTFR999/vx5%2B%2BGEdOnRIHTp00P3336/rrrtOkjR06FDNmjVL%2Bfn5OnLkiNLS0lRUVKS2bdtKkvLy8lRbW6vx48eroaFBI0aM8L2/FgAAQHOEeVt7RzeaparquNklXPBsNotiYyPkdtdeENfgr3/iXbNLaJHN%2Bde0av8Lrf8XG/pvLvpvrvPZ/44doww9XnMF5SVCAACACxkBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAwWtAFr7969uvXWWzVgwABlZGQoPz9fVVVVkqTS0lJlZWWpf//%2BGjNmjDZt2uS379q1azVq1Cj1799fOTk5Kisr882dPHlSCxcu1NChQ5Wenq68vDy53e6Arg0AAAS3oAxYp06d0m233aZBgwaptLRUJSUlOnLkiBYtWqTKykrNnDlTkydPVmlpqebPn68FCxbI6XRKkrZt26aVK1fqF7/4hd577z2NGDFCM2bM0IkTJyRJK1askMvlksPh0JYtW%2BT1ejVv3jwzlwsAAIJMUAasuro6FRQUaPr06WrTpo3i4uJ07bXX6pNPPlFxcbGSk5OVlZWl8PBwZWRkKDMzU%2BvWrZMkORwOTZw4UX379lXbtm01bdo0SdL27dvV0NCg9evXa%2BbMmbr00ksVExOj/Px87dixQ59//rmZSwYAAEHEZnYB30Z0dLRuuukm35/379%2Bv3/3ud7r%2B%2BuvlcrmUkpLit31KSoo2b94sSXK5XLrhhht8cxaLRb169ZLT6VSvXr10/Phx9e7d2zffrVs3tW3bVi6XS4mJic2qr7Ky0ne58is2W3slJCS0eK0XE6vV4vcdLWOzta5v9N9c9N9c9N9codj/oAxYX6moqNCoUaPU0NCgSZMmKS8vT7fffvsZQSgmJsZ3H5XH41F0dLTffHR0tNxutzwejyTJbrf7zdvt9hbdh%2BVwOFRYWOg3lpubq7y8vGYf42Jmt7czu4SgFBsbYchx6L%2B56L%2B56L%2B5Qqn/QR2wkpKS5HQ69fe//10LFy7Uvffe26z9vF5vq%2BbPJTs7W5mZmX5jNlt7ud21rTpuqLNaLbLb26m6uk6NjU1mlxN0Wvv8ov/mov/mov/mOp/9N%2BrFZ0sFdcCSpLCwMCUnJ6ugoECTJ0/WsGHDfGeivuJ2uxUXFydJio2NPWPe4/GoR48evm08Ho8iIv71F3Ls2DHFx8c3u6aEhIQzLgdWVR1XQwM/tM3R2NhEr74Fo3pG/81F/81F/80VSv0PyoudpaWlGjVqlJqa/vWXYLF8uZQ%2Bffr4ve2CJJWVlalv376SpNTUVLlcLt9cY2Ojdu/erb59%2B6pz586Kjo72m//444916tQppaamns8lAQCAEBKUASs1NVU1NTVaunSp6urqdPToUa1cuVJXXXWVcnJyVFFRoXXr1unkyZPauXOndu7cqUmTJkmScnJytHHjRn344Yeqq6vT6tWr1aZNGw0fPlxWq1WTJk3S008/rUOHDsntduuXv/ylrr32WnXo0MHkVQMAgGARlJcIo6Ki9Otf/1qLFy/W4MGD1b59ew0ePFiPPPKI4uPjtWbNGi1evFgPPvigkpKStHTpUl155ZWSpKFDh2rWrFnKz8/XkSNHlJaWpqKiIrVt21aSlJeXp9raWo0fP14NDQ0aMWKEFi1aZOJqAQBAsAnztvaObjRLVdVxs0u44NlsFsXGRsjtrr0grsFf/8S7ZpfQIpvzr2nV/hda/y829N9c9N9c57P/HTtGGXq85grKS4QAAAAXMgIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGCxoA1ZFRYVyc3OVnp6ujIwM3XfffaqurtY//vEP9ezZU2lpaX5fv/rVr3z7vv766xo7dqz69euniRMn6p133vHNNTU1acWKFRo5cqQGDhyoqVOn6rPPPjNjiQAAIEgFbcCaMWOG7Ha7tm3bpg0bNuiTTz7R448/7pt3Op1%2BX1OnTpUk7dmzR3PnztWcOXP0/vvva8qUKbrzzjt1%2BPBhSdKLL76o4uJiFRUVafv27UpOTlZubq68Xq8p6wQAAMEnKANWdXW1UlNTNXv2bEVERKhTp06aMGGCdu3adc59161bp2HDhmnYsGEKDw/XuHHjdMUVV2jTpk2SJIfDoSlTpqhbt26KjIxUQUGBysvL9dFHH53vZQEAgBARlAHLbrdryZIl6tChg2/s0KFDSkhI8P353nvv1ZAhQzR48GAtX75cp0%2BfliS5XC6lpKT4HS8lJUVOp1P19fXat2%2Bf33xkZKS6dOkip9N5nlcFAABChc3sAozgdDr1wgsvaPXq1WrTpo369euna6%2B9Vo888oj27Nmju%2B66SzabTXfffbc8Ho%2Bio6P99o%2BOjta%2Bfft07Ngxeb3es8673e5m11NZWamqqiq/MZutvV8AxJmsVovfd7SMzda6vtF/c9F/c9F/c4Vi/4M%2BYH3wwQe64447NHv2bGVkZEiSXn75Zd98nz59NH36dK1Zs0Z33323JJ3zfqrW3m/lcDhUWFjoN5abm6u8vLxWHfdiYbe3M7uEoBQbG2HIcei/uei/uei/uUKp/0EdsLZt26Z77rlHCxYs0I033vi12yUlJemLL76Q1%2BtVbGysPB6P37zH41FcXJxiYmJksVjOOh8fH9/surKzs5WZmek3ZrO1l9td2%2BxjXIysVovs9naqrq5TY2OT2eUEndY%2Bv%2Bi/uei/uei/uc5n/4168dlSQRuw/vznP2vu3Ll68sknNWTIEN94aWmpPvzwQ91xxx2%2Bsf379yspKUlhYWFKTU1VWVmZ37GcTqfGjBmj8PBw9ejRQy6XS4MGDZL05Q31Bw8eVJ8%2BfZpdW0JCwhmXA6uqjquhgR/a5mhsbKJX34JRPaP/5qL/5qL/5gql/gf8YmdmZqYKCwt16NChb32MhoYG/fznP9ecOXP8wpUkRUVFadWqVXr11Vd1%2BvRpOZ1O/epXv1JOTo4kadKkSXrvvfe0Y8cOnTx5UuvXr9enn36qcePGSZJycnK0du1alZeXq6amRsuWLVOvXr2Ulpb27RcNAAAuKmHeAL/B06pVq/Taa6/p73//u66%2B%2BmpNmjRJmZmZstmafzJt165d%2BvGPf6w2bdqcMffGG29o9%2B7dKiws1KeffqqoqCjdfPPNuv3222WxfJkn33zzTS1fvlwVFRXq3r275s%2Bfr4EDB0r68v6rlStX6uWXX1Ztba3S09P10EMPqVOnTq1ad1XV8VbtfzGw2SyKjY2Q2117QbyCuf6Jd80uoUU251/Tqv0vtP5fbOi/uei/uc5n/zt2jDL0eM0V8ID1FZfLpZKSEm3evFmnT5/WjTfeqKysLHXt2tWMcs47Ata5XWj/wBGwEEj031z031yhGLBM%2B33I3r17a%2B7cudq%2Bfbvuv/9%2B/e///q9uuOEGTZ06VX/961/NKgsAAKDVTAtYp0%2Bf1uuvv67bb79dc%2BfOVWJioubNm6devXppypQpKi4uNqs0AACAVgn4bxGWl5dr/fr12rhxo2prazVq1Cj99re/1YABA3zbDBw4UIsWLdLYsWMDXR4AAECrBTxgjRkzRl27dtX06dN14403KiYm5oxthg0bpqNHjwa6NAAAAEMEPGCtXbvW9x5T34QPVwYAAMEq4Pdg9ezZUzNmzNDWrVt9Y7/5zW90%2B%2B23n/EO6gAAAMEo4AFryZIlOn78uLp37%2B4bGz58uJqamvTYY48FuhwAAADDBfwS4TvvvKPi4mLFxsb6xpKTk7Vs2TL94Ac/CHQ5AAAAhgv4Gaz6%2BnqFh4efWYjForq6ukCXAwAAYLiAB6yBAwfqscce07Fjx3xjn3/%2BuR588EG/t2oAAAAIVgG/RHj//ffrtttu09VXX63IyEg1NTWptrZWnTt31vPPPx/ocgAAAAwX8IDVuXNnvfbaa/rDH/6ggwcPymKxqGvXrhoyZIisVmugywEAADBcwAOWJLVp00bf//73zXhoAACA8y7gAeuzzz7T8uXL9cknn6i%2Bvv6M%2BbfeeivQJQEAABjKlHuwKisrNWTIELVv3z7QDw8AAHDeBTxglZWV6a233lJcXFygHxoAACAgAv42DfHx8Zy5AgAAIS3gAWv69OkqLCyU1%2BsN9EMDAAAERMAvEf7hD3/Qn//8Z23YsEGXXXaZLBb/jPfyyy8HuiQAAABDBTxgRUZGaujQoYF%2BWAAAgIAJeMBasmRJoB8SAAAgoAJ%2BD5Yk7d%2B/XytXrtS8efN8Y3/5y1/MKAUAAMBwAQ9YpaWlGjdunN58802VlJRI%2BvLNR2%2B55RbeZBQAAISEgAesFStW6J577lFxcbHCwsIkffn5hI899phWrVoV6HIAAAAMF/CA9fHHHysnJ0eSfAFLkkaPHq3y8vJAlwMAAGC4gAesqKios34GYWVlpdq0aRPocgAAAAwX8IDVv39/Pfroo6qpqfGNHThwQHPnztXVV18d6HIAAAAMF/C3aZg3b55uvfVWpaenq7GxUf3791ddXZ169Oihxx57LNDlAAAAGC7gAatTp04qKSnRzp07deDAAbVt21Zdu3bVNddc43dP1rlUVFTo0Ucf1a5du2S1WjV06FDdf//9stvt2rNnjx555BHt2bNH8fHxmjx5sm677Tbfvq%2B//rpWr16tf/zjH%2BratatmzZqlIUOGSJKampr05JNPqqSkRNXV1erTp48WLVqkzp07G94LAAAQmkx5H6xLLrlE3//%2B93X77bfr5ptv1pAhQ1oUriRpxowZstvt2rZtmzZs2KBPPvlEjz/%2BuOrr6zV9%2BnQNHjxYb7/9tlasWKE1a9bozTfflCTt2bNHc%2BfO1Zw5c/T%2B%2B%2B9rypQpuvPOO3X48GFJ0osvvqji4mIVFRVp%2B/btSk5OVm5uLp%2BdCAAAmi3gZ7AyMzO/MUw1572wqqurlZqaqtmzZysiIkIRERGaMGGCnn/%2Bee3YsUOnT5/WHXfcIavVqt69e%2Bumm26Sw%2BHQddddp3Xr1mnYsGEaNmyYJGncuHF64YUXtGnTJv3sZz%2BTw%2BHQlClT1K1bN0lSQUGB0tPT9dFHH%2Bl73/ueMU0AAAAhLeAB64YbbvALWI2NjTpw4ICcTqduvfXWZh3Dbref8ZE7hw4dUkJCglwul3r27Cmr1eqbS0lJ0bp16yRJLpfLF67%2Bfd7pdKq%2Bvl779u1TSkqKby4yMlJdunSR0%2BkkYAEAgGYJeMCaM2fOWce3bNmiP/7xj9/qmE6nUy%2B88IJWr16tzZs3y263%2B83HxMTI4/GoqalJHo9H0dHRfvPR0dHat2%2Bfjh07Jq/Xe9Z5t9vd7HoqKytVVVXlN2aztVdCQkILV3ZxsVotft/RMjZb6/pG/81F/81F/80Viv0PeMD6Ot///ve1cOFCLVy4sEX7ffDBB7rjjjs0e/ZsZWRkaPPmzWfd7t/Pmp3rfqrW3m/lcDhUWFjoN5abm6u8vLxWHfdiYbe3M7uEoBQbG2HIcei/uei/uei/uUKp/xdMwNq9e3eLg822bdt0zz33aMGCBbrxxhslSXFxcfr000/9tvN4PIqJiZHFYlFsbKw8Hs8Z83Fxcb5tzjYfHx/f7Lqys7OVmZnpN2aztZfbXduC1V18rFaL7PZ2qq6uU2Njk9nlBJ3WPr/ov7nov7nov7nOZ/%2BNevHZUgEPWJMnTz5jrK6uTuXl5bruuuuafZw///nPmjt3rp588knfWyxIUmpqql566SU1NDTIZvtyeU6nU3379vXNl5WV%2BR3L6XRqzJgxCg8PV48ePeRyuTRo0CBJX95Qf/DgQfXp06fZtSUkJJxxObCq6rgaGvihbY7GxiZ69S0Y1TP6by76by76b65Q6n/AA1ZycvIZv0UYHh6urKws3XTTTc06RkNDg37%2B859rzpw5fuFKkoYNG6bIyEitXr1a06ZN08cff6z169dr6dKlkqRJkyYpKytLO3bs0NVXX63i4mJ9%2BumnGjdunCQpJydHRUVFGjp0qBITE7Vs2TL16tVLaWlpBqweAABcDMK8QfgGT7t27dKPf/zjs3524RtvvKHa2lo98MADKisrU4cOHXT77bfrRz/6kW%2BbN998U8uXL1dFRYW6d%2B%2Bu%2BfPna%2BDAgZK%2BvP9q5cqVevnll1VbW6v09HQ99NBD6tSpU6tqrqo63qr9LwY2m0WxsRFyu2sviFcw1z/xrtkltMjm/Gtatf%2BF1v%2BLDf03F/031/nsf8eOUYYer7kCHrA2btzY7G2/uq8qFBCwzu1C%2BweOgIVAov/mov/mCsWAFfBLhPPnz1dTU9MZN7SHhYX5jYWFhYVUwAIAABePgAesZ599Vr/%2B9a81Y8YM9ezZU16vV3/729/0zDPP6Cc/%2BYnS09MDXRIAAIChAh6wHnvsMRUVFSkxMdE3dtVVV6lz586aOnWqSkpKAl0SAACAoQL%2BlqmffvrpGe%2BULn358TcVFRWBLgcAAMBwAQ9YSUlJeuyxx/w%2Beqa6ulrLly/X5ZdfHuhyAAAADBfwS4T333%2B/Zs%2BeLYfDoYiICFksFtXU1Kht27ZatWpVoMsBAAAwXMAD1pAhQ7Rjxw7t3LlThw8fltfrVWJiov7rv/5LUVHm/ColAACAkUz5LMJ27dpp5MiROnz4sDp37mxGCQAAAOdNwO/Bqq%2Bv19y5c9WvXz9df/31kr68B2vatGmqrq4OdDkAAACGC3jAWrp0qfbs2aNly5bJYvnXwzc2NmrZsmWBLgcAAMBwAQ9YW7Zs0VNPPaXRo0f7PvTZbrdryZIlevPNNwNdDgAAgOECHrBqa2uVnJx8xnhcXJxOnDgR6HIAAAAMF/CAdfnll%2BuPf/yjJPl99uAbb7yh73znO4EuBwAAwHAB/y3CH/3oR7rrrrv0wx/%2BUE1NTXruuedUVlamLVu2aP78%2BYEuBwAAwHABD1jZ2dmy2Wx64YUXZLVa9fTTT6tr165atmyZRo8eHehyAAAADBfwgHX06FH98Ic/1A9/%2BMNAPzQAAEBABPwerJEjR/rdewUAABBqAh6w0tPTtXnz5kA/LAAAQMAE/BLhpZdeqkceeURFRUW6/PLLdckll/jNL1%2B%2BPNAlATFHP%2BEAABa9SURBVAAAGCrgAWvfvn367ne/K0lyu92BfngAAIDzLmABq6CgQCtWrNDzzz/vG1u1apVyc3MDVQIAAEBABOwerG3btp0xVlRUFKiHBwAACJiABayz/eYgv00IAABCUcAC1lcf7HyuMQAAgGAX8LdpAAAACHUELAAAAIMF7LcIT58%2BrdmzZ59zjPfBAgAAwS5gAWvAgAGqrKw85xgAAECwC1jA%2Bvf3vwIAAAhlQX0P1ttvv62MjAwVFBT4jW/YsEFXXnml0tLS/L7%2B%2Bte/SpKampq0YsUKjRw5UgMHDtTUqVP12Wef%2Bfb3eDzKz89XRkaGhgwZovnz56u%2Bvj6gawMAAMEraAPWM888o8WLF6tLly5nnR84cKCcTqffV58%2BfSRJL774ooqLi1VUVKTt27crOTlZubm5vvflWrBggerq6lRSUqJXXnlF5eXlWrZsWcDWBgAAglvQBqzw8HCtX7/%2BawPWN3E4HJoyZYq6deumyMhIFRQUqLy8XB999JG%2B%2BOILbd26VQUFBYqLi1NiYqJmzpypV155RadPnz4PKwEAAKEm4B/2bJRbbrnlG%2BcPHTqkn/70pyorK5PdbldeXp7Gjx%2Bv%2Bvp67du3TykpKb5tIyMj1aVLFzmdTh0/flxWq1U9e/b0zffu3VsnTpzQ/v37/ca/TmVlpaqqqvzGbLb2SkhIaOEqLy5Wq8XvO1rGZmtd3%2Bi/uei/uei/uUKx/0EbsL5JXFyckpOTNWvWLHXv3l2///3vde%2B99yohIUHf/e535fV6FR0d7bdPdHS03G63YmJiFBkZ6fcu819t63a7m/X4DodDhYWFfmO5ubnKy8tr5couDnZ7O7NLCEqxsRGGHIf%2Bm4v%2Bm4v%2BmyuU%2Bh%2BSAWv48OEaPny4789jxozR73//e23YsEFz5syR9M2fg9jaz0jMzs5WZmam35jN1l5ud22rjhvqrFaL7PZ2qq6uU2Njk9nlBJ3WPr/ov7nov7nov7nOZ/%2BNevHZUiEZsM4mKSlJZWVliomJkcVikcfj8Zv3eDyKj49XXFycampq1NjYKKvV6puTpPj4%2BGY9VkJCwhmXA6uqjquhgR/a5mhsbKJX34JRPaP/5qL/5qL/5gql/odkwHrppZcUHR2tG264wTdWXl6uzp07Kzw8XD169JDL5dKgQYMkSdXV1Tp48KD69OmjpKQkeb1e7d27V71795YkOZ1O2e12de3a1ZT1hIrrn3jX7BIAAAiI0Lmb7N%2BcOnVKDz/8sJxOp06fPq2SkhL94Q9/0OTJkyVJOTk5Wrt2rcrLy1VTU6Nly5apV69eSktLU1xcnEaNGqUnnnhCR48e1eHDh7Vq1SplZWXJZgvJPAoAAAwWtIkhLS1NktTQ0CBJ2rp1q6Qvzzbdcsstqq2t1d13362qqipddtllWrVqlVJTUyVJkydPVlVVlW6%2B%2BWbV1tYqPT3d76b0hx56SA888IBGjhypSy65RD/4wQ/OeDNTAACArxPmbe0d3WiWqqrjZpdgOi4Rnl%2Bb869p1f42m0WxsRFyu2tD5h6IYEL/zUX/zXU%2B%2B9%2BxY5Shx2uukLxECAAAYCYCFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABgsqAPW22%2B/rYyMDBUUFJwx9/rrr2vs2LHq16%2BfJk6cqHfeecc319TUpBUrVmjkyJEaOHCgpk6dqs8%2B%2B8w37/F4lJ%2Bfr4yMDA0ZMkTz589XfX19QNYEAACCX9AGrGeeeUaLFy9Wly5dzpjbs2eP5s6dqzlz5uj999/XlClTdOedd%2Brw4cOSpBdffFHFxcUqKirS9u3blZycrNzcXHm9XknSggULVFdXp5KSEr3yyisqLy/XsmXLAro%2BAAAQvII2YIWHh2v9%2BvVnDVjr1q3TsGHDNGzYMIWHh2vcuHG64oortGnTJkmSw%2BHQlClT1K1bN0VGRqqgoEDl5eX66KOP9MUXX2jr1q0qKChQXFycEhMTNXPmTL3yyis6ffp0oJcJAACCkM3sAr6tW2655WvnXC6Xhg0b5jeWkpIip9Op%2Bvp67du3TykpKb65yMhIdenSRU6nU8ePH5fValXPnj19871799aJEye0f/9%2Bv/GvU1lZqaqqKr8xm629EhISmrs8oMVstta9XrJaLX7fEVj031z031yh2P%2BgDVjfxOPxKDo62m8sOjpa%2B/bt07Fjx%2BT1es8673a7FRMTo8jISIWFhfnNSZLb7W7W4zscDhUWFvqN5ebmKi8v79ssB2iW2NgIQ45jt7cz5Dj4dui/uei/uUKp/yEZsCT57qf6NvPn2vdcsrOzlZmZ6Tdms7WX213bquMC36S1zy%2Br1SK7vZ2qq%2BvU2NhkUFVoLvpvLvpvrvPZf6NefLZUSAas2NhYeTwevzGPx6O4uDjFxMTIYrGcdT4%2BPl5xcXGqqalRY2OjrFarb06S4uPjm/X4CQkJZ1wOrKo6roYGfmhx/hj1/GpsbOK5aiL6by76b65Q6n/oXOz8N6mpqSorK/Mbczqd6tu3r8LDw9WjRw%2B5XC7fXHV1tQ4ePKg%2BffqoV69e8nq92rt3r9%2B%2BdrtdXbt2DdgaAABA8ArJgDVp0iS999572rFjh06ePKn169fr008/1bhx4yRJOTk5Wrt2rcrLy1VTU6Nly5apV69eSktLU1xcnEaNGqUnnnhCR48e1eHDh7Vq1SplZWXJZgvJE34AAMBgQZsY0tLSJEkNDQ2SpK1bt0r68mzTFVdcoWXLlmnJkiWqqKhQ9%2B7dtWbNGnXs2FGSNHnyZFVVVenmm29WbW2t0tPT/W5Kf%2Bihh/TAAw9o5MiRuuSSS/SDH/zgrG9mCgAAcDZh3tbe0Y1mqao6bnYJprv%2BiXfNLiGkbc6/plX722wWxcZGyO2uDZl7IIIJ/TcX/TfX%2Bex/x45Rhh6vuULyEiEAAICZCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgsJANWD179lRqaqrS0tJ8Xw8//LAkqbS0VFlZWerfv7/GjBmjTZs2%2Be27du1ajRo1Sv3791dOTo7KysrMWAIAAAhSNrMLOJ/eeOMNXXbZZX5jlZWVmjlzpubPn6%2BxY8fqgw8%2B0B133KGuXbsqLS1N27Zt08qVK/Xss8%2BqZ8%2BeWrt2rWbMmKE333xT7du3N2klAAAgmITsGayvU1xcrOTkZGVlZSk8PFwZGRnKzMzUunXrJEkOh0MTJ05U37591bZtW02bNk2StH37djPLBgAAQSSkA9by5cs1fPhwXXXVVVqwYIFqa2vlcrmUkpLit11KSorvMuB/zlssFvXq1UtOpzOgtQMAgOAVspcIv/e97ykjI0OPP/64PvvsM%2BXn5%2BvBBx%2BUx%2BNRYmKi37YxMTFyu92SJI/Ho%2BjoaL/56Oho33xzVFZWqqqqym/MZmuvhISEb7ka4Nxstta9XrJaLX7fEVj031z031yh2P%2BQDVgOh8P33926ddOcOXN0xx13aMCAAefc1%2Bv1tvqxCwsL/cZyc3OVl5fXquMC3yQ2NsKQ49jt7Qw5Dr4d%2Bm8u%2Bm%2BuUOp/yAas/3TZZZepsbFRFotFHo/Hb87tdisuLk6SFBsbe8a8x%2BNRjx49mv1Y2dnZyszM9Buz2drL7a79ltUD59ba55fVapHd3k7V1XVqbGwyqCo0F/03F/031/nsv1EvPlsqJAPW7t27tWnTJt13332%2BsfLycrVp00bDhg3T7373O7/ty8rK1LdvX0lSamqqXC6XJkyYIElqbGzU7t27lZWV1ezHT0hIOONyYFXVcTU08EOL88eo51djYxPPVRPRf3PRf3OFUv9D52Lnv4mPj5fD4VBRUZFOnTqlAwcO6Mknn1R2drbGjx%2BviooKrVu3TidPntTOnTu1c%2BdOTZo0SZKUk5OjjRs36sMPP1RdXZ1Wr16tNm3aaPjw4eYuCgAABI2QPIOVmJiooqIiLV%2B%2B3BeQJkyYoIKCAoWHh2vNmjVavHixHnzwQSUlJWnp0qW68sorJUlDhw7VrFmzlJ%2BfryNHjigtLU1FRUVq27atyasCAADBIszb2ju60SxVVcfNLsF01z/xrtklhLTN%2Bde0an%2BbzaLY2Ai53bUhc4o%2BmNB/c9F/c53P/nfsGGXo8ZorJC8RAgAAmImABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYLCQ/KudiwrujAwBw4eEMFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIB1FhUVFfrZz36m9PR0jRgxQkuXLlVTU5PZZQEAgCBhM7uAC9Fdd92l3r17a%2BvWrTpy5IimT5%2BuDh066Kc//anZpQEAgCDAGaz/4HQ6tXfvXs2ZM0dRUVFKTk7WlClT5HA4zC4NAAAECc5g/QeXy6WkpCRFR0f7xnr37q0DBw6opqZGkZGR5zxGZWWlqqqq/MZstvZKSEgwvF7gKzZb614vWa0Wv%2B8ILPpvrlDt/7XL3ja7hGbb9cjokOo/Aes/eDwe2e12v7Gvwpbb7W5WwHI4HCosLPQbu/POO3XXXXcZV%2Bj/t%2BuR0YYf0yyVlZVyOBzKzs4mjJqgsrJSv/3ts/TfJPTfXKHa/2D5f0RlZaVWrlwZUv0PnahoIK/X26r9s7OztWHDBr%2Bv7Oxsg6oLXVVVVSosLDzj7B8Cg/6bi/6bi/6bKxT7zxms/xAXFyePx%2BM35vF4FBYWpri4uGYdIyEhIWQSOAAAaDnOYP2H1NRUHTp0SEePHvWNOZ1Ode/eXRERESZWBgAAggUB6z%2BkpKQoLS1Ny5cvV01NjcrLy/Xcc88pJyfH7NIAAECQsC5atGiR2UVcaP7rv/5LJSUlevjhh/Xaa68pKytLU6dOVVhYmNmlhbyIiAgNGjSIs4Umof/mov/mov/mCrX%2Bh3lbe0c3AAAA/HCJEAAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsBFRFRYV%2B9rOfKT09XSNGjNDSpUvV1NR01m1feukljRo1Sv369dP48eO1devWAFcbelrS/698/vnn6tevn1auXBmgKkNXS/pfXl6um2%2B%2BWX379tWwYcP0m9/8JrDFhqDm9r%2BpqUlPPfWUMjMz1a9fP40dO1avv/66CRWHnrffflsZGRkqKCj4xu2ampq0YsUKjRw5UgMHDtTUqVP12WefBahKYxCwEFB33XWXEhMTtXXrVj333HPaunWrfvvb356x3ZYtW7R8%2BXI9%2Buij%2BtOf/qSf/OQnys/PD7ofsAtNc/v/7xYvXiyr1RqgCkNbc/tfX1%2BvadOmadiwYXr//fe1cuVKrV%2B/XuXl5SZUHTqa2/%2BXXnpJ69at07PPPqtdu3Zp1qxZuueee7R3714Tqg4dzzzzjBYvXqwuXbqcc9sXX3xRxcXFKioq0vbt25WcnKzc3FwF06f7EbAQME6nU3v37tWcOXMUFRWl5ORkTZkyRQ6H44xt6%2BvrNWvWLA0YMECXXHKJbrrpJkVEROjDDz80ofLQ0JL%2Bf2Xnzp3at2%2Bfhg8fHrhCQ1RL%2Br9582ZFRkZq2rRpateunfr06aOSkhJ169bNhMpDQ0v673K5NGDAAH33u9%2BV1WrViBEjFBMTo7/97W8mVB46wsPDtX79%2BmYFLIfDoSlTpqhbt26KjIxUQUGBysvL9dFHHwWgUmMQsBAwLpdLSUlJio6O9o317t1bBw4cUE1Njd%2B248eP149%2B9CPfn6urq1VbW6vExMSA1RtqWtJ/6cuQ%2B9BDD%2BmBBx6QzWYLZKkhqSX9/%2BCDD3TFFVdo3rx5uuqqqzR69Ght2rQp0CWHlJb0f/jw4frTn/6kPXv26NSpU3rrrbdUV1enQYMGBbrskHLLLbcoKirqnNvV19dr3759SklJ8Y1FRkaqS5cucjqd57NEQxGwEDAej0d2u91v7Kt/7Nxu99fu5/V69fOf/1x9%2B/blH7hWaGn/V61ape9973saPHhwQOoLdS3p/%2BHDh/XWW28pIyNDb7/9tqZPn665c%2Bdq9%2B7dAas31LSk/9ddd52ys7N14403Ki0tTbNnz9aSJUt06aWXBqzei9mxY8fk9Xr9wrD05d/XN/2/4kLDy1IEVEuvn58%2BfVr33Xef9u3bp7Vr156nqi4eze3/vn37tG7dOhUXF5/nii4uze2/1%2BtV7969NXbsWEnShAkT9PLLL%2BuNN97we1WPlmlu/zdu3KiNGzdq3bp16tmzp0pLSzV79mxdeuml6tOnz3muEl8JpvutzoYzWAiYuLg4eTwevzGPx6OwsDDFxcWdsX19fb2mT5%2Buf/7zn3rxxRfVoUOHQJUakprbf6/Xq0WLFumuu%2B5Sx44dA11myGrJ879jx45nXEpJSkpSVVXVea8zVLWk/y%2B88IKys7PVp08fhYeHa/jw4Ro8eDCXaQMkJiZGFovlrH9f8fHxJlXVcgQsBExqaqoOHTqko0eP%2BsacTqe6d%2B%2BuiIgIv229Xq8KCgpks9n0m9/8RrGxsYEuN%2BQ0t////Oc/9X//93966qmnlJ6ervT0dL322mt69tlnNWHCBDNKDwktef5369ZNH3/8sd8r%2BIqKCiUlJQWs3lDTkv43NTWpsbHRb%2BzUqVMBqRNf3gzfo0cPuVwu31h1dbUOHjwYVGcQCVgImJSUFKWlpWn58uWqqalReXm5nnvuOeXk5EiSRo8erV27dkmSiouLtW/fPj355JMKDw83s%2ByQ0dz%2Bd%2BrUSTt37tSrr77q%2B8rMzNTkyZNVVFRk8iqCV0ue/%2BPGjZPb7dbTTz%2Bt%2Bvp6lZSUyOVyady4cWYuIai1pP%2BZmZlav3699u7dq4aGBr3zzjsqLS3VyJEjzVxCSPv88881evRo31vx5OTkaO3atSovL1dNTY2WLVumXr16KS0tzeRKm497sBBQTz31lBYsWKBrrrlGkZGRmjx5su%2B3BQ8cOKATJ05Ikl555RVVVFSccVP7%2BPHjtXjx4oDXHSqa03%2Br1apOnTr57deuXTtFRkZyybCVmvv8T0xM1Jo1a/TII4/ov//7v/Wd73xHq1at0uWXX25m%2BUGvuf2fPn26GhoalJubq6NHjyopKUmLFy/W1VdfbWb5Qe%2BrcNTQ0CBJvjePdjqdOn36tA4cOOA7Uzh58mRVVVXp5ptvVm1trdLT01VYWGhO4d9SmDfY7yIDAAC4wHCJEAAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGD/D2sOVNYy39IBAAAAAElFTkSuQmCC"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common8865931551049526692"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.30303030303030304</td> | |
<td class="number">1635</td> | |
<td class="number">28.5%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.3125</td> | |
<td class="number">719</td> | |
<td class="number">12.6%</td> | |
<td> | |
<div class="bar" style="width:44%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2857142857142857</td> | |
<td class="number">427</td> | |
<td class="number">7.5%</td> | |
<td> | |
<div class="bar" style="width:26%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2898550724637681</td> | |
<td class="number">396</td> | |
<td class="number">6.9%</td> | |
<td> | |
<div class="bar" style="width:24%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.25</td> | |
<td class="number">366</td> | |
<td class="number">6.4%</td> | |
<td> | |
<div class="bar" style="width:23%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2777777777777778</td> | |
<td class="number">269</td> | |
<td class="number">4.7%</td> | |
<td> | |
<div class="bar" style="width:17%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.29411764705882354</td> | |
<td class="number">183</td> | |
<td class="number">3.2%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.27027027027027023</td> | |
<td class="number">178</td> | |
<td class="number">3.1%</td> | |
<td> | |
<div class="bar" style="width:11%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.25641025641025644</td> | |
<td class="number">162</td> | |
<td class="number">2.8%</td> | |
<td> | |
<div class="bar" style="width:10%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.2272727272727273</td> | |
<td class="number">149</td> | |
<td class="number">2.6%</td> | |
<td> | |
<div class="bar" style="width:10%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (43)</td> | |
<td class="number">1190</td> | |
<td class="number">20.8%</td> | |
<td> | |
<div class="bar" style="width:73%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme8865931551049526692"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.09090909090909093</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.1</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.10526315789473684</td> | |
<td class="number">28</td> | |
<td class="number">0.5%</td> | |
<td> | |
<div class="bar" style="width:41%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.125</td> | |
<td class="number">69</td> | |
<td class="number">1.2%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.13333333333333333</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:6%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0.4545454545454545</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:7%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.5</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:7%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.5263157894736842</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:7%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0.625</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:7%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.0</td> | |
<td class="number">15</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_IWA"><s>IWA</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_BWA"><code>BWA</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.9628</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_LBH"><s>LBH</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_IWH"><code>IWH</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.98052</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_LBD"><s>LBD</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.94553</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_LBA"><s>LBA</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_IWA"><code>IWA</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.96628</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_PSH"><s>PSH</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_LBH"><code>LBH</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.99133</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_PSD"><s>PSD</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.91389</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_PSA"><s>PSA</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_LBA"><code>LBA</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.98103</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_WHH"><s>WHH</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_PSH"><code>PSH</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.99238</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_WHD"><s>WHD</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_B365D"><code>B365D</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.9143</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_WHA"><s>WHA</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_PSA"><code>PSA</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.98027</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_VCH"><s>VCH</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_WHH"><code>WHH</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.99551</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_VCD"><s>VCD</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_LBD"><code>LBD</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.9038</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_VCA"><s>VCA</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_WHA"><code>WHA</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.98578</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BbMx>2.5">BbMx>2.5<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>173</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>3.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>2.432</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>1.14</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>1461</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram5211799052089683013"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAA%2B0lEQVR4nO3VsQkCURBFUVcsaYuwJ2N7sgh7GnORCxvI3%2BCcfOAll9lmZi7AT9fVA%2BDMbqsHfNsfr8M37%2Bf9D0vAB4EkEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCNvMzOoRcFY%2BCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCIQP2hsLj2bol0UAAAAASUVORK5CYII%3D"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives5211799052089683013,#minihistogram5211799052089683013" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives5211799052089683013"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles5211799052089683013" | |
aria-controls="quantiles5211799052089683013" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram5211799052089683013" aria-controls="histogram5211799052089683013" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common5211799052089683013" aria-controls="common5211799052089683013" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme5211799052089683013" aria-controls="extreme5211799052089683013" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles5211799052089683013"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>1.14</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>1.45</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>1.74</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>1.96</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>2.18</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>2.46</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>1461</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>1459.9</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.44</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>25.383</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>10.437</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>2928.6</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>2.432</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.96008</td> | |
</tr> | |
<tr class="alert"> | |
<th>Skewness</th> | |
<td>53.968</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>13933</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>644.32</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram5211799052089683013"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU5aH/8W8WCbJkA4NeSoWyZ2GH2EAJBCUWCgqGJfdaSwsKEskvCL2AiEKlgAWkCl4g9WpFbY3QVhbZqkCqV7qDTQbUErFIGkiEGRJCEkjy/P7wlZERZEkeJpnJ5/168XrJ88w583xnEvzmnDMnAcYYIwAAAFgTWN8LAAAA8DcULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACW%2BXTBWrt2rQYNGqRevXpp0qRJOn78uCRp//79SklJUZ8%2BfTRy5Eht2bLFY7sNGzYoOTlZffr0UWpqqnJzc91zFRUVeuKJJzR48GDFx8crPT1dTqfTq7kAAIBv89mC9dprr2nLli3asGGD3nvvPXXq1Em//OUvVVhYqOnTp2vixInav3%2B/5s%2BfrwULFignJ0eStGfPHq1evVo/%2B9nP9P7772vo0KGaNm2azp07J0latWqVHA6HsrKytGvXLhljNG/evPqMCgAAfEyAMcbU9yJqY9iwYZozZ46GDx/uMf6///u/2rZtm373u9%2B5x2bOnKmWLVvqJz/5iaZOnar27du7S1N1dbUGDx6sefPmKTk5WXfccYeefvppDRs2TJKUl5enkSNHKjs7W23atPFeQAAA4LN88gjWyZMndfz4cZ05c0YjRoxwn8o7ffq0HA6HoqOjPR4fHR3tPg341fnAwEB1795dOTk5OnbsmEpKShQTE%2BOe79ixo5o2bSqHw%2BGdcAAAwOcF1/cCauPEiROSpJ07d%2Bqll16SMUbp6el6/PHHVV5efsmRpvDwcPd1VC6XS2FhYR7zYWFhcjqdcrlckqTQ0FCP%2BdDQ0Ou6DquwsFBFRUUeY8HBzRQVFXXN%2B7iagIAAhYXdrDNnyuSjByGvC3n9G3n9V2PKKpG3IYqIaF4vz%2BuTBavmTZwyZYq7TM2YMUMPPvigEhISrnn72s5fTVZWltasWeMxlpaWpvT09Drt93LCw5tZ32dDRl7/Rl7/1ZiySuSFjxas1q1bS/I80tS2bVsZY3ThwgX3kagaTqdTkZGRkqSIiIhL5l0ulzp37ux%2BjMvlUvPmXzbeM2fOqFWrVte8vgkTJigpKcljLDi4mZzO0mvex9UEBQUqNPRmFReXqaqq2tp%2BGyry%2Bjfy%2Bq/GlFUib0PEEazrcOutt6pFixY6fPiw%2B3qp/Px83XTTTUpMTNTmzZs9Hp%2Bbm6uePXtKkmJjY%2BVwODRmzBhJUlVVlQ4dOqSUlBS1a9dOYWFhcjgcatu2rSTp448/1vnz5xUbG3vN64uKirrkdGBRUYkqK%2B1/8VVVVd%2BQ/TZU5PVv5PVfjSmrRF746EXuwcHBSklJ0bp16/Svf/1Lp06d0vPPP69Ro0ZpzJgxys/P18aNG1VRUaHs7GxlZ2dr/PjxkqTU1FS9%2BeabOnjwoMrKyrR27Vo1adJEQ4YMUVBQkMaPH69169apoKBATqdTzzzzjO666y73UTMAAICr8ckjWJI0a9YsnT9/XuPGjdOFCxeUnJysxx9/XM2bN9f69eu1ePFiLVq0SG3bttXy5cvVrVs3SdLgwYP16KOPKiMjQ6dOnVJcXJwyMzPVtGlTSVJ6erpKS0t1zz33qLKyUkOHDtXChQvrMSkAAPA1PnsfLF9TVFRidX/BwYGKiGgup7O0URyWJa9/I6//akxZJfI2RLfc0rJentcnTxECAAA0ZBQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDKfvZM7vnDXinfrewnXbEfGwPpeAgAAXsERLAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLfLZgde3aVbGxsYqLi3P/eeqppyRJ%2B/fvV0pKivr06aORI0dqy5YtHttu2LBBycnJ6tOnj1JTU5Wbm%2Bueq6io0BNPPKHBgwcrPj5e6enpcjqdXs0GAAB8W3B9L6Audu7cqW984xseY4WFhZo%2Bfbrmz5%2BvUaNG6W9/%2B5sefvhhdejQQXFxcdqzZ49Wr16tF154QV27dtWGDRs0bdo07d69W82aNdOqVavkcDiUlZWlm2%2B%2BWQsWLNC8efO0bt26ekoJAAB8jc8ewfo6W7duVfv27ZWSkqKQkBAlJCQoKSlJGzdulCRlZWVp7Nix6tmzp5o2baopU6ZIkvbu3avKykpt2rRJ06dP12233abw8HBlZGRo3759OnnyZH3GAgAAPsSnC9bKlSs1ZMgQ9evXTwsWLFBpaakcDoeio6M9HhcdHe0%2BDfjV%2BcDAQHXv3l05OTk6duyYSkpKFBMT457v2LGjmjZtKofD4Z1QAADA5/nsKcJevXopISFBTz/9tD777DNlZGRo0aJFcrlcatOmjcdjw8PD3ddRuVwuhYWFecyHhYXJ6XTK5XJJkkJDQz3mQ0NDr%2Bs6rMLCQhUVFXmMBQc3U1RU1DXv42qCgnyvGwcH137NNXl9MXdtkNe/Naa8jSmrRF58yWcLVlZWlvu/O3bsqNmzZ%2Bvhhx9W3759r7qtMaZO89eytjVr1niMpaWlKT09vU779XUREc3rvI/Q0JstrMR3kNe/Naa8jSmrRF74cMH6qm984xuqqqpSYGCg%2B0hUDafTqcjISElSRETEJfMul0udO3d2P8blcql58y/LwJkzZ9SqVatrXsuECROUlJTkMRYc3ExOZ%2Bl1ZbqSoKBAn/uCrkv%2BmrzFxWWqqqq2uKqGibz%2BrTHlbUxZJfI2RDZ%2BuK8NnyxYhw4d0pYtWzR37lz3WF5enpo0aaLExET97ne/83h8bm6uevbsKUmKjY2Vw%2BHQmDFjJElVVVU6dOiQUlJS1K5dO4WFhcnhcKht27aSpI8//ljnz59XbGzsNa8vKirqktOBRUUlqqxsmF983mIjf1VVdaN6Hcnr3xpT3saUVSIvfPQi91atWikrK0uZmZk6f/68jh49qmeffVYTJkzQPffco/z8fG3cuFEVFRXKzs5Wdna2xo8fL0lKTU3Vm2%2B%2BqYMHD6qsrExr165VkyZNNGTIEAUFBWn8%2BPFat26dCgoK5HQ69cwzz%2Biuu%2B5S69at6zk1AADwFT55BKtNmzbKzMzUypUr3QVpzJgxmjlzpkJCQrR%2B/XotXrxYixYtUtu2bbV8%2BXJ169ZNkjR48GA9%2BuijysjI0KlTpxQXF6fMzEw1bdpUkpSenq7S0lLdc889qqys1NChQ7Vw4cJ6TAsAAHxNgKnrFd24JkVFJVb3FxwcqIiI5uo3f6fV/d5IOzIG1nrbmrxOZ2mjOAxNXv/WmPI2pqwSeRuiW25pWS/P65OnCAEAABoyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMv8omAtWbJEXbt2df99//79SklJUZ8%2BfTRy5Eht2bLF4/EbNmxQcnKy%2BvTpo9TUVOXm5rrnKioq9MQTT2jw4MGKj49Xenq6nE6n17IAAADf5/MF6/Dhw9q8ebP774WFhZo%2BfbomTpyo/fv3a/78%2BVqwYIFycnIkSXv27NHq1av1s5/9TO%2B//76GDh2qadOm6dy5c5KkVatWyeFwKCsrS7t27ZIxRvPmzauXbAAAwDf5dMGqrq7Wk08%2BqUmTJrnHtm7dqvbt2yslJUUhISFKSEhQUlKSNm7cKEnKysrS2LFj1bNnTzVt2lRTpkyRJO3du1eVlZXatGmTpk%2Bfrttuu03h4eHKyMjQvn37dPLkyfqICAAAfFBwfS%2BgLl5//XWFhIRo1KhR%2BvnPfy5Jcjgcio6O9nhcdHS0duzY4Z4fMWKEey4wMFDdu3dXTk6OunfvrpKSEsXExLjnO3bsqKZNm8rhcKhNmzbXtK7CwkIVFRV5jAUHN1NUVFStcl5OUJDvdePg4NqvuSavL%2BauDfL6t8aUtzFllciLL/lswfr888%2B1evVqvfLKKx7jLpfrkiIUHh7uvo7K5XIpLCzMYz4sLExOp1Mul0uSFBoa6jEfGhp6XddhZWVlac2aNR5jaWlpSk9Pv%2BZ9%2BKOIiOZ13kdo6M0WVuI7yOvfGlPexpRVIi98uGAtXbpUY8eOVadOnXT8%2BPHr2tYYU6f5q5kwYYKSkpI8xoKDm8npLK3Tfi8WFBToc1/Qdclfk7e4uExVVdUWV9Uwkde/Naa8jSmrRN6GyMYP97XhkwVr//79OnDggLZt23bJXEREhPtIVA2n06nIyMivnXe5XOrcubP7MS6XS82bf/mGnDlzRq1atbrm9UVFRV1yOrCoqESVlQ3zi89bbOSvqqpuVK8jef1bY8rbmLJK5IWPXuS%2BZcsWnTp1SkOHDlV8fLzGjh0rSYqPj1eXLl08brsgSbm5uerZs6ckKTY2Vg6Hwz1XVVWlQ4cOqWfPnmrXrp3CwsI85j/%2B%2BGOdP39esbGxXkgGAAD8gU8WrLlz52rXrl3avHmzNm/erMzMTEnS5s2bNWrUKOXn52vjxo2qqKhQdna2srOzNX78eElSamqq3nzzTR08eFBlZWVau3atmjRpoiFDhigoKEjjx4/XunXrVFBQIKfTqWeeeUZ33XWXWrduXZ%2BRAQCAD/HJU4RhYWEeF6pXVlZKkm699VZJ0vr167V48WItWrRIbdu21fLly9WtWzdJ0uDBg/Xoo48qIyNDp06dUlxcnDIzM9W0aVNJUnp6ukpLS3XPPfeosrJSQ4cO1cKFC70bEAAA%2BLQAU9crunFNiopKrO4vODhQERHN1W/%2BTqv7vZF2ZAys9bY1eZ3O0kZxnp%2B8/q0x5W1MWSXyNkS33NKyXp7XJ08RAgAANGQULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABY5vWClZSUpDVr1qigoMDbTw0AAOAVXi9Y9913n7Zv364777xTU6ZM0e7du1VZWentZQAAANwwXi9YaWlp2r59u9544w117txZS5YsUWJiopYvX66jR496ezkAAADW1ds1WDExMZozZ4727t2rxx57TG%2B88YZGjBihyZMn6x//%2BEd9LQsAAKDO6q1gXbhwQdu3b9eDDz6oOXPmqE2bNpo3b566d%2B%2BuSZMmaevWrfW1NAAAgDoJ9vYT5uXladOmTXrzzTdVWlqq5ORkvfzyy%2Brbt6/7Mf3799fChQs1atQoby8PAACgzrxesEaOHKkOHTpo6tSpuvfeexUeHn7JYxITE3X69GlvLw0AAMAKrxesDRs2aMCAAVd93AcffOCF1QAAANjn9WuwunbtqmnTpuntt992j/3yl7/Ugw8%2BKJfL5e3lAAAAWOf1grV06VKVlJSoU6dO7rEhQ4aourpay5Yt8/ZyAAAArPP6KcL33ntPW7duVUREhHusffv2WrFihb73ve95ezkAAADWef0IVnl5uUJCQi5dSGCgysrKvL0cAAAA67xesPr3769ly5bpzJkz7rGTJ09q0aJFHrdqAAAA8FVeP0X42GOP6Uc/%2BpG%2B/e1vq0WLFqqurlZpaanatWunV155xdvLAQAAsM7rBatdu3Z666239Ic//EHHjh1TYGCgOnTooEGDBikoKMjbywEAALDO6wVLkpo0aaI777yzPp4aAADghvN6wfrss8%2B0cuVK/fOf/1R5efkl8%2B%2B88463lwQAAGBVvVyDVVhYqEGDBqlZs2befnoAAIAbzusFKzc3V%2B%2B8844iIyO9/dQAAABe4fXbNLRq1YojVwAAwK95vWBNnTpVa9askTHG208NAADgFV4/RfiHP/xBf//73/Xb3/5W3/jGNxQY6NnxXn/9dW8vCQAAwCqvF6wWLVpo8ODB3n5aAAAAr/F6wVq6dKm3nxIAAMCrvH4NliR98sknWr16tebNm%2BceO3DgQH0sBQAAwDqvF6z9%2B/dr9OjR2r17t7Zt2ybpi5uPPvDAA9xkFAAA%2BAWvF6xVq1bpxz/%2BsbZu3aqAgABJX/x%2BwmXLlun555/39nIAAACs83rB%2Bvjjj5WamipJ7oIlSXfffbfy8vK8vRwAAADrvF6wWrZsednfQVhYWKgmTZp4ezkAAADWeb1g9enTR0uWLNHZs2fdY0ePHtWcOXP07W9/%2B5r38%2BGHH%2BoHP/iB%2Bvbtq4SEBGVkZKioqEjSF9d5paSkqE%2BfPho5cqS2bNnise2GDRuUnJysPn36KDU1Vbm5ue65iooKPfHEExo8eLDi4%2BOVnp4up9NZx9QAAKAx8XrBmjdvng4cOKD4%2BHhVVFSoT58%2BGjFihFwul%2BbOnXtN%2Bzh//rx%2B9KMfacCAAdq/f7%2B2bdumU6dOaeHChSosLNT06dM1ceJE7d%2B/X/Pnz9eCBQuUk5MjSdqzZ49Wr16tn/3sZ3r//fc1dOhQTZs2TefOnZP0xTViDodDWVlZ2rVrl4wxHp92BAAAuBqv3wfr1ltv1bZt25Sdna2jR4%2BqadOm6tChgwYOHOhxTdaVlJWVaebMmRozZoyCg4MVGRmpu%2B66S6%2B%2B%2Bqq2bt2q9u3bKyUlRZKUkJCgpKQkbdy4UXFxccrKytLYsWPVs2dPSdKUKVO0YcMG7d27V8nJydq0aZOefvpp3XbbbZKkjIwMjRw5UidPnlSbNm1uzIsCAAD8itcLliTddNNNuvPOO2u9fVhYmMaNG%2Bf%2B%2ByeffKLf/e53%2Bu53vyuHw6Ho6GiPx0dHR2vHjh2SJIfDoREjRrjnAgMD1b17d%2BXk5Kh79%2B4qKSlRTEyMe75jx45q2rSpHA7HNReswsJC9%2BnKGsHBzRQVFXXdWb9OUFC93MKsToKDa7/mmry%2BmLs2yOvfGlPexpRVIi%2B%2B5PWClZSUdMUjVddzL6z8/HwlJyersrJS48ePV3p6uh588MFLilB4eLj7OiqXy6WwsDCP%2BbCwMDmdTrlcLklSaGiox3xoaOh1XYeVlZWlNWvWeIylpaUpPT39mvfhjyIimtd5H6GhN1tYie8gr39rTHkbU1aJvKiHgjVixAiPglVVVaWjR48qJydHP/jBD65rX23btlVOTo7%2B9a9/6YknntB///d/X9N2xpg6zV/NhAkTlJSU5DEWHNxMTmdpnfZ7saCgQJ/7gq5L/pq8xcVlqqqqtriqhom8/q0x5W1MWSXyNkQ2frivDa8XrNmzZ192fNeuXfrTn/503fsLCAhQ%2B/btNXPmTE2cOFGJiYnuI1E1nE6nIiMjJUkRERGXzLtcLnXu3Nn9GJfLpebNv3xDzpw5o1atWl3zmqKioi45HVhUVKLKyob5xectNvJXVVU3qteRvP6tMeVtTFkl8qKefhfh5dx555166623rumx%2B/fvV3Jysqqrv3wzAwO/iNKjRw%2BP2y5IUm5urvui9tjYWDkcDvdcVVWVDh06pJ49e6pdu3YKCwvzmP/44491/vx5xcbG1jobAABoXBpMwTp06NA1n5qLjY3V2bNntXz5cpWVlen06dNavXq1%2BvXrp9TUVOXn52vjxo2qqKhQdna2srOzNX78eElSamqq3nzzTR08eFBlZWVau3atmjRpoiFDhigoKEjjx4/XunXrVFBQIKfTqWeeeUZ33XWXWrdufSPjAwAAP%2BL1U4QTJ068ZKysrEx5eXkaPnz4Ne2jZcuWevHFF7V48WLdcccdatasme644w799Kc/VatWrbR%2B/XotXrxYixYtUtu2bbV8%2BXJ169ZNkjR48GA9%2BuijysjI0KlTpxQXF6fMzEw1bdpUkpSenq7S0lLdc889qqys1NChQ7Vw4UJr%2BQEAgP8LMHW9ovs6zZ0795JPEYaEhKhjx44aN26cu%2Bj4m6KiEqv7Cw4OVEREc/Wbv9Pqfm%2BkHRkDa71tTV6ns7RRnOcnr39rTHkbU1aJvA3RLbe0rJfn9foRrGXLlnn7KQEAALzK6wXrzTffvObH3nvvvTdwJQAAADeG1wvW/PnzVV1dfckF7QEBAR5jAQEBFCwAAOCTvF6wXnjhBb344ouaNm2aunbtKmOMPvroI/3iF7/Q/fffr/j4eG8vCQAAwKp6uQYrMzPT49fZ9OvXT%2B3atdPkyZO1bds2by8JAADAKq/fB%2BvTTz%2B95HcBSl/8vr/8/HxvLwcAAMA6rxestm3batmyZR6/PLm4uFgrV67UN7/5TW8vBwAAwDqvnyJ87LHHNGvWLGVlZal58%2BYKDAzU2bNn1bRpUz3//PPeXg4AAIB1Xi9YgwYN0r59%2B5Sdna0TJ07IGKM2bdroO9/5jlq2rJ%2BbgQEAANjk9YIlSTfffLOGDRumEydOqF27dvWxBAAAgBvG69dglZeXa86cOerdu7e%2B%2B93vSvriGqwpU6aouLjY28sBAACwzusFa/ny5Tp8%2BLBWrFihwMAvn76qqkorVqzw9nIAAACs83rB2rVrl5577jndfffd7l/6HBoaqqVLl2r37t3eXg4AAIB1Xi9YpaWlat%2B%2B/SXjkZGROnfunLeXAwAAYJ3XC9Y3v/lN/elPf5Ikj989uHPnTv3Hf/yHt5cDAABgndc/Rfif//mfmjFjhu677z5VV1frpZdeUm5urnbt2qX58%2Bd7ezkAAADWeb1gTZgwQcHBwXr11VcVFBSkdevWqUOHDlqxYoXuvvtuby8HAADAOq8XrNOnT%2Bu%2B%2B%2B7Tfffd5%2B2nBgAA8AqvX4M1bNgwj2uvAAAA/I3XC1Z8fLx27Njh7acFAADwGq%2BfIrztttv005/%2BVJmZmfrmN7%2Bpm266yWN%2B5cqV3l4SAACAVV4vWEeOHNG3vvUtSZLT6fT20wMAANxwXitYM2fO1KpVq/TKK6%2B4x55//nmlpaV5awkAAABe4bVrsPbs2XPJWGZmpreeHgAAwGu8VrAu98lBPk0IAAD8kdcKVs0vdr7aGAAAgK/z%2Bm0aAAAA/B0FCwAAwDKvfYrwwoULmjVr1lXHuA8WAADwdV4rWH379lVhYeFVxwAAAHyd1wrWxfe/AgAA8GdcgwUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZT5bsPLz85WWlqb4%2BHglJCRo7ty5Ki4uliQdPnxY999/v/r27avhw4frxRdf9Nh2%2B/btGjVqlHr37q2xY8fqvffec89VV1dr1apVGjZsmPr376/Jkyfrs88%2B82o2AADg23y2YE2bNk2hoaHas2ePfvvb3%2Bqf//ynnn76aZWXl2vq1Km644479O6772rVqlVav369du/eLemL8jVnzhzNnj1bf/zjHzVp0iQ98sgjOnHihCTptdde09atW5WZmam9e/eqffv2SktLkzGmPuMCAAAf4pMFq7i4WLGxsZo1a5aaN2%2BuW2%2B9VWPGjNFf//pX7du3TxcuXNDDDz%2BsZs2aKSYmRuPGjVNWVpYkaePGjUpMTFRiYqJCQkI0evRodenSRVu2bJEkZWVladKkSerYsaNatGihmTNnKi8vTx988EF9RgYAAD7EJwtWaGioli5dqtatW7vHCgoKFBUVJYfDoa5duyooKMg9Fx0drdzcXEmSw%2BFQdHS0x/6io6OVk5Oj8vJyHTlyxGO%2BRYsWuv3225WTk3ODUwEAAH8RXN8LsCEnJ0evvvqq1q5dqx07dig0NNRjPjw8XC6XS9XV1XK5XAoLC/OYDwsL05EjR3TmzBkZYy4773Q6r3k9hYWFKioq8hgLDm6mqKio60z29YKCfK8bBwfXfs01eX0xd22Q1781pryNKatEXnzJ5wvW3/72Nz388MOaNWuWEhIStGPHjss%2BLiAgwP3fV7ueqq7XW2VlZWnNmjUeY2lpaUpPT6/Tfn1dRETzOu8jNPRmCyvxHeT1b40pb2PKKpEXPl6w9uzZox//%2BMdasGCB7r33XklSZGSkPv30U4/HuVwuhYeHKzAwUBEREXK5XJfMR0ZGuh9zuflWrVpd87omTJigpKQkj7Hg4GZyOkuvI92VBQUF%2BtwXdF3y1%2BQtLi5TVVW1xVU1TOT1b40pb2PKKpG3IbLxw31t%2BGzB%2Bvvf/645c%2Bbo2Wef1aBBg9zjsbGx%2BvWvf63KykoFB38RLycnRz179nTP11yPVSMnJ0cjR45USEiIOnfuLIfDoQEDBkj64oL6Y8eOqUePHte8tqioqEtOBxYVlaiysmF%2B8XmLjfxVVdWN6nUkr39rTHkbU1aJvPDRi9wrKyv1%2BOOPa/bs2R7lSpISExPVokULrV27VmVlZfrggw%2B0adMmpaamSpLGjx%2Bv999/X/v27VNFRYU2bdqkTz/9VAKJGpIAABS6SURBVKNHj5YkpaamasOGDcrLy9PZs2e1YsUKde/eXXFxcV7PCQAAfJNPHsE6ePCg8vLytHjxYi1evNhjbufOnVq3bp2efPJJZWZmqnXr1po5c6aGDBkiSerSpYtWrFihpUuXKj8/X506ddL69et1yy23SJImTpyooqIiff/731dpaani4%2BMvuZ4KAADgSgIMd9D0iqKiEqv7Cw4OVEREc/Wbv9Pqfm%2BkHRkDa71tTV6ns7RRHIYmr39rTHkbU1aJvA3RLbe0rJfn9clThAAAAA0ZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDKfLljvvvuuEhISNHPmzEvmtm/frlGjRql3794aO3as3nvvPfdcdXW1Vq1apWHDhql///6aPHmyPvvsM/e8y%2BVSRkaGEhISNGjQIM2fP1/l5eVeyQQAAHyfzxasX/ziF1q8eLFuv/32S%2BYOHz6sOXPmaPbs2frjH/%2BoSZMm6ZFHHtGJEyckSa%2B99pq2bt2qzMxM7d27V%2B3bt1daWpqMMZKkBQsWqKysTNu2bdNvfvMb5eXlacWKFV7NBwAAfJfPFqyQkBBt2rTpsgVr48aNSkxMVGJiokJCQjR69Gh16dJFW7ZskSRlZWVp0qRJ6tixo1q0aKGZM2cqLy9PH3zwgT7//HO9/fbbmjlzpiIjI9WmTRtNnz5dv/nNb3ThwgVvxwQAAD7IZwvWAw88oJYtW152zuFwKDo62mMsOjpaOTk5Ki8v15EjRzzmW7Roodtvv105OTk6fPiwgoKC1LVrV/d8TEyMzp07p08%2B%2BeTGhAEAAH4luL4XcCO4XC6FhYV5jIWFhenIkSM6c%2BaMjDGXnXc6nQoPD1eLFi0UEBDgMSdJTqfzmp6/sLBQRUVFHmPBwc0UFRVVmziXFRTke904OLj2a67J64u5a4O8/q0x5W1MWSXy4kt%2BWbAkua%2Bnqs381ba9mqysLK1Zs8ZjLC0tTenp6XXar6%2BLiGhe532Eht5sYSW%2Bg7z%2BrTHlbUxZJfLCTwtWRESEXC6Xx5jL5VJkZKTCw8MVGBh42flWrVopMjJSZ8%2BeVVVVlYKCgtxzktSqVatrev4JEyYoKSnJYyw4uJmcztLaRrpEUFCgz31B1yV/Td7i4jJVVVVbXFXDRF7/1pjyNqasEnkbIhs/3NeGXxas2NhY5ebmeozl5ORo5MiRCgkJUefOneVwODRgwABJUnFxsY4dO6YePXqobdu2Msboww8/VExMjHvb0NBQdejQ4ZqePyoq6pLTgUVFJaqsbJhffN5iI39VVXWjeh3J698aU97GlFUiL3z4IvcrGT9%2BvN5//33t27dPFRUV2rRpkz799FONHj1akpSamqoNGzYoLy9PZ8%2Be1YoVK9S9e3fFxcUpMjJSycnJ%2BvnPf67Tp0/rxIkTev7555WSkqLgYL/sowAAwDKfbQxxcXGSpMrKSknS22%2B/LemLo01dunTRihUrtHTpUuXn56tTp05av369brnlFknSxIkTVVRUpO9///sqLS1VfHy8xzVTP/nJT/Tkk09q2LBhuummm/S9733vsjczBQAAuJwAU9crunFNiopKrO4vODhQERHN1W/%2BTqv7vZF2ZAys9bY1eZ3O0kZxGJq8/q0x5W1MWSXyNkS33HL5WzrdaH55ihAAAKA%2BUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgoWAACAZRQsAAAAyyhYAAAAllGwAAAALKNgAQAAWEbBAgAAsIyCBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwbqM/Px8PfTQQ4qPj9fQoUO1fPlyVVdX1/eyAACAjwiu7wU0RDNmzFBMTIzefvttnTp1SlOnTlXr1q31wx/%2BsL6XBgAAfABHsL4iJydHH374oWbPnq2WLVuqffv2mjRpkrKysup7aQAAwEdwBOsrHA6H2rZtq7CwMPdYTEyMjh49qrNnz6pFixZX3UdhYaGKioo8xoKDmykqKsraOoOCfK8bBwfXfs01eX0xd22Q1781pryNKatEXnyJgvUVLpdLoaGhHmM1ZcvpdF5TwcrKytKaNWs8xh555BHNmDHD2joLCwv18ssvaPv/m2C1uDVUNXknTCCvPyKv/2pMWSXy4ktUzsswxtRp%2BwkTJui3v/2tx58JEyZYWt0XioqKtGbNmkuOlPkr8vo38vqvxpRVIi%2B%2BxBGsr4iMjJTL5fIYc7lcCggIUGRk5DXtIyoqiiYPAEAjxhGsr4iNjVVBQYFOnz7tHsvJyVGnTp3UvHnzelwZAADwFRSsr4iOjlZcXJxWrlyps2fPKi8vTy%2B99JJSU1Pre2kAAMBHBC1cuHBhfS%2BiofnOd76jbdu26amnntJbb72llJQUTZ48WQEBAfW9NA/NmzfXgAEDGs2RNfL6N/L6r8aUVSIvvhBg6npFNwAAADxwihAAAMAyChYAAIBlFCwAAADLKFgAAACWUbAAAAAso2ABAABYRsECAACwjIIFAABgGQULAADAMgqWD8rPz9dDDz2k%2BPh4DR06VMuXL1d1dXV9L6vW8vPzlZaWpvj4eCUkJGju3LkqLi6WJB0%2BfFj333%2B/%2Bvbtq%2BHDh%2BvFF1/02Hb79u0aNWqUevfurbFjx%2Bq9996rjwi1tmTJEnXt2tX99/379yslJUV9%2BvTRyJEjtWXLFo/Hb9iwQcnJyerTp49SU1OVm5vr7SXXytq1azVo0CD16tVLkyZN0vHjxyX5Z95Dhw7pgQceUL9%2B/TRw4EDNnj3b/cvj/SHvu%2B%2B%2Bq4SEBM2cOfOSuSt9P1ZXV2vVqlUaNmyY%2Bvfvr8mTJ%2Buzzz5zz7tcLmVkZCghIUGDBg3S/PnzVV5e7pVMV3KlvLt379bo0aPVu3dvJScn64033vCYv9L7WVFRoSeeeEKDBw9WfHy80tPT5XQ6b3ieq7lS3hqlpaUaMmSI5s6d6x7z1ff3hjLwOWPGjDGPP/64KS4uNkePHjXDhw83L774Yn0vq9a%2B973vmblz55qzZ8%2BagoICM3bsWPPYY4%2BZsrIy853vfMesXr3alJaWmtzcXDNgwACza9cuY4wxhw4dMrGxsWbfvn2mvLzcbN682fTs2dMUFBTUc6Jrc%2BjQITNgwADTpUsXY4wxJ0%2BeNL169TIbN2405eXl5v/%2B7/9Mjx49zD/%2B8Q9jjDHvvPOO6devnzl48KApKysz69evNwMHDjSlpaX1GeOqXn31VXP33XebvLw8U1JSYp566inz1FNP%2BWXeCxcumIEDB5qVK1eaiooKc/r0afPDH/7QzJgxwy/yZmZmmuHDh5uJEyeajIwMj7mrfT9u2LDBDB061Bw5csSUlJSYn/zkJ2bUqFGmurraGGPMI488Yh566CFz6tQpc%2BLECTNhwgTz1FNPeT3jxa6U94MPPjBxcXHm97//vblw4YLZt2%2BfiYmJMX/5y1%2BMMVd/P5cuXWrGjh1r/v3vfxun02keeeQRM3XqVK9nvNiV8l5s6dKlpm/fvmbOnDnuMV98f280CpaP%2Bcc//mG6d%2B9uXC6Xe%2BxXv/qVSU5OrsdV1d6ZM2fM3LlzTVFRkXvslVdeMcOHDzc7duwwd9xxh6msrHTPLV%2B%2B3PzoRz8yxhizaNEik5aW5rG/cePGmfXr13tn8XVQVVVlxo0bZ/7nf/7HXbBeeOEFc%2B%2B993o8LiMjwyxYsMAYY8xDDz1klixZ4rGPgQMHmm3btnlv4bWQlJTkLsUX88e8//73v02XLl3MkSNH3GO/%2BtWvzJ133ukXeV9%2B%2BWVTXFxs5syZc8n/gK/2/Thy5Ejz8ssvu%2BdKSkpMdHS0OXDggCkqKjLdunUzhw8fds9nZ2ebXr16mfPnz9/ARFd2pbzZ2dlmzZo1HmNjxowxa9euNcZc%2Bf28cOGC6du3r3n77bfd80eOHDFdu3Y1J06cuIGJruxKeWscPnzYDBw40CxevNijYPni%2B3ujcYrQxzgcDrVt21ZhYWHusZiYGB09elRnz56tx5XVTmhoqJYuXarWrVu7xwoKChQVFSWHw6GuXbsqKCjIPRcdHe0%2BzO5wOBQdHe2xv%2BjoaOXk5Hhn8XXw%2BuuvKyQkRKNGjXKPfV2er8sbGBio7t27N%2Bi8J0%2Be1PHjx3XmzBmNGDHCfSrk9OnTfpm3TZs26t69u7KyslRaWqpTp05p9%2B7dGjJkiF/kfeCBB9SyZcvLzl3p%2B7G8vFxHjhzxmG/RooVuv/125eTk6PDhwwoKCvI4XR4TE6Nz587pk08%2BuTFhrsGV8g4ePFhpaWnuv1dWVqqoqEht2rSRdOX389ixYyopKVFMTIx7vmPHjmratKkcDscNSnN1V8orScYYLVy4UDNnzlRoaKh73Fff3xuNguVjXC6Xxxe2JHfZagjn7%2BsqJydHr776qh5%2B%2BOHLZg0PD5fL5VJ1dbVcLpdH0ZS%2BeC0a%2Buvw%2Beefa/Xq1XryySc9xr8ub00eX8x74sQJSdLOnTv10ksvafPmzTpx4oQef/xxv8wbGBio1atX65133lGfPn2UkJCgyspKzZo1yy/zXuxK6z9z5oyMMV8773K51KJFCwUEBHjMSb7z79qKFSvUrFkzjRgxQtKVXw%2BXyyVJl3w9hIaGNui8WVlZCggI0NixYz3GG8P7WxsULB9kjKnvJdwQf/vb3zR58mTNmjVLCQkJX/u4i79JffG1WLp0qcaOHatOnTpd97a%2BlrdmvVOmTFGbNm106623asaMGdqzZ891be8rzp8/r2nTpunuu%2B/WX//6V/3hD39Qy5YtNXv27Gva3tfyftXV1n%2BleV/NbozR8uXLtW3bNq1du1YhISEec1fb1lecOnVKzz77rBYuXOjxb/DF/PH9rQsKlo%2BJjIx0//RTw%2BVyKSAgQJGRkfW0qrrbs2ePHnroIT322GN64IEHJH2R9as/3bhcLoWHhyswMFARERGXfS0a8uuwf/9%2BHThwwOPUQo3L5XE6ne48vpi35tTvxT%2Bpt23bVsYYXbhwwe/y7t%2B/X8ePH9ejjz6qli1bqk2bNkpPT9fvf/97BQYG%2Bl3ei11p/TXfs5ebb9WqlSIjI3X27FlVVVV5zElSq1atbvzia6m6ulpz587Vnj179Otf/1rf%2Bta33HNXej1q3tOvzp85c6bB5l22bJnuvfdej9N8Nfz1/a0rCpaPiY2NVUFBgftj39IXp9U6deqk5s2b1%2BPKau/vf/%2B75syZo2effVb33nuvezw2NlYfffSRKisr3WM5OTnq2bOne/6rH2O/eL4h2rJli06dOqWhQ4cqPj7efag9Pj5eXbp0uSRPbm6uR96Lr8%2BoqqrSoUOHGnTeW2%2B9VS1atNDhw4fdY/n5%2BbrpppuUmJjod3mrqqpUXV3t8dP6%2BfPnJUkJCQl%2Bl/diV/p%2BDAkJUefOnT3yFRcX69ixY%2BrRo4e6d%2B8uY4w%2B/PBDj21DQ0PVoUMHr2W4XkuWLNE///lP/frXv1a7du085q70frZr105hYWEe8x9//LHOnz%2Bv2NhYr63/emzZskWbNm1SfHy84uPj9cILL%2Bitt95SfHy8376/debVS%2Bphxbhx48xjjz1mSkpKzJEjR0xSUpJ59dVX63tZtXLhwgXz3e9%2B17z%2B%2BuuXzFVUVJihQ4ea5557zpw7d84cPHjQ9OvXz%2Bzdu9cYY8xHH31k4uLizN69e015ebnZuHGj6d27tyksLPRyimvncrlMQUGB%2B8%2BBAwdMly5dTEFBgcnPzze9e/c2b7zxhikvLzf79u0zPXr0cH/yJjs72/Tt29ccOHDAnDt3zqxevdokJiaasrKyek51ZUuWLDHDhg0zn376qfn888/NhAkTzNy5c83nn3/ud3lPnz5tBgwYYJ555hlz7tw5c/r0aTNt2jTzX//1X36V93KfMrva9%2BOvfvUrM2TIEPfH%2BBcsWGDuu%2B8%2B9/YZGRlmypQp5tSpU6agoMDcd999ZtmyZV7N9XUul/evf/2r6d%2B/v8cnoC92tfdz%2BfLlZsyYMebf//63OX36tJk6daqZMWPGDc9yLS6X9%2BJ/twoKCsySJUtMenq6%2BzYcvvz%2B3igULB9UUFBgpkyZYnr06GESEhLMc889577XiK/5y1/%2BYrp06WJiY2Mv%2BXP8%2BHHz0UcfmYkTJ5rY2FgzZMgQ89prr3lsv2vXLjN8%2BHATExNj7rnnHvPnP/%2B5npLUzmeffea%2BTYMxxvz5z382o0ePNjExMWb48OGX3N7gtddeM4mJiSY2Ntakpqaajz76yNtLvm4VFRVm4cKFpn///qZXr15mzpw55uzZs8YY/8ybk5Nj7r//ftOvXz%2BTkJBgMjIy3B%2B99/W8Nd%2Bb3bp1M926dXP/vcaVvh%2Brq6vNs88%2Ba7797W%2BbHj16mAcffNDjnnXFxcVm5syZplevXqZ///5m0aJFpqKiwqv5vupKeefNm%2BcxVvPnhz/8oXv7K72fF39f9O7d2zz66KOmuLjY6xkvdrX392LPPfecx20afPH9vdECjGmEV54BAADcQFyDBQAAYBkFCwAAwDIKFgAAgGUULAAAAMsoWAAAAJZRsAAAACyjYAEAAFhGwQIAALCMggUAAGAZBQsAAMAyChYAAIBlFCwAAADLKFgAAACW/X9ZwDeQhJsc3wAAAABJRU5ErkJggg%3D%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common5211799052089683013"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2.2</td> | |
<td class="number">137</td> | |
<td class="number">2.4%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.1</td> | |
<td class="number">129</td> | |
<td class="number">2.3%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.8</td> | |
<td class="number">114</td> | |
<td class="number">2.0%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.25</td> | |
<td class="number">114</td> | |
<td class="number">2.0%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.0</td> | |
<td class="number">111</td> | |
<td class="number">1.9%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.7</td> | |
<td class="number">110</td> | |
<td class="number">1.9%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.85</td> | |
<td class="number">93</td> | |
<td class="number">1.6%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.95</td> | |
<td class="number">92</td> | |
<td class="number">1.6%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.15</td> | |
<td class="number">87</td> | |
<td class="number">1.5%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.75</td> | |
<td class="number">85</td> | |
<td class="number">1.5%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (163)</td> | |
<td class="number">4657</td> | |
<td class="number">81.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme5211799052089683013"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">1.14</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:25%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.16</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:25%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.18</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:75%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.19</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.2</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2.95</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">3.0</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">3.03</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1252.0</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1461.0</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BbAv>2.5">BbAv>2.5<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>158</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>2.8%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>1.8706</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>1.11</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>2.82</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram-8617806424233892282"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABNUlEQVR4nO3dy23DMBQAQTlISS4iPeXsnlJEeqIbCBaWAVqMPHPWgZfFoz6ELmOMsQF/%2Bjh6AbCyz6MX8J9cv392Xf97%2B5q0El5FIIvZG%2BG2CXEmWywIJshEz0wD1mKCQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAcB7kBBwFnudtA3GYiUfYYkEQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUA4xde8vsxlFhMEwikmCPv4zdvjTBAIAoEgEAgCgSAQCMs9xfJOg5WYIBAEAmG5LRZreteXiwJhmjNEdRljjKMXAatyDwJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBALhDp4KID2LkwffAAAAAElFTkSuQmCC"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives-8617806424233892282,#minihistogram-8617806424233892282" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives-8617806424233892282"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles-8617806424233892282" | |
aria-controls="quantiles-8617806424233892282" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram-8617806424233892282" aria-controls="histogram-8617806424233892282" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common-8617806424233892282" aria-controls="common-8617806424233892282" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme-8617806424233892282" aria-controls="extreme-8617806424233892282" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles-8617806424233892282"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>1.11</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>1.4</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>1.67</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>1.88</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>2.07</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>2.33</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>2.82</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>1.71</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.4</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.28328</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.15144</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>-0.40905</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>1.8706</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.23228</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>-0.035419</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>10716</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.080249</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram-8617806424233892282"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXQUZb7/8U%2BShkQSEhIk4CACymJCkAmKSGAIBBQFQcGwZK5iVJQlimHxsullEQElXBiWQVBRo14nAg6boAyyuIBzFAdMAi4gXpQDpIVuQsKapH9/%2BKPvNAEJ5KE63f1%2BncMJeZ7qru%2BXKooPVZXqIJfL5RIAAACMCfZ2AQAAAP6GgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADLN5u4BAYbcf93YJV11wcJBiYsJ19Gixyspc3i7HUoHcu0T/9E//gdq/L/Rep05Nr6yXM1gwJjg4SEFBQQoODvJ2KZYL5N4l%2Bqd/%2Bg/U/gO590shYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwzGcD1qeffqqkpCSNGDGi3Nz69evVq1cvJSYmqlu3bnrvvfc85rOzs9WtWze1bt1aaWlpysvLc8%2BdPn1a//Vf/6WOHTuqbdu2Gj58uBwOx1XvBwAA%2BA%2BfDFivvPKKpk6dqoYNG5ab%2B%2BabbzR69GgNHz5cX375pcaPH68pU6boq6%2B%2BkiRt3LhR8%2BbN00svvaStW7eqc%2BfOGjJkiE6cOCFJmj17tvLz85WTk6OPPvpILpdL48aNs7Q/AADg23wyYIWGhmrZsmUXDFhOp1ODBw9W165dZbPZlJycrGbNmrkDVk5Ojvr06aNWrVopLCxMgwYNkiRt2rRJJSUlWrZsmYYNG6brrrtOtWrVUmZmpjZv3qzDhw9b2iMAAPBdNm8XcCUGDhx40bmOHTuqY8eO7u9LSkpkt9tVt25dSVJ%2Bfr66d%2B/ung8ODlZcXJxyc3MVFxen48ePq0WLFu75m266SWFhYcrPz3e/B1AV3TPnc2%2BXUGHrMtt7uwQAuKp8MmBdjqysLNWoUcMdqpxOp6KiojyWiYqKksPhkNPplCRFRkZ6zEdGRl7WfVgFBQWy2%2B0eYzZbDcXGxl5JCz4jJCTY42sgCeTer4TN5l9/ToG%2B/ek/cPsP5N4vxW8DlsvlUlZWltasWaPs7GyFhoZ6zF3qtZWRk5Oj%2BfPne4xlZGRo%2BPDhlXpfXxEZeY23S/CaQO79ckRHh3u7hKsi0Lc//Qdu/4Hc%2B8X4ZcAqKyvTuHHj9M033%2Bjdd99VgwYN3HPR0dHuM1XnOJ1ONW3aVDExMe7vw8P/7x%2BAY8eOqXbt2hVef//%2B/ZWSkuIxZrPVkMNRfCXt%2BIyQkGBFRl6jwsKTKi0t83Y5lgrk3q%2BEv/1dCPTtT/%2BB278v9O6t/9D5ZcCaNm2afvjhB7377ruqVauWx1xCQoLy8/PVu3dvSVJpaal27dql1NRUNWjQQFFRUcrPz1f9%2BvUlSd9//73OnDmjhISECq8/Nja23OVAu/24Skqq5s5nWmlpWcD0er5A7v1y%2BOufUaBvf/oP3P4DufeL8buLptu3b9eqVau0ePHicuFKktLS0rRixQrt2LFDJ0%2Be1MKFC1W9enV16tRJISEh6tevn15%2B%2BWUdPHhQDodD//3f/60777xT1157rRe6AQAAvsgnz2C1bNlS0m8/IShJGzZskCTl5uZq%2BfLlOn78uDp37uzxmjZt2mjJkiXq2LGjRo4cqczMTB05ckQtW7bU4sWLFRYWJkkaPny4iouLdd9996mkpESdO3fWpEmTrGsOAAD4vCBXZe/oRoXY7ce9XcJVZ7MFKzo6XA5HccCdKq4KvfOYBu%2BpCtvfm%2Bg/cPv3hd7r1KnplfX65BksALCSL4VXyf8CLOCL/O4eLAAAAG8jYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDeA4WAMv52nOlAOBycQYLAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMMynA9ann36qpKQkjRgxotzc2rVr1bNnTyUmJqpPnz767LPP3HNlZWWaPXu2unTpojZt2uixxx7Tzz//7J53Op3KzMxUUlKSOnTooAkTJujUqVOW9AQAAHyfzwasV155RVOnTlXDhg3Lze3evVtjxozR6NGj9cUXXyg9PV1PPvmkDh06JEl65513tHr1ai1evFibNm1So0aNlJGRIZfLJUl67rnndPLkSa1Zs0bLly/X3r17lZWVZWl/AADAd/lswAoNDdWyZcsuGLCWLl2q5ORkJScnKzQ0VL169VKzZs20atUqSVJOTo7S09N10003KSIiQiNGjNDevXu1c%2BdO/frrr9qwYYNGjBihmJgY1a1bV8OGDdPy5ct19uxZq9sEAAA%2ByObtAq7UwIEDLzqXn5%2Bv5ORkj7H4%2BHjl5ubq1KlT2rNnj%2BLj491zERERatiwoXJzc3X8%2BHGFhISoefPm7vkWLVroxIkT%2BvHHHz3GL6agoEB2u91jzGarodjY2Iq255NCQoI9vgaSQO4dVY/NZu1%2BGOj7fyD3H8i9X4rPBqzf43Q6FRUV5TEWFRWlPXv26NixY3K5XBecdzgcqlWrliIiIhQUFOQxJ0kOh6NC68/JydH8%2BfM9xjIyMjR8%2BPAracfnREZe4%2B0SvCaQe0fVER0d7pX1Bvr%2BH8j9B3LvF%2BOXAUuS%2B36qK5m/1GsvpX///kpJSfEYs9lqyOEortT7VnUhIcGKjLxGhYUnVVpa5u1yLBXIvaPqsfpYE%2Bj7fyD37wu9e%2Bs/HH4ZsKKjo%2BV0Oj3GnE6nYmJiVKtWLQUHB19wvnbt2oqJiVFRUZFKS0sVEhLinpOk2rVrV2j9sbGx5S4H2u3HVVJSNXc%2B00pLywKm1/MFcu%2BoOry1Dwb6/h/I/Qdy7xfjlxdNExISlJeX5zGWm5urVq1aKTQ0VE2bNlV%2Bfr57rrCwUPv379ctt9yiuLg4uVwuffvttx6vjYyMVOPGjS3rAQAA%2BC6/DFj9%2BvXT1q1btXnzZp0%2BfVrLli3TTz/9pF69ekmS0tLSlJ2drb1796qoqEhZWVmKi4tTy5YtFRMTo27dumnOnDk6evSoDh06pAULFig1NVU2m1%2Be8AMAAIb5bGJo2bKlJKmkpESStGHDBkm/nW1q1qyZsrKyNH36dB04cEBNmjTRokWLVKdOHUnSgAEDZLfb9dBDD6m4uFht27b1uCl9ypQpmjhxorp06aJq1arp3nvvveDDTAEAAC4kyFXZO7pRIXb7cW%2BXcNXZbMGKjg6Xw1EccNfiq0Lv98z53CvrRdWzLrO9peurCvu/NwVy/77Qe506Nb2yXr%2B8RAgAAOBNBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYJjfBqxdu3Zp4MCBuu2229S%2BfXuNHj1aR48elSRt27ZNqampat26tXr06KFVq1Z5vDY7O1vdunVT69atlZaWpry8PG%2B0AAAAfJRfBqySkhI98cQT%2BuMf/6itW7dqzZo1Onr0qCZNmqSCggINGzZMAwYM0LZt2zRhwgQ999xzys3NlSRt3LhR8%2BbN00svvaStW7eqc%2BfOGjJkiE6cOOHlrgAAgK/wy4Blt9tlt9t13333qXr16oqOjtadd96p3bt3a/Xq1WrUqJFSU1MVGhqqpKQkpaSkaOnSpZKknJwc9enTR61atVJYWJgGDRokSdq0aZM3WwIAAD7ELwNW3bp1FRcXp5ycHBUXF%2BvIkSNav369OnXqpPz8fMXHx3ssHx8f774MeP58cHCw4uLi3Ge4AAAALsXm7QKuhuDgYM2bN0/p6el68803JUm33367Ro0apWHDhqlu3boey9eqVUsOh0OS5HQ6FRUV5TEfFRXlnq%2BIgoIC2e12jzGbrYZiY2OvpB2fERIS7PE1kARy76h6bDZr98NA3/8Duf9A7v1S/DJgnTlzRkOGDNHdd9/tvn9q8uTJGj16dIVe73K5KrX%2BnJwczZ8/32MsIyNDw4cPr9T7%2BorIyGu8XYLXBHLvqDqio8O9st5A3/8Duf9A7v1i/DJgbdu2Tb/88otGjhypkJAQ1axZU8OHD9d9992nP/3pT3I6nR7LOxwOxcTESJKio6PLzTudTjVt2rTC6%2B/fv79SUlI8xmy2GnI4iq%2BwI98QEhKsyMhrVFh4UqWlZd4ux1KB3DuqHquPNYG%2B/wdy/77Qu7f%2Bw%2BGXAau0tFRlZWUeZ6LOnDkjSUpKStLf//53j%2BXz8vLUqlUrSVJCQoLy8/PVu3dv93vt2rVLqampFV5/bGxsucuBdvtxlZRUzZ3PtNLSsoDp9XyB3DuqDm/tg4G%2B/wdy/4Hc%2B8X45UXTxMRE1ahRQ/PmzdPJkyflcDi0cOFCtWnTRvfdd58OHDigpUuX6vTp09qyZYu2bNmifv36SZLS0tK0YsUK7dixQydPntTChQtVvXp1derUybtNAQAAn%2BGXASs6Olqvvfaavv76a3Xs2FH33nuvwsLCNGvWLNWuXVuLFi3S22%2B/rVtvvVXTpk3TzJkzdfPNN0uSOnbsqJEjRyozM1O33367tm7dqsWLFyssLMzLXQEAAF8R5KrsHd2oELv9uLdLuOpstmBFR4fL4SgOuFPFVaH3e%2BZ87pX1oupZl9ne0vVVhf3fmwK5f1/ovU6dml5Zr1%2BewQIAAPAmAhYAAIBhBCwAAADDLA9YKSkpmj9/vg4ePGj1qgEAACxhecB64IEHtHbtWnXt2lWDBg3S%2BvXrVVJSYnUZAAAAV43lASsjI0Nr167Ve%2B%2B9p6ZNm2ratGlKTk7WzJkztW/fPqvLAQAAMM5r92C1aNFCY8aM0aZNmzR%2B/Hi999576t69ux577DF988033ioLAACg0rwWsM6ePau1a9fq8ccf15gxY1S3bl2NGzdOcXFxSk9P1%2BrVq71VGgAAQKVY/lmEe/fu1bJly7RixQoVFxerW7duevPNN3Xrrbe6l2nTpo0mTZqknj17Wl0eAABApVkesHr06KHGjRtr8ODBuv/%2B%2B1WrVq1yyyQnJ%2Bvo0aNWlwYAAGCE5QErOztbt99%2B%2ByWX27lzpwXVAAAAmGf5PVjNmzfXkCFDtGHDBvfYG2%2B8occff1xOp9PqcgAAAIyzPGBNnz5dx48fV5MmTdxjnTp1UllZmWbMmGF1OQAAAMZZfonws88%2B0%2BrVqxUdHe0ea9SokbKysnTvvfdaXQ4AAIBxlp/BOnXqlEJDQ8sXEhyskydPWl0OAACAcZYHrDZt2mjGjBk6duyYe%2Bzw4cOaPHmyx6MaAAAAfJXllwjHjx%2BvRx99VO3atVNERITKyspUXFysBg0a6K233rK6HADwO/fM%2BdzbJVTYusz23i4BuCosD1gNGjTQBx98oE8%2B%2BUT79%2B9XcHCwGjdurA4dOigkJMTqcgAAAIyzPGBJUvXq1dW1a1dvrBoAAOCqszxg/fzzz5o1a5Z%2B%2BOEHnTp1qtz8xx9/bHVJwAX50mUWAEDV4pV7sAoKCtShQwfVqFHD6tUDAABcdZYHrLy8PH388ceKiYmxetUAAACWsPwxDbVr1%2BbMFQAA8GuWB6zBgwdr/vz5crlcVq8aAADAEpZfIvzkk0/09ddf6/3339f111%2Bv4GDPjPe3v/3N6pIAAACMsjxgRUREqGPHjlavFgAAwDKWB6zp06dbvUoAAABLWX4PliT9%2BOOPmjdvnsaNG%2Bce%2B9e//uWNUgAAAIyzPGBt27ZNvXr10vr167VmzRpJvz18dODAgTxkFAAA%2BAXLA9bs2bP1zDPPaPXq1QoKCpL02%2BcTzpgxQwsWLLC6HAAAAOMsD1jff/%2B90tLSJMkdsCTp7rvv1t69e60uBwAAwDjLA1bNmjUv%2BBmEBQUFql69utXlAAAAGGd5wGrdurWmTZumoqIi99i%2Bffs0ZswYtWvXzupyAAAAjLP8MQ3jxo3Tww8/rLZt26q0tFStW7fWyZMn1bRpU82YMcPqcgAAAIyzPGDVq1dPa9as0ZYtW7Rv3z6FhYWpcePGat%2B%2Bvcc9WQAAAL7K8oAlSdWqVVPXrl29sWoAAICrzvKAlZKS8rtnqngWFgAA8HWWB6zu3bt7BKzS0lLt27dPubm5evjhh60uBwAAwDjLA9bo0aMvOP7RRx/pn//8p8XVAAAAmOeVzyK8kK5du%2BqDDz7wdhkAAACVVmUC1q5du%2BRyuYy%2B58KFC9WhQwf98Y9/VHp6un755RdJv30eYmpqqlq3bq0ePXpo1apVHq/Lzs5Wt27d1Lp1a6WlpSkvL89oXQAAwL9ZfolwwIAB5cZOnjypvXv36q677jK2nnfeeUerVq1Sdna2YmNjNWfOHL3xxht64oknNGzYME2YMEE9e/bU9u3bNXToUDVu3FgtW7bUxo0bNW/ePL366qtq3ry5srOzNWTIEK1fv141atQwVh8AAPBflgesRo0alfspwtDQUKWmpqpv377G1rNkyRKNGTNGN954oyTp2WeflSS99tpratSokVJTUyVJSUlJSklJ0dKlS9WyZUvl5OSoT58%2BatWqlSRp0KBBys7O1qZNm9SjRw9j9QEAAP9lecCy4mnthw8f1i%2B//KJjx46pe/fuOnLkiNq2batJkyYpPz9f8fHxHsvHx8dr3bp1kqT8/Hx1797dPRccHKy4uDjl5uZWOGAVFBTIbrd7jNlsNRQbG1vJzqq2kJBgj68AcCk2m%2B8fLwL52BfIvV%2BK5QFrxYoVFV72/vvvv6J1HDp0SJL04Ycf6vXXX5fL5dLw4cP17LPP6tSpU6pbt67H8rVq1ZLD4ZAkOZ1ORUVFecxHRUW55ysiJydH8%2BfP9xjLyMjQ8OHDr6QdnxMZeY23SwDgI6Kjw71dgjGBfOwL5N4vxvKANWHCBJWVlZW7oT0oKMhjLCgo6IoD1rn3GTRokDtMPfXUU3r88ceVlJRU4ddfqf79%2ByslJcVjzGarIYejuFLvW9WFhAQrMvIaFRaeVGlpmbfLAeAD/OG4GMjHPl/o3Vsh3vKA9eqrr2rJkiUaMmSImjdvLpfLpe%2B%2B%2B06vvPKKHnzwQbVt27bS67j22mslSZGRke6x%2BvXry%2BVy6ezZs3I6nR7LOxwOxcTESJKio6PLzTudTjVt2rTC64%2BNjS13OdBuP66Skqq585lWWloWML0CqBx/OlYE8rEvkHu/GMsvms6YMUNTp07VrbfeqoiICNWsWVO33XabpkyZohdffFHVq1d3/7pS9erVU0REhHbv3u0eO3DggKpVq6bk5ORyj13Iy8tz39SekJCg/Px891xpaal27drlngcAALgUywPWTz/9VO4eJ%2Bm3s00HDhwwsg6bzabU1FS9/PLL%2Bt///V8dOXJECxYsUM%2BePdW7d28dOHBAS5cu1enTp7VlyxZt2bJF/fr1kySlpaVpxYoV2rFjh06ePKmFCxeqevXq6tSpk5HaAACA/7P8EmH9%2BvU1Y8YMPf3004qOjpYkFRYWau7cubrhhhuMrWfUqFE6c%2BaM%2Bvbtq7Nnz6pbt2569tlnFR4erkWLFmnq1KmaPHmy6tevr5kzZ%2Brmm2%2BWJHXs2FEjR45UZmamjhw5opYtW2rx4sUKCwszVhsAAPBvQS7Tj0%2B/hM8%2B%2B0yjRo1SYWGhwsPDFRwcrKKiIoWFhWnBggVq166dleVYxm4/7u0SrjqbLVjR0eFyOIr94lr8PXM%2B93YJgN9bl9ne2yVUmr8d%2By6HL/Rep05Nr6zX8jNYHTp00ObNm7VlyxYdOnRILpdLdevW1Z/%2B9CfVrOmdPwQAAACTLA9YknTNNdeoS5cuOnTokBo0aOCNEgAAAK4ay29yP3XqlMaMGaPExETdc889kn67B2vQoEEqLCy0uhwAAADjLA9YM2fO1O7du5WVlaXg4P9bfWlpqbKysqwuBwAAwDjLA9ZHH32kuXPn6u6773Z/6HNkZKSmT5%2Bu9evXW10OAACAcZYHrOLiYjVq1KjceExMjE6cOGF1OQAAAMZZHrBuuOEG/fOf/5Tk%2BZl/H374of7whz9YXQ4AAIBxlv8U4Z///Gc99dRTeuCBB1RWVqbXX39deXl5%2BuijjzRhwgSrywEAADDO8oDVv39/2Ww2vf322woJCdHLL7%2Bsxo0bKysrS3fffbfV5QAAABhnecA6evSoHnjgAT3wwANWrxoAAMASlt%2BD1aVLF1n86TwAAACWsjxgtW3bVuvWrbN6tQAAAJax/BLhddddpxdeeEGLFy/WDTfcoGrVqnnMz5o1y%2BqSAAAAjLI8YO3Zs0c33nijJMnhcFi9egAAgKvOsoA1YsQIzZ49W2%2B99ZZ7bMGCBcrIyLCqBAAAAEtYdg/Wxo0by40tXrzYqtUDAABYxrKAdaGfHOSnCQEAgD%2ByLGCd%2B2DnS40BAAD4Ossf0wAAAODvCFgAAACGWfZThGfPntWoUaMuOcZzsAAAgK%2BzLGDdeuutKigouOQYAACAr7MsYP37868AAAD8GfdgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMC4iANW3aNDVv3tz9/bZt25SamqrWrVurR48eWrVqlcfy2dnZ6tatm1q3bq20tDTl5eVZXTIAAPBhfh%2Bwdu/erZUrV7q/Lygo0LBhwzRgwABt27ZNEyZM0HPPPafc3FxJ0saNGzVv3jy99NJL2rp1qzp37qwhQ4boxIkT3moBAAD4GL8OWGVlZZo4caLS09PdY6tXr1ajRo2Umpqq0NBQJSUlKSUlRUuXLpUk5eTkqE%2BfPmrVqpXCwsI0aNAgSdKmTZu80QIAAPBBfh2w/va3vyk0NFQ9e/Z0j%2BXn5ys%2BPt5jufj4ePdlwPPng4ODFRcX5z7DBQAAcCk2bxdwtfz666%2BaN2%2Be3nrrLY9xp9OpunXreozVqlVLDofDPR8VFeUxHxUV5Z6viIKCAtntdo8xm62GYmNjL6cFnxMSEuzxFQAuxWbz/eNFIB/7Arn3S/HbgDV9%2BnT16dNHTZo00S%2B//HJZr3W5XJVad05OjubPn%2B8xlpGRoeHDh1fqfX1FZOQ13i4BgI%2BIjg73dgnGBPKxL5B7vxi/DFjbtm3Tv/71L61Zs6bcXHR0tJxOp8eYw%2BFQTEzMReedTqeaNm1a4fX3799fKSkpHmM2Ww05HMUVfg9fFBISrMjIa1RYeFKlpWXeLgeAD/CH42IgH/t8oXdvhXi/DFirVq3SkSNH1LlzZ0n/d0aqbdu2evTRR8sFr7y8PLVq1UqSlJCQoPz8fPXu3VuSVFpaql27dik1NbXC64%2BNjS13OdBuP66Skqq585lWWloWML0CqBx/OlYE8rEvkHu/GL%2B8aDp27Fh99NFHWrlypVauXKnFixdLklauXKmePXvqwIEDWrp0qU6fPq0tW7Zoy5Yt6tevnyQpLS1NK1as0I4dO3Ty5EktXLhQ1atXV6dOnbzYEQAA8CV%2BeQYrKirK40b1kpISSVK9evUkSYsWLdLUqVM1efJk1a9fXzNnztTNN98sSerYsaNGjhypzMxMHTlyRC1bttTixYsVFhZmfSMAAMAnBbkqe0c3KsRuP%2B7tEq46my1Y0dHhcjiK/eJU8T1zPvd2CYDfW5fZ3tslVJq/Hfsuhy/0XqdOTa%2Bs1y8vEQIAAHgTAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAw2zeLgCBgw9PBgAECs5gAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYn0UIAPAaX/uM0nWZ7b1dAnwEZ7AAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMP8NmAdOHBAGRkZatu2rZKSkjR27FgVFhZKknbv3q0HH3xQt956q%2B666y4tWbLE47Vr165Vz549lZiYqD59%2Buizzz7zRgsAAMBH%2BW3AGjJkiCIjI7Vx40a9//77%2BuGHH/Tiiy/q1KlTGjx4sO644w59%2Bumnmj17thYtWqT169dL%2Bi18jRkzRqNHj9YXX3yh9PR0Pfnkkzp06JCXOwIAAL7CLwNWYWGhEhISNGrUKIWHh6tevXrq3bu3vvrqK23evFlnz57V0KFDVaNGDbVo0UJ9%2B/ZVTk6OJGnp0rdtcKQAABEQSURBVKVKTk5WcnKyQkND1atXLzVr1kyrVq3yclcAAMBX2LxdwNUQGRmp6dOne4wdPHhQsbGxys/PV/PmzRUSEuKei4%2BP19KlSyVJ%2Bfn5Sk5O9nhtfHy8cnNzK7z%2BgoIC2e12jzGbrYZiY2MvtxWfEhIS7PEVAPyNzVb%2B%2BBbIx75A7v1S/DJgnS83N1dvv/22Fi5cqHXr1ikyMtJjvlatWnI6nSorK5PT6VRUVJTHfFRUlPbs2VPh9eXk5Gj%2B/PkeYxkZGRo%2BfPiVN%2BFDIiOv8XYJAHBVREeHX3QukI99gdz7xfh9wNq%2BfbuGDh2qUaNGKSkpSevWrbvgckFBQe7fu1yuSq2zf//%2BSklJ8Riz2WrI4Siu1PtWdSEhwYqMvEaFhSdVWlrm7XIAwLgLHccD%2BdjnC73/Xii%2Bmvw6YG3cuFHPPPOMnnvuOd1///2SpJiYGP30008eyzmdTtWqVUvBwcGKjo6W0%2BksNx8TE1Ph9cbGxpa7HGi3H1dJSdXc%2BUwrLS0LmF4BBJbfO7YF8rEvkHu/GL%2B9aPr1119rzJgx%2Bstf/uIOV5KUkJCg7777TiUlJe6x3NxctWrVyj2fl5fn8V7/Pg8AAHApfhmwSkpK9Oyzz2r06NHq0KGDx1xycrIiIiK0cOFCnTx5Ujt37tSyZcuUlpYmSerXr5%2B2bt2qzZs36/Tp01q2bJl%2B%2Bukn9erVyxutAAAAHxTkquwNR1XQV199pf/4j/9Q9erVy819%2BOGHKi4u1sSJE5WXl6drr71Wjz/%2BuP785z%2B7l1m/fr1mzZqlAwcOqEmTJpowYYLatGlTqZrs9uOVer0vsNmCFR0dLoej%2BIKniu%2BZ87kXqgIAc9Zlti83dqljnz/zhd7r1KnplfX6ZcCqighYBCwAvo%2BA5ckXevdWwPLLS4QAAADeRMACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIbZvF0AKueeOZ97uwQAAHAezmABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMNs3i4AAABfcc%2Bcz71dwmVZl9ne2yUELM5gAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwLqAAwcO6IknnlDbtm3VuXNnzZw5U2VlZd4uCwAA%2BAg%2BKucCnnrqKbVo0UIbNmzQkSNHNHjwYF177bV65JFHvF0aAAAV5ksf7eNvH%2BvDGazz5Obm6ttvv9Xo0aNVs2ZNNWrUSOnp6crJyfF2aQAAwEdwBus8%2Bfn5ql%2B/vqKiotxjLVq00L59%2B1RUVKSIiIhLvkdBQYHsdrvHmM1WQ7GxscbrBQDAH9hs/nXOh4B1HqfTqcjISI%2Bxc2HL4XBUKGDl5ORo/vz5HmNPPvmknnrqKXOF/n9fvXC38fe8UgUFBcrJyVH//v0DLkwGcu8S/dM//Qdq/4Hc%2B6X4V1w0xOVyVer1/fv31/vvv%2B/xq3///oaqq7rsdrvmz59f7uxdIAjk3iX6p3/6D9T%2BA7n3S%2BEM1nliYmLkdDo9xpxOp4KCghQTE1Oh94iNjSXJAwAQwDiDdZ6EhAQdPHhQR48edY/l5uaqSZMmCg8P92JlAADAVxCwzhMfH6%2BWLVtq1qxZKioq0t69e/X6668rLS3N26UBAAAfETJp0qRJ3i6iqvnTn/6kNWvW6Pnnn9cHH3yg1NRUPfbYYwoKCvJ2aVVeeHi4br/99oA82xfIvUv0T//0H6j9B3LvvyfIVdk7ugEAAOCBS4QAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGw8Ls%2B/fRTJSUlacSIEb%2B7XFlZmebPn6%2BUlBQlJiaqf//%2B%2Buqrr9zzDz30kFq0aKGWLVu6f/Xq1etql19pFe1/7Nix7s%2BxPPfrtttuc887nU5lZmYqKSlJHTp00IQJE3Tq1KmrXX6lVbT/bt26efTesmVL3Xzzzfr73/8uSUpJSVFCQoLH/JAhQ6xo4YodOHBAGRkZatu2rZKSkjR27FgVFhZecNm1a9eqZ8%2BeSkxMVJ8%2BffTZZ5%2B558rKyjR79mx16dJFbdq00WOPPaaff/7Zqjau2OX0v379evXq1UuJiYnq1q2b3nvvPffcvHnzFBcXV27/%2BPXXX61q5YpUtP/3339fN998c7n%2BvvnmG0n%2Bv/2fffbZcr3Hx8dr3Lhxki59bPRrLuAiFi9e7LrrrrtcAwYMcGVmZv7usq%2B99pqrU6dOru%2B//951%2BvRp19y5c12333676/jx4y6Xy%2BV68MEHXcuXL7eibGMup/8xY8a45s6de9H5J5980vXEE0%2B4jhw54jp06JCrf//%2Brueff950yUZdTv/n279/v6tdu3Yuu93ucrlcrs6dO7u%2B%2BOKLq1HmVXPvvfe6xo4d6yoqKnIdPHjQ1adPH9f48ePLLbdr1y5XQkKCa/Pmza5Tp065Vq5c6WrVqpXr4MGDLpfL5crOznZ17tzZtWfPHtfx48ddU6ZMcfXs2dNVVlZmdUuXpaL979y509WyZUvXP/7xD9fZs2ddmzdvdrVo0cL15Zdfulwul2vu3LmuMWPGWF1%2BpVW0/%2BXLl7sefPDBi76Pv2//8509e9bVo0cP1%2BbNm10u16WPjf6MM1i4qNDQUC1btkwNGza85LLBwcH6z//8TzVt2lTVq1fXo48%2BKqfTqe%2B//96CSq%2BOy%2Bn/9/z666/asGGDRowYoZiYGNWtW1fDhg3T8uXLdfbsWUPVmleZ/l944QU9%2Buijuvbaa69CZVdfYWGhEhISNGrUKIWHh6tevXrq3bu3x1nZc5YuXark5GQlJycrNDRUvXr1UrNmzbRq1SpJUk5OjtLT03XTTTcpIiJCI0aM0N69e7Vz506r26qwy%2Bnf6XRq8ODB6tq1q2w2m5KTk9WsWbMLLusrLqf/S/H37X%2B%2BN998U3/4wx%2BUnJxsQaVVGwELFzVw4EDVrFmzQsump6frnnvucX9/6NAhSVJsbKx7bO3aterevbsSExOVnp6u/fv3my3YsMvpX5K%2B%2BOIL3X///UpMTFRqaqry8vIkSbt371ZISIiaN2/uXrZFixY6ceKEfvzxR%2BN1m3K5/Z/zxRdfaPfu3Ro4cKDHeHZ2trp27arExEQNHz5cR44cMVWqcZGRkZo%2BfbpHQDx48KDH/nxOfn6%2B4uPjPcbi4%2BOVm5urU6dOac%2BePR7zERERatiwoXJzc69eA5V0Of137NhRGRkZ7u9LSkpkt9tVt25d99h3332nAQMGqHXr1urRo4fHJdSq6HL6Pzf3yCOPqE2bNurSpYtWrlwpSQGx/f9dYWGhXn75ZT3zzDMe4xc7Nvo7AhaMO3PmjCZMmKBevXrp%2BuuvlyTddNNNatq0qf7nf/5HH3/8sWJiYjRo0CCdOXPGy9Wa0aBBAzVs2FCLFi3Sp59%2Bqttuu02PPvqoHA6HnE6nIiIiFBQU5F4%2BKipKkuRwOLxV8lXz8ssv65FHHlH16tXdY3Fxcbrlllu0cuVKrV27Vk6nU08//bQXq7w8ubm5evvttzV06NByc06n0709z4mKipLD4dCxY8fkcrkuOu8rfq//82VlZalGjRrq3r27JKlevXpq0KCBXnzxRX3%2B%2Befq27evhgwZUqX/c3G%2B3%2Bs/JiZGjRo10jPPPKPPP/9cI0eO1Pjx47Vt27aA2/5vv/222rRpo6ZNm7rHfu/Y6O9s3i4A/qWoqEgZGRkKCQnR5MmT3eOTJk3yWG7KlClq27attm/frnbt2llcpXn//j94SXrmmWe0Zs0abdiwQWFhYXK5XF6qzFrff/%2B9duzYob/%2B9a8e4wsWLHD/Pjw8XBMnTlT37t21f/9%2B3XDDDVaXeVm2b9%2BuoUOHatSoUUpKSrrgMpfavr68/SvSv/Rbj1lZWVqzZo2ys7MVGhoqSerbt6/69u3rXi49PV0ffPCBVq1apczMzKtef2Vdqv9OnTqpU6dO7u979Oihf/zjH3r//fc1evRoSYGx/UtLS/XOO%2B9o1qxZHuO/d2z89/3CH3EGC8YcPXpUDz74oGrWrKnXXntNNWrUuOiyERERioqK0uHDhy2s0DohISG67rrrVFBQoJiYGBUVFam0tNQ973Q6JUm1a9f2VolXxYcffqg77rjjd7e9JNWvX1%2BSVFBQYEVZV2zjxo164oknNH78%2BHKXPM%2BJjo52b89znE6nYmJiVKtWLQUHB19w3he2fUX6l377SbmxY8dq48aNevfdd3XjjTf%2B7vvWr1%2B/ym97qeL9n%2B9cf4Gy/SXpyy%2B/1JkzZy75E4L/fmz0dwQsGHH69GkNHjxYLVq00Ny5cxUWFuaeKyoq0qRJkzzC1NGjR3X06FE1aNDAG%2BUa5XK5NH36dH377bfusTNnzmj//v1q0KCB4uLi5HK5POZzc3MVGRmpxo0be6Pkq%2Bbjjz9W%2B/btPcYOHDigiRMnelwO3rt3ryRV6e3/9ddfa8yYMfrLX/6i%2B%2B%2B//6LLJSQklLunJDc3V61atVJoaKiaNm2q/Px891xhYaH279%2BvW2655arVbkJF%2B5ekadOm6YcfftC7775bbpv%2B9a9/1bZt2zzG9u7dW6W3vVTx/t99912tXbvWY%2Bxcf4Gy/aXf/u7fcccdstn%2B78LYpY6N/o6AhSty%2BPBh3X333e7nuSxZskTVqlXT888/r%2BBgz90qIiJCO3fu1NSpU%2BV0OnXs2DFNnjxZzZs3V2JiojfKr7R/7z8oKEi//PKLJk%2BerMOHD6u4uFhZWVmqVq2aunbtqpiYGHXr1k1z5szR0aNHdejQIS1YsECpqakeByNfcv72l347cO7Zs8d93905tWvX1saNGzVjxgydOHFChw8f1vTp09W5c2ePG6GrkpKSEj377LMaPXq0OnToUG7%2B4Ycfdv%2Bj2q9fP23dulWbN2/W6dOntWzZMv3000/u57ylpaUpOztbe/fuVVFRkbKystzPhaqqLqf/7du3a9WqVVq8eLFq1apVblmn06nJkyfrxx9/1OnTp7VkyRLt379fvXv3vup9XKnL6f/MmTN6/vnnlZubq7Nnz2rNmjX65JNPNGDAAEn%2Bv/3P2b17d7m/%2B5c6Nvo73zy6wxLnDgAlJSWSpA0bNkiS%2B0Cyb98%2B91mJ5cuX6%2BDBg2rVqpXHewwdOlTDhg3TggULNG3aNHXr1k1nzpxRu3bttHjx4nJhrCq5nP5feOEFvfjii%2BrTp4%2BKiop0yy236M0333RfKpsyZYomTpyoLl26qFq1arr33nsv%2BfBOb7uc/qXf/iEtKSkp92iGsLAwvfrqq5oxY4Y6duwoSbrzzjvdDyKsinbs2KG9e/dq6tSpmjp1qsfchx9%2BqJ9//lnHjh2TJDVr1kxZWVmaPn26Dhw4oCZNmmjRokWqU6eOJGnAgAGy2%2B166KGHVFxcrLZt22r%2B/PmW93Q5Lqf/5cuX6/jx4%2BrcubPHcm3atNGSJUs0atQoSb/de%2BV0OtWkSRO98cYbqlevnjXNXIHL6X/gwIEqLi7W008/Lbvdruuvv14LFixQQkKCJP/f/ufY7fYLPpblUsdGfxbk8uW77wAAAKqgqnv6AAAAwEcRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABg2P8DElxwGeRi35wAAAAASUVORK5CYII%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common-8617806424233892282"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">1.72</td> | |
<td class="number">92</td> | |
<td class="number">1.6%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.79</td> | |
<td class="number">87</td> | |
<td class="number">1.5%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.78</td> | |
<td class="number">87</td> | |
<td class="number">1.5%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.06</td> | |
<td class="number">86</td> | |
<td class="number">1.5%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.04</td> | |
<td class="number">85</td> | |
<td class="number">1.5%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.02</td> | |
<td class="number">80</td> | |
<td class="number">1.4%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.95</td> | |
<td class="number">80</td> | |
<td class="number">1.4%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.74</td> | |
<td class="number">79</td> | |
<td class="number">1.4%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.92</td> | |
<td class="number">79</td> | |
<td class="number">1.4%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.01</td> | |
<td class="number">79</td> | |
<td class="number">1.4%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (148)</td> | |
<td class="number">4895</td> | |
<td class="number">85.4%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme-8617806424233892282"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">1.11</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:25%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.13</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:25%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.14</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:25%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.15</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.16</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2.68</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.71</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:20%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.77</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:20%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.78</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:20%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.82</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:20%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BbMx<2.5">BbMx<2.5<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>196</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>3.4%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>2.1515</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>1.47</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>7</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram-60269475667143980"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABHklEQVR4nO3cwQnCQBBAURVLsgh78mxPFmFP613kEwMxUd%2B7B%2BbyWTIsux9jjB3w0mHtAWDLjmsP8Ox0ub39zf16XmAScIJAEggEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAiEzV13n8MVeZbiBIEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKB8BPvYs3hLS2mcIJAEAgEgUAQCASBQPjbLdYc726%2BbL2%2Bn0AWNGeV/AnCnW4/xhhrDwFb5R8EgkAgCASCQCAIBIJAIAgEgkAgCASCQCAIBIJAIAgEgkAgCASCQCAIBIJAIAgEgkAgCASCQCAIBIJAIAgEwgPRiBeXToQ1UAAAAABJRU5ErkJggg%3D%3D"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives-60269475667143980,#minihistogram-60269475667143980" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives-60269475667143980"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles-60269475667143980" | |
aria-controls="quantiles-60269475667143980" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram-60269475667143980" aria-controls="histogram-60269475667143980" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common-60269475667143980" aria-controls="common-60269475667143980" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme-60269475667143980" aria-controls="extreme-60269475667143980" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles-60269475667143980"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>1.47</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>1.66</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>1.82</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>2.01</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>2.3</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>3.1</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>7</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>5.53</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>0.48</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.53042</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.24654</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>11.794</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>2.1515</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.35703</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>2.7509</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>12326</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.28134</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram-60269475667143980"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df1iUdb7/8RfDCCY4/FDBXTQ1fyWClqa0ZGFamZpWZiJnt6K1jhqFkhZWWrpZ2hGPecTLpN06WV4baW4p%2BSvzR7XZnu2H7ojaJuqpOBqTMiKEP4D5/tG32TOrJ3H8cI8zPR/X5YV%2BPjOf%2B32/ket6cd8fbsI8Ho9HAAAAMMYW6AIAAABCDQELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhmD3QBPxcu1/FAlxAwNluY4uOjdPRojRoaPIEuJ6jQO//QN//RO//RO/81Ze/atGlpdL3G4goWmpzNFqawsDDZbGGBLiXo0Dv/0Df/0Tv/0Tv/hWLvCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwLGgD1t69e3XPPfeob9%2B%2BSk9P1%2BTJk%2BVyuSRJ27dv1%2BjRo9WnTx8NHz5cq1ev9nnvsmXLNGTIEPXp00dZWVnatWuXd%2B7kyZN68skndd111yktLU25ubmqrKy09NwAAEBwC8qAderUKf32t79V//79tX37dpWUlOjIkSOaOXOmKioq9MADD2js2LHavn27nnjiCc2YMUNOp1OStHnzZi1atEj/9m//po8%2B%2BkjXX3%2B9JkyYoO%2B//16StGDBApWWlqq4uFgbNmyQx%2BPRY489FsjTBQAAQSYoA1Ztba3y8vI0fvx4RUREKD4%2BXjfeeKO%2B/PJLrVmzRh07dtTo0aMVGRmp9PR0DRo0SCtWrJAkFRcXa9SoUerdu7eaN2%2Bu%2B%2B67T5K0ZcsW1dXVaeXKlXrggQf0i1/8QrGxsZo8ebK2bt2qb7/9NpCnDAAAgkhQPmg0JiZGd955p/ff%2B/fv15/%2B9CcNHTpUpaWlSk5O9nl9cnKy1q1bJ0kqLS3VsGHDvHM2m009evSQ0%2BlUjx49dPz4cfXs2dM737lzZzVv3lylpaVKTExsVH0VFRXe25U/sttbKCEh4bzPNRSEh9t8PqLx6J1/6Jv/6J3/6J3/QrF3QRmwflReXq4hQ4aorq5OY8aMUW5uru6///4zglBsbKx3H5Xb7VZMTIzPfExMjCorK%2BV2uyVJDofDZ97hcJzXPqzi4mIVFhb6jOXk5Cg3N7fRa4Qih%2BOSQJcQtOidf%2Bib/%2Bid/%2Bid/0Kpd0EdsJKSkuR0OvXf//3fevLJJ/Xoo4826n0ez08/hv9c8%2BeSmZmpQYMG%2BYzZ7S1UWVlzQesGq/BwmxyOS1RVVav6%2BoZAlxNU6J1/6Jv/6J3/6J3/mrJ3cXFRRtdrrKAOWJIUFhamjh07Ki8vT2PHjlVGRob3StSPKisrFR8fL0mKi4s7Y97tdqtr167e17jdbkVF/eMTcuzYMbVq1arRNSUkJJxxO9DlOq66up/3F1x9fcPPvgf%2Bonf%2BoW/%2Bo3f%2Bo3f%2BC6XeBeXNzu3bt2vIkCFqaPjHJ8Fm%2B%2BFUevXq5fPYBUnatWuXevfuLUlKSUlRaWmpd66%2Bvl67d%2B9W79691b59e8XExPjM//3vf9epU6eUkpLSlKcEAABCSFAGrJSUFFVXV2vevHmqra3V0aNHtWjRIl111VXKyspSeXm5VqxYoZMnT2rbtm3atm2bxowZI0nKysrSW2%2B9pR07dqi2tlZLlixRRESEBg4cqPDwcI0ZM0YvvPCCDh06pMrKSv37v/%2B7brzxRrVu3TrAZw0AAIJFUN4ibNmypV566SXNnj1bV199tVq0aKGrr75azzzzjFq1aqWlS5dq9uzZmjVrlpKSkjRv3jxdfvnlkqTrrrtODz/8sCZPnqwjR44oNTVVRUVFat68uSQpNzdXNTU1uvXWW1VXV6frr79eM2fODODZ/rShz/850CU02rtTrw10CQAAWCLMc6E7utEoLtfxJlk32AJWqNxbt4rdblNcXJQqK2vo3Xmgb/6jd/6jd/5ryt61adPS6HqNFZS3CAEAAC5mBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwLCgDVjl5eXKyclRWlqa0tPTNW3aNFVVVembb75R9%2B7dlZqa6vPnD3/4g/e9a9eu1YgRI3TllVdq1KhR%2BvDDD71zDQ0NWrBggQYPHqx%2B/fpp3Lhx%2BvrrrwNxigAAIEgFbcCaMGGCHA6HNm/erFWrVunLL7/Uc8895513Op0%2Bf8aNGydJ2rNnj/Lz8zV16lR9/PHHys7O1oMPPqjDhw9LkpYvX641a9aoqKhIW7ZsUceOHZWTkyOPxxOQ8wQAAMEnKANWVVWVUlJSNGXKFEVFRalt27a6/fbb9cknn5zzvStWrFBGRoYyMjIUGRmpkSNHqlu3blq9erUkqbi4WNnZ2ercubOio6OVl5ensrIy7dy5s6lPCwAAhIigDFgOh0Nz5sxR69atvWOHDh1SQkKC99%2BPPvqoBgwYoKuvvlrz58/X6dOnJUmlpaVKTk72WS85OVlOp1MnTpzQvn37fOajo6PVoUMHOZ3OJj4rAAAQKuyBLsAEp9Op1157TUuWLFFERISuvPJK3XjjjXrmmWe0Z88ePfTQQ7Lb7Zo0aZLcbrdiYmJ83h8TE6N9%2B/bp2LFj8ng8Z52vrKxsdD0VFRVyuVw%2BY3Z7C58A%2BHMUHh6UeT6gfuwZvTs/9M1/9M5/9M5/odi7oA9Yn376qSZOnKgpU6YoPT1dkvT6669753v16qXx48dr6dKlmjRpkiSdcz/Vhe63Ki4uVmFhoc9YTk6OcnNzL2jdYOdwXBLoEoIWvfMPffMfvfMfvfNfKPUuqAPW5s2b9cgjj2jGjBm67bbb/s/XJSUl6bvvvpPH41FcXJzcbrfPvNvtVnx8vGJjY2Wz2c4636pVq0bXlZmZqUGDBvmM2e0tVFlZ0%2Bg1QlFVVa3q6xsCXUZQCQ%2B3yeG4hN6dJ/rmP3rnP3rnv6bsXVxclNH1GitoA9Znn32m/Px8LVy4UAMGDPCOb9%2B%2BXTt27NDEiRO9Y/v371dSUpLCwsKUkpKiXbt2%2BazldDo1fPhwRUZGqmvXriotLVX//v0l/bCh/quvvlKvXr0aXVtCQsIZtwNdruOqq/t5f8HV1zf87HvgL3rnH/rmP3rnP3rnv1DqXVDe7Kyrq9P06dM1depUn3AlSS1bttTixYv19ttv6/Tp03I6nfrDH/6grKwsSdKYMWP00UcfaevWrTp58qRWrlypgwcPauTIkZKkrKwsLVu2TGVlZaqurlZBQYF69Oih1NRUy88TAAAEp6C8grVjxw6VlZVp9uzZmj17ts/c%2BvXrtWDBAhUWFurJJ59Uy5Ytddddd%2Bmee%2B6RJHXr1k0FBQWaM2eOysvL1aVLFy1dulRt2rSRJI0dO1Yul0t33XWXampqlJaWdsZ%2BKgAAgJ8S5uEJmpZwuY43ybpDn/9zk6zbFN6dem3IXPq1it1uU1xclCora%2BjdeaBv/qN3/qN3/mvK3rVp09Loeo0VlLcIAQAALmYELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYUEbsMrLy5WTk6O0tDSlp6dr2rRpqqqqkiTt2bNHv/nNb9S3b1/ddNNNeumll3zeu3btWo0YMUJXXnmlRo0apQ8//NA719DQoAULFmjw4MHq16%2Bfxo0bp6%2B//trScwMAAMEtaAPWhAkT5HA4tHnzZq1atUpffvmlnnvuOZ04cULjx4/X1VdfrQ8%2B%2BEALFizQ0qVLtXHjRkk/hK/8/HxNnTpVH3/8sbKzs/Xggw/q8OHDkqTly5drzZo1Kioq0pYtW9SxY0fl5OTI4/EE8nQBAEAQCcqAVVVVpZSUFE2ZMkVRUVFq27atbr/9dn3yySfaunWrTp8%2BrYkTJ6pFixbq2bOn7rzzThUXF0uSVqxYoYyMDGVkZCgyMlIjR45Ut27dtHr1aklScXGxsrOz1blzZ0VHRysvL09lZWXauXNnIE8ZAAAEkaAMWA6HQ3PmzFHr1q29Y4cOHVJCQoJKS0vVvXt3hYeHe%2BeSk5O1a9cuSVJpaamSk5N91ktOTpbT6dSJEye0b98%2Bn/no6Gh16NBBTqezic8KAACECnugCzDB6XTqtdde05IlS7Ru3To5HA6f%2BdjYWLndbjU0NMjtdismJsZnPiYmRvv27dOxY8fk8XjOOl9ZWdnoeioqKuRyuXzG7PYWSkhIOM8zCy03FnwQ6BLOy7tTrw10CQoPt/l8ROPQN//RO//RO/%2BFYu%2BCPmB9%2BumnmjhxoqZMmaL09HStW7furK8LCwvz/v1c%2B6kudL9VcXGxCgsLfcZycnKUm5t7QevCWnFxUYEuwcvhuCTQJQQl%2BuY/euc/eue/UOpdUAeszZs365FHHtGMGTN02223SZLi4%2BN18OBBn9e53W7FxsbKZrMpLi5Obrf7jPn4%2BHjva84236pVq0bXlZmZqUGDBvmM2e0tVFlZcx5nh0C7GD5f4eE2ORyXqKqqVvX1DYEuJ2jQN//RO//RO/81Ze8C9c1y0Aaszz77TPn5%2BVq4cKEGDBjgHU9JSdEf//hH1dXVyW7/4fScTqd69%2B7tnf9xP9aPnE6nhg8frsjISHXt2lWlpaXq37%2B/pB821H/11Vfq1atXo2tLSEg443agy3VcdXV8wQWTi%2BnzVV/fcFHVEyzom//onf/onf9CqXdBebOzrq5O06dP19SpU33ClSRlZGQoOjpaS5YsUW1trXbu3KmVK1cqKytLkjRmzBh99NFH2rp1q06ePKmVK1fq4MGDGjlypCQpKytLy5YtU1lZmaqrq1VQUKAePXooNTXV8vMEAADBKSivYO3YsUNlZWWaPXu2Zs%2Be7TO3fv16vfDCC3rqqadUVFSk1q1bKy8vTwMHDpQkdevWTQUFBZozZ47Ky8vVpUsXLV26VG3atJEkjR07Vi6XS3fddZdqamqUlpZ2xn4qAACAnxLm4QmalnC5jjfJukOf/3OTrAtp3eRrAl2C7Hab4uKiVFlZEzKXza1A3/xH7/xH7/zXlL1r06al0fUaKyhvEQIAAFzMCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMMsD1qBBg1RYWKhDhw5ZfWgAAABLWB6w7rjjDq1du1Y33HCD7rvvPm3cuFF1dXVWlwEAANBkLA9YOTk5Wrt2rd544w117dpVzz77rDIyMjRv3jwdOHDA6nIAAACMC9gerJ49eyo/P19btmzR448/rjfeeEPDhg3TuHHj9Le//S1QZQEAAFywgAWs06dPa%2B3atbr//vuVn5%2BvxMREPfbYY%2BrRo4eys7O1Zs2aQJUGAABwQexWH7CsrEwrV67UW2%2B9pZqaGg0ZMkSvvPKK%2Bvbt631Nv379NHPmTI0YMcLq8gAAAC6Y5QFr%2BPDh6tSpk8aPH6/bbrtNsbGxZ7wmIyNDR48etbo0AAAAIywPWMuWLVP//v3P%2BbqdO3daUA0AAIB5lu/B6t69uyZMmKBNmzZ5x/7zP/9T999/v9xut9XlAAAAGGd5wJozZ46OHz%2BuLl26eMcGDhyohoYGzZ071%2BpyAAAAjLP8FuGHH36oNWvWKC4uzjvWsWNHFRQU6JZbbrG6HAAAAOMsv4J14sQJRUZGnlmIzaba2lqrywEAADDO8oDVr18/zZ07V8eOHfOOffvtt5o1a5bPoxoAAACCleW3CB9//HH99re/1a9%2B9StFR0eroaFBNTU1at%2B%2BvV599VWrywEAADDO8oDVvn17vfPOO3r//ff11VdfyWazqVOnThowYIDCw8OtLgcAAMA4ywOWJEVEROiGG24IxKEBAACanOUB6%2Buvv9b8%2BfP15Zdf6sSJE2fMv/fee1aXBAAAYFRA9mBVVFRowIABatGihdWHBwAAaHKWB6xdu3bpvffeU3x8vNWHBgAAsITlj2lo1aoVV64AAEBIszxgjR8/XoWFhfJ4PFYfGgAAwBKW3yJ8//339dlnn2nVqlVq166dbDbfjPf6669bXRIAAIBRlges6OhoXXfddVYfFgAAwDKWB6w5c%2BZYfUgAAABLWb4HS5L279%2BvRYsW6bHHHvOOff7554EoBQAAwDjLA9b27ds1cuRIbdy4USUlJZJ%2BePjo3XffzUNGAQBASLA8YC1YsECPPPKI1qxZo7CwMEk//H7CuXPnavHixVaXAwAAYJzlAevvf/%2B7srKyJMkbsCTp5ptvVllZmdXlAAAAGGd5wGrZsuVZfwdhRUWFIiIirC4HAADAOMsDVp8%2BffTss8%2BqurraO3bgwAHl5%2BfrV7/6ldXlAAAAGGf5Yxoee%2Bwx3XPPPUpLS1N9fb369Omj2tpade3aVXPnzrW6HAAAAOMsD1ht27ZVSUmJtm3bpgMHDqh58%2Bbq1KmTrrnmGp89WQAAAMHK8oAlSc2aNdMNN9wQiEMDAAA0OcsD1qBBg37yShXPwgIAAMHO8oA1bNgwn4BVX1%2BvAwcOyOl06p577jmvtT744APl5%2BcrLS1NCxYs8I6vWrVKjz/%2BuJo1a%2Bbz%2BuXLl6tXr15qaGjQwoULVVJSoqqqKvXq1UszZ85U%2B/btJUlut1szZ87Uf/3Xf8lmsykjI0MzZsxQ8%2BbNL%2BDMAQDAz4XlAWvq1KlnHd%2BwYYP%2B8pe/NHqdF198UStXrlSHDh3OOt%2BvXz%2B9%2BuqrZ51bvny51qxZoxdffFGJiYlasGCBcnJy9PbbbyssLEwzZszQqVOnVFJSotOnT2vSpEkqKCjQ9OnTG10fAAD4%2BQrI7yI8mxtuuEHvvPNOo18fGRn5kwHrpxQXFys7O1udO3dWdHS08vLyVFZWpp07d%2Bq7777Tpk2blJeXp/j4eCUmJuqBBx7Qm2%2B%2BqdOnT5/3sQAAwM9PQDa5n83u3bvl8Xga/fq77777J%2BcPHTqke%2B%2B9V7t27ZLD4VBubq5uvfVWnThxQvv27VNycrL3tdHR0erQoYOcTqeOHz%2Bu8PBwde/e3Tvfs2dPff/999q/f7/P%2BP%2BloqJCLpfLZ8xub6GEhIRGnx8Cz24P/Pcf4eE2n49oHPrmP3rnP3rnv1DsneUBa%2BzYsWeM1dbWqqysTDfddJORY8THx6tjx456%2BOGH1aVLF7377rt69NFHlZCQoMsuu0wej0cxMTE%2B74mJiVFlZaViY2MVHR3ts0/sx9dWVlY26vjFxcUqLCz0GcvJyVFubu4FnhmsFBcXFegSvByOSwJdQlCib/6jd/6jd/4Lpd5ZHrA6dux4xk8RRkZGavTo0brzzjuNHGPgwIEaOHCg99/Dhw/Xu%2B%2B%2Bq1WrVnn3gP3U1bLzuZJ2NpmZmRo0aJDPmN3eQpWVNRe0Lqx1MXy%2BwsNtcjguUVVVrerrGwJdTtCgb/6jd/6jd/5ryt4F6ptlywNWoJ7WnpSUpF27dik2NlY2m01ut9tn3u12q1WrVoqPj1d1dbXq6%2BsVHh7unZOkVq1aNepYCQkJZ9wOdLmOq66OL7hgcjF9vurrGy6qeoIFffMfvfMfvfNfKPXO8oD11ltvNfq1t912m1/H%2BOMf/6iYmBgNGzbMO1ZWVqb27dsrMjJSXbt2VWlpqfr37y9Jqqqq0ldffaVevXopKSlJHo9He/fuVc%2BePSVJTqdTDodDnTp18qseAADw82J5wHriiSfU0NBwxm24sLAwn7GwsDC/A9apU6f09NNPq3379rr88su1YcMGvf/%2B%2B3rjjTckSVlZWSoqKtJ1112nxMREFRQUqEePHkpNTZUkDRkyRM8//7yee%2B45nTp1SosXL9bo0aNlt180PxMAAAAuYpYnht///vd66aWXNGHCBHXv3l0ej0dffPGFXnzxRf3mN79RWlpao9b5MQzV1dVJkjZt2iTph6tNd999t2pqajRp0iS5XC61a9dOixcvVkpKiqQfNtq7XC7dddddqqmpUVpams%2Bm9N/97nd66qmnNHjwYDVr1ky33HKL8vLyTLYBAACEsDDPhe7oPk%2B33nqrioqKlJiY6DP%2B7bffaty4cSopKbGyHMu4XMebZN2hz/%2B5SdaFtG7yNYEuQXa7TXFxUaqsrAmZfQlWoG/%2Bo3f%2Bo3f%2Ba8retWnT0uh6jWX5AycOHjx4xiMSJMnhcKi8vNzqcgAAAIyzPGAlJSVp7ty5Ps%2BUqqqq0vz583XppZdaXQ4AAIBxlu/BevzxxzVlyhQVFxcrKipKNptN1dXVat68uRYvXmx1OQAAAMZZHrAGDBigrVu3atu2bTp8%2BLA8Ho8SExN17bXXqmXLwNwnBQAAMCkgzx245JJLNHjwYB0%2BfFjt27cPRAkAAABNxvI9WCdOnFB%2Bfr6uvPJKDR06VNIPe7Duu%2B8%2BVVVVWV0OAACAcZYHrHnz5mnPnj0qKCiQzfaPw9fX16ugoMDqcgAAAIyzPGBt2LBB//Ef/6Gbb77Z%2B0ufHQ6H5syZo40bN1pdDgAAgHGWB6yamhp17NjxjPH4%2BHh9//33VpcDAABgnOUB69JLL9Vf/vIXSfL53YPr16/XL3/5S6vLAQAAMM7ynyL8l3/5Fz300EO644471NDQoJdfflm7du3Shg0b9MQTT1hdDgAAgHGWB6zMzEzZ7Xa99tprCg8P1wsvvKBOnTqpoKBAN998s9XlAAAAGGd5wDp69KjuuOMO3XHHHVYfGgAAwBKW78EaPHiwz94rAACAUGN5wEpLS9O6deusPiwAAIBlLL9F%2BItf/ELPPPOMioqKdOmll6pZs2Y%2B8/Pnz7e6JAAAAKMsD1j79u3TZZddJkmqrKy0%2BvAAAABNzrKAlZeXpwULFujVV1/1ji1evFg5OTlWlQAAAGAJy/Zgbd68%2BYyxoqIiqw4PAABgGcsC1tl%2BcpCfJgQAAKHIsoD14y92PtcYAABAsLP8MQ0AAAChjoAFAABgmGU/RXj69GlNmTLlnGM8BwsAAAQ7ywJW3759VVFRcc4xAACAYGdZwPrfz78CAAAIZezBAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGBXXA%2BuCDD5Senq68vLwz5tauXasRI0boyiuv1KhRo/Thhx965xoaGrRgwQINHjxY/fr107hx4/T11197591utyZPnqz09HQNGDBATzzxhE6cOGHJOQEAgOAXtAHrxRdf1OzZs9WhQ4cz5vbs2aP8/HxNnTpVH3/8sbKzs/Xggw/q8OHDkqTly5drzZo1Kioq0pYtW9SxY0fl5OTI4/FIkmbMmKHa2lqVlJTozTffVFlZmQoKCiw9PwAAELyCNmBFRkZq5cqVZw1YK1asUEZGhjIyMhQZGamRI0eqW7duWr16tSSpuLhY2dnZ6ty5s6Kjo5WXl6eysjLt3LlT3333nTZt2qS8vDzFx8crMTFRDzzwgN58802dPn3a6tMEAABBKGgD1t13362WLVueda60tFTJyck%2BY8nJyXI6nTpx4oT27dvnMx8dHa0OHTrI6XRqz549Cg8PV/fu3b3zPXv21Pfff6/9%2B/c3zckAAICQYg90AU3B7XYrJibGZywmJkb79u3TsWPH5PF4zjpfWVmp2NhYRUdHKywszGdOkiorKxt1/IqKCrlcLp8xu72FEhIS/DkdBIjdHvjvP8LDbT4f0Tj0zX/0zn/0zn%2Bh2LuQDFiSvPup/Jk/13vPpbi4WIWFhT5jOTk5ys3NvaB1Ya24uKhAl%2BDlcFwS6BKCEn3zH73zH73zXyj1LiQDVlxcnNxut8%2BY2%2B1WfHy8YmNjZbPZzjrfqlUrxcfHq7q6WvX19QoPD/fOSVKrVq0adfzMzEwNGjTIZ8xub6HKyhp/TwkBcDF8vsLDbXI4LlFVVa3q6xsCXU7QoG/%2Bo3f%2Bo3f%2Ba8reBeqb5ZAMWCkpKdq1a5fPmNPp1PDhwxUZGamuXbuqtLRU/fv3lyRVVVXpq6%2B%2BUq9evZSUlCSPx6O9e/eqZ8%2Be3vc6HA516tSpUcdPSEg443agy3VcdXV8wQWTi%2BnzVV/fcFHVEyzom//onf/onf9CqXehc7PzfxkzZow%2B%2Bugjbd26VSdPntTKlSt18OBBjRw5UpKUlZWlZcuWqaysTNXV1SooKFCPHj2Umpqq%2BPh4DRkyRM8//7yOHj2qw4cPa/HixRo9erTs9pDMowAAwLCgTQypqamSpLq6OknSpk2bJP1wtalbt24qKCjQnDlzVF5eri5dumjp0qVq06aNJOeyP1AAAA2sSURBVGns2LFyuVy66667VFNTo7S0NJ89U7/73e/01FNPafDgwWrWrJluueWWsz7MFAAA4GzCPBe6oxuN4nIdb5J1hz7/5yZZF9K6ydcEugTZ7TbFxUWpsrImZC6bW4G%2B%2BY/e%2BY/e%2Ba8pe9emzdkf6dTUQvIWIQAAQCARsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhoVswOrevbtSUlKUmprq/fP0009LkrZv367Ro0erT58%2BGj58uFavXu3z3mXLlmnIkCHq06ePsrKytGvXrkCcAgAACFL2QBfQlNavX6927dr5jFVUVOiBBx7QE088oREjRujTTz/VxIkT1alTJ6Wmpmrz5s1atGiRfv/736t79%2B5atmyZJkyYoI0bN6pFixYBOhMAABBMQvYK1v9lzZo16tixo0aPHq3IyEilp6dr0KBBWrFihSSpuLhYo0aNUu/evdW8eXPdd999kqQtW7YEsmwAABBEQvoK1vz58/X555%2BrurpaQ4cO1bRp01RaWqrk5GSf1yUnJ2vdunWSpNLSUg0bNsw7Z7PZ1KNHDzmdTg0fPrxRx62oqJDL5fIZs9tbKCEh4QLPCFay2wP//Ud4uM3nIxqHvvmP3vmP3vkvFHsXsgHriiuuUHp6up577jl9/fXXmjx5smbNmiW3263ExESf18bGxqqyslKS5Ha7FRMT4zMfExPjnW%2BM4uJiFRYW%2Bozl5OQoNzfXz7NBINxY8EGgSzgvnzxzc6BLuOg4HJcEuoSgRe/8R%2B/8F0q9C9mAVVxc7P17586dNXXqVE2cOFF9%2B/Y953s9Hs8FHTszM1ODBg3yGbPbW6iysuaC1gV%2BCv%2B//iE83CaH4xJVVdWqvr4h0OUEFXrnP3rnv6bsXVxclNH1GitkA9Y/a9eunerr62Wz2eR2u33mKisrFR8fL0mKi4s7Y97tdqtr166NPlZCQsIZtwNdruOqq%2BMLDk2H/19nqq9voC9%2Bonf%2Bo3f%2BC6Xehc7Nzv9l9%2B7dmjt3rs9YWVmZIiIilJGRccZjF3bt2qXevXtLklJSUlRaWuqdq6%2Bv1%2B7du73zAAAA5xKSAatVq1YqLi5WUVGRTp06pQMHDmjhwoXKzMzUrbfeqvLycq1YsUInT57Utm3btG3bNo0ZM0aSlJWVpbfeeks7duxQbW2tlixZooiICA0cODCwJwUAAIJGSN4iTExMVFFRkebPn%2B8NSLfffrvy8vIUGRmppUuXavbs2Zo1a5aSkpI0b948XX755ZKk6667Tg8//LAmT56sI0eOKDU1VUVFRWrevHmAzwoAAASLMM%2BF7uhGo7hcx5tk3aHP/7lJ1kXwWTf5mkCXcNGw222Ki4tSZWVNyOznsAq98x%2B9819T9q5Nm5ZG12uskLxFCAAAEEgELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGCYPdAFADBj6PN/DnQJjbZu8jWBLgEAmhRXsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhPKYBgOWC6ZESEo%2BVAHD%2BuIIFAABgGAELAADAMG4RnkV5eblmzZqlnTt3qkWLFho2bJimTJkim408CvwccUsTwPkiYJ3FQw89pJ49e2rTpk06cuSIxo8fr9atW%2Bvee%2B8NdGkAACAIELD%2BidPp1N69e/Xyyy%2BrZcuWatmypbKzs/XKK68QsAAEhWC64sbVNoQqAtY/KS0tVVJSkmJiYrxjPXv21IEDB1RdXa3o6OhzrlFRUSGXy%2BUzZre3UEJCgvF6ASCYBVMYlKR3p177f86Fh9t8PqLxQrF3BKx/4na75XA4fMZ%2BDFuVlZWNCljFxcUqLCz0GXvwwQf10EMPmSv0//vkmZuNr2laRUWFiouLlZmZScg8T/TOP/TNf/TOfxUVFXrlld/TOz%2BEYu9CJyoa5PF4Luj9mZmZWrVqlc%2BfzMxMQ9UFH5fLpcLCwjOu6uHc6J1/6Jv/6J3/6J3/QrF3XMH6J/Hx8XK73T5jbrdbYWFhio%2BPb9QaCQkJIZPAAQDA%2BeMK1j9JSUnRoUOHdPToUe%2BY0%2BlUly5dFBUVFcDKAABAsCBg/ZPk5GSlpqZq/vz5qq6uVllZmV5%2B%2BWVlZWUFujQAABAkwmfOnDkz0EVcbK699lqVlJTo6aef1jvvvKPRo0dr3LhxCgsLC3RpQSsqKkr9%2B/fnKqAf6J1/6Jv/6J3/6J3/Qq13YZ4L3dENAAAAH9wiBAAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgIUmU15erpycHKWlpSk9PV3Tpk1TVVVVoMsKCnv37tU999yjvn37Kj09XZMnT5bL5Qp0WUHn2WefVffu3QNdRtDo3r27UlJSlJqa6v3z9NNPB7qsoLFkyRINGDBAV1xxhbKzs/XNN98EuqSL3l//%2Blef/2%2BpqalKSUkJia9bflUOmsyIESOUkpKi6dOn6/jx48rJydHll1%2BuZ555JtClXdROnTqlgQMH6te//rXuv/9%2BVVdXa9KkSXI4HFq8eHGgywsae/bsUXZ2ttxut7744otAlxMUunfvrvfee0/t2rULdClBZ/ny5Xrttde0ePFiJSQk6Pnnn5ckTZ8%2BPcCVBZ8XXnhBe/fu9fYwWHEFC02iqqpKKSkpmjJliqKiotS2bVvdfvvt%2BuSTTwJd2kWvtrZWeXl5Gj9%2BvCIiIhQfH68bb7xRX375ZaBLCxoNDQ166qmnlJ2dHehS8DPx0ksvKS8vT5dddpmio6M1ffp0wpUf/ud//kcvv/yyHn300UCXcsEIWGgSDodDc%2BbMUevWrb1jhw4dUkJCQgCrCg4xMTG68847ZbfbJUn79%2B/Xn/70Jw0dOjTAlQWP119/XZGRkRoxYkSgSwk68%2BfP18CBA3XVVVdpxowZqqmpCXRJF71vv/1W33zzjY4dO6Zhw4YpLS1Nubm5Onr0aKBLCzoLFy7UHXfcoV/%2B8peBLuWCEbBgCafTqddee00TJ04MdClBo7y8XCkpKRo2bJhSU1OVm5sb6JKCwnfffadFixbpqaeeCnQpQeeKK65Qenq6Nm7cqOLiYu3YsUOzZs0KdFkXvcOHD0uS1q9fr5dffllvv/22Dh8%2BzBWs8/TNN99o48aNuvfeewNdihEELDS5Tz/9VOPGjdOUKVOUnp4e6HKCRlJSkpxOp9avX6%2BDBw%2BGxCVzK8yZM0ejRo1Sly5dAl1K0CkuLtadd96piIgIde7cWVOnTlVJSYlOnToV6NIuaj9uZb7vvvuUmJiotm3b6qGHHtLmzZt18uTJAFcXPJYvX66bbrpJbdq0CXQpRhCw0KQ2b96sf/3Xf9Xjjz%2Buu%2B%2B%2BO9DlBJ2wsDB17NhReXl5Kikp4ZbDOWzfvl2ff/65cnJyAl1KSGjXrp3q6%2Bt15MiRQJdyUftxK4TD4fCOJSUlyePx0LvzsGHDBg0aNCjQZRhDwEKT%2Beyzz5Sfn6%2BFCxfqtttuC3Q5QWP79u0aMmSIGhoavGM22w9fqs2aNQtUWUFh9erVOnLkiK6//nqlpaVp1KhRkqS0tDS98847Aa7u4rZ7927NnTvXZ6ysrEwRERHsnTyHtm3bKjo6Wnv27PGOlZeXq1mzZvSukfbs2aPy8nJdc801gS7FGHugC0Boqqur0/Tp0zV16lQNGDAg0OUElZSUFFVXV2vevHnKzc1VbW2tFi1apKuuukotW7YMdHkXtWnTpmnSpEnefx8%2BfFiZmZl6%2B%2B23FRMTE8DKLn6tWrVScXGx4uPjlZ2drfLyci1cuFCZmZkKDw8PdHkXNbvdrtGjR%2BuFF15Qv379FB0drcWLF2vEiBHeH1bBT9u9e7diY2MVHR0d6FKM4TlYaBKffPKJfv3rXysiIuKMufXr1yspKSkAVQWPL774QrNnz9bf/vY3tWjRQldffbWmTZumxMTEQJcWVL755hsNHjyY52A10l//%2BlfNnz9fX3zxhSIiInT77bcrLy9PkZGRgS7tonfq1CnNmTNH77zzjk6fPq0hQ4ZoxowZioqKCnRpQWHp0qVas2aNSkpKAl2KMQQsAAAAw9iDBQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACG/T%2BiDVPRoCJ8FwAAAABJRU5ErkJggg%3D%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common-60269475667143980"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">1.8</td> | |
<td class="number">160</td> | |
<td class="number">2.8%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.85</td> | |
<td class="number">152</td> | |
<td class="number">2.7%</td> | |
<td> | |
<div class="bar" style="width:4%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.75</td> | |
<td class="number">123</td> | |
<td class="number">2.1%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.1</td> | |
<td class="number">116</td> | |
<td class="number">2.0%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.0</td> | |
<td class="number">112</td> | |
<td class="number">2.0%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.9</td> | |
<td class="number">109</td> | |
<td class="number">1.9%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.83</td> | |
<td class="number">103</td> | |
<td class="number">1.8%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.92</td> | |
<td class="number">102</td> | |
<td class="number">1.8%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.7</td> | |
<td class="number">97</td> | |
<td class="number">1.7%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2.2</td> | |
<td class="number">97</td> | |
<td class="number">1.7%</td> | |
<td> | |
<div class="bar" style="width:3%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (186)</td> | |
<td class="number">4558</td> | |
<td class="number">79.6%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme-60269475667143980"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">1.47</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:15%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.5</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:57%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.51</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:43%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.52</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:43%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1.53</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">5.6</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">5.75</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">5.8</td> | |
<td class="number">1</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:25%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">6.0</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">7.0</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:50%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow ignore"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_BbAv<2.5"><s>BbAv<2.5</s><br/> | |
<small>Highly correlated</small> | |
</p> | |
</div><div class="col-md-3"> | |
<p><em>This variable is highly correlated with <a href="#pp_var_BbMx<2.5"><code>BbMx<2.5</code></a> and should be ignored for analysis</em></p> | |
</div> | |
<div class="col-md-6"> | |
<table class="stats "> | |
<tr> | |
<th>Correlation</th> | |
<td>0.99649</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_Year">Year<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>4</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>0.1%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>2014.5</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>2013</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>2016</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Zeros (%)</th> | |
<td>0.0%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram2380535745622305021"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABDUlEQVR4nO3WsakCQRhG0VUsySLsydieXhH29BsLctHAt%2BtyTjzBx8Bl5jAzswAvHdceAFt2WnvALzlf/z46f79dvrTk2V52Lcv/bXvX5gLZw6WyH75YEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQDjMza4%2BArfKCQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQHgAf0cUkbBU5rkAAAAASUVORK5CYII%3D"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives2380535745622305021,#minihistogram2380535745622305021" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives2380535745622305021"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles2380535745622305021" | |
aria-controls="quantiles2380535745622305021" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram2380535745622305021" aria-controls="histogram2380535745622305021" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common2380535745622305021" aria-controls="common2380535745622305021" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme2380535745622305021" aria-controls="extreme2380535745622305021" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles2380535745622305021"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>2013</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>2013</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>2014</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>2015</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>2016</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>2016</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>2016</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>3</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>2</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>1.1157</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.00055382</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>-1.3544</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>2014.5</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.99724</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>-0.0097953</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>11541123</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>1.2447</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram2380535745622305021"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXjU1b3H8U8WCEvIBgYsUqGySBL2JZoiS7CgbAJGWarIvaAs0ZTNC4JcUCmggGiBi8RbtCjVyFJZhOJFIGJBb90nAamiPCoFEsmMgZAASX73Dx/mdkwgIZz5TWbyfj0Pz23O%2Bc2cc775pv3cmV8mQZZlWQIAAIAxwb7eAAAAQKAhYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAw0J9vYGaIjf3jPHnDA4OUkxMfeXlFai01DL%2B/IGAGl0Z9akYNaoYNboy6lMxb9bouusaGH2%2ByuIVLD8WHBykoKAgBQcH%2BXor1RY1ujLqUzFqVDFqdGXUp2KBWCMCFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYFurrDQAAAO%2B487m/%2BXoLlfbh7%2B/w9RaMImABAcKf/ot055Rf%2B3oLAY1eAHyPtwgBAAAMI2ABAAAYRsACAAAwzK8D1v79%2B5WUlKSpU6de9pqCggL17t1bs2bNco%2BVlpZq%2BfLl6tu3r7p166Zx48bpu%2B%2B%2Bc8%2B7XC5NmTJFSUlJ6tGjh%2BbMmaOioiKvngUAAAQOvw1YL774ohYsWKAbb7zxitetWLFCZ8%2Be9Rhbv369tm3bpvT0dO3du1fNmzdXamqqLMuSJM2dO1eFhYXavn27Nm3apKNHj2rp0qVeOwsAAAgsfhuwwsLCtHHjxisGrC%2B%2B%2BELbt2/XsGHDPMYzMjI0duxY3XTTTQoPD9fUqVN19OhRffbZZ/rhhx%2B0e/duTZ06VTExMWrcuLEmT56sTZs26eLFi94%2BFgAACAB%2B%2BzENY8aMueK8ZVmaP3%2B%2Bpk6dqn/%2B8586c%2BaMJKmoqEhfffWV4uLi3NeGh4frxhtvlMPh0JkzZxQSEqI2bdq45%2BPj43Xu3Dl9/fXXHuOXk5OTo9zcXI%2Bx0NB6io2NvZojVigkJFhd5/zV6HN60//MuM32NUNCgj3%2BL6qH0FD/%2BX7QQ97lT71QVfRQ5QVSjfw2YFUkIyNDQUFBGj58uFauXOke//HHH2VZliIjIz2uj4yMlNPpVFRUlMLDwxUUFOQxJ0lOp7PSa//rmpKUmpqqtLS0qh4nIERH1/fZ2hERdX22NsryZS9UFT3kHf7YC1VFD1UskGoUkAHr9OnTev755/Xyyy97BKV/del%2Bq6udq4wRI0YoOTnZYyw0tJ6czoJret6f87ekb/r8lRESEqyIiLrKzy9USUmp7eujfL7ohaqih7zLn3qhquihyvNGjXwV4gMyYC1evFhDhw4t9%2B28qKgoBQcHy%2BVyeYy7XC41bNhQMTExOnv2rEpKShQSEuKek6SGDRtWav3Y2Ngybwfm5p5RcXHN/sHy5flLSkprfP2rE3/8XtBD3lGTakoPVSyQahSQAWvr1q2KiIjQ5s2bJf1031Vpaan27t2rDz74QK1atVJ2dra6d%2B8uScrPz9e3336r9u3bq2nTprIsS1988YXi4%2BMlSQ6HQxEREWrRooXPzgQAAPxHQAaszMxMj69feuklnTx5Uo899pgkadSoUUpPT1fPnj3VuHFjLV26VG3btlW7du0kSf3799dzzz2np59%2BWhcuXNCqVauUkpKi0NCALBcAADDMbxPDpTBUXFwsSdq9e7ekn15tatKkice14eHhqlu3rnt85MiRys3N1f3336%2BCggIlJiZ63JT%2B5JNPat68eerbt69q1aqlQYMGXfHDTAEAAP6V3wYsh8NR6WsfeeQRj6%2BDgoKUlpZ22d/qa9CggZ599tlr2h8AAKi5/OvX0AAAAPwAAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAY5rcBa//%2B/UpKStLUqVPLzL399tsaMmSIOnXqpP79%2B%2BuNN97wmF%2B3bp369%2B%2Bvzp07a9SoUcrKynLPnT9/Xv/5n/%2Bpnj17KjExUWlpaXI6nV4/DwAACBx%2BGbBefPFFLViwQDfeeGOZuc8//1wzZsxQWlqa/v73v2v27Nl68skn9eGHH0qS9uzZoxUrVuiZZ57RgQMH1KdPH02cOFHnzp2TJC1fvlzZ2dnKyMjQrl27ZFmWHnvsMVvPBwAA/JtfBqywsDBt3Lix3IDlcrk0YcIE3X777QoNDVWvXr3UunVrd8DKyMjQ8OHD1aFDB9WpU0fjx4%2BXJO3du1fFxcXauHGjJk%2BerOuvv15RUVGaMmWK9u3bp1OnTtl6RgAA4L9Cfb2BqhgzZsxl53r27KmePXu6vy4uLlZubq4aN24sScrOztaAAQPc88HBwWrbtq0cDofatm2rM2fOKD4%2B3j1/0003qU6dOsrOznY/R0VycnKUm5vrMRYaWk%2BxsbGVenxlhYT4Vz4ODbV/v5dq5G%2B1CnS%2B6IWqooe8y596oaroocoLpBr5ZcC6GkuXLlW9evXcocrlcikyMtLjmsjISDmdTrlcLklSRESEx3xERMRV3YeVkZGhlStXeoylpqYqLS2tKkcIGNHR9X22dkREXZ%2BtjbJ82QtVRQ95hz/2QlXRQxULpBoFbMCyLEtLly7V9u3btW7dOoWFhXnMVfTYazFixAglJyd7jIWG1pPTWXBNz/tz/pb0TZ%2B/MkJCghURUVf5%2BYUqKSm1fX2Uzxe9UFX0kHf5Uy9UFT1Ued6oka9CfEAGrNLSUj322GP6/PPP9dprr6lZs2buuejoaPcrVZe4XC61atVKMTEx7q/r1///b8iPP/6ohg0bVnr92NjYMm8H5uaeUXFxzf7B8uX5S0pKa3z9qxN//F7QQ95Rk2pKD1UskGrkXy%2BBVNLChQv15ZdflglXkpSQkKDs7Gz31yUlJTp06JA6dOigZs2aKTIy0mP%2BH//4hy5cuKCEhATb9g8AAPxbwAWsjz76SFu3blV6erqioqLKzI8aNUpvvvmmPv30UxUWFmr16tWqXbu2evfurZCQEN1777164YUXdOLECTmdTj377LP6zW9%2Bo0aNGvngNAAAwB/55VuE7dq1k/TTbwhK0u7duyVJDodDmzZt0pkzZ9SnTx%2BPx3Tr1k1r165Vz549NW3aNE2ZMkWnT59Wu3btlJ6erjp16kiS0tLSVFBQoLvuukvFxcXq06eP5s%2Bfb9/hAACA3/PLgOVwOC47t3DhQi1cuPCKjx89erRGjx5d7lzt2rU1b948zZs375r2CAAAaq6Ae4sQAADA1whYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDC/Dlj79%2B9XUlKSpk6dWmZux44dGjx4sDp16qThw4frvffec8%2BVlpZq%2BfLl6tu3r7p166Zx48bpu%2B%2B%2Bc8%2B7XC5NmTJFSUlJ6tGjh%2BbMmaOioiJbzgQAAPyf3wasF198UQsWLNCNN95YZu7w4cOaOXOmZsyYoffff19jx47Vww8/rJMnT0qS1q9fr23btik9PV179%2B5V8%2BbNlZqaKsuyJElz585VYWGhtm/frk2bNuno0aNaunSprecDAAD%2By28DVlhYmDZu3FhuwNqwYYN69eqlXr16KSwsTEOGDFHr1q21detWSVJGRobGjh2rm266SeHh4Zo6daqOHj2qzz77TD/88IN2796tqVOnKiYmRo0bN9bkyZO1adMmXbx40e5jAgAAP%2BS3AWvMmDFq0KBBuXPZ2dmKi4vzGIuLi5PD4VBRUZG%2B%2Buorj/nw8HDdeOONcjgcOnz4sEJCQtSmTRv3fHx8vM6dO6evv/7aO4cBAAABJdTXG/AGl8ulyMhIj7HIyEh99dVX%2BvHHH2VZVrnzTqdTUVFRCg8PV1BQkMecJDmdzkqtn5OTo9zcXI%2Bx0NB6io2NrcpxLiskxL/ycWio/fu9VCN/q1Wg80UvVBU95F3%2B1AtVRQ9VXiDVKCADliT3/VRVma/osRXJyMjQypUrPcZSU1OVlpZ2Tc/r76Kj6/ts7YiIuj5bG2X5sheqih7yDn/shaqihyoWSDUKyIAVHR0tl8vlMeZyuRQTE6OoqCgFBweXO9%2BwYUPFxMTo7NmzKikpUUhIiHtOkho2bFip9UeMGKHk5GSPsdDQenI6C6p6pHL5W9I3ff7KCAkJVkREXeXnF6qkpNT29VE%2BX/RCVdFD3uVPvVBV9FDleaNGvgrxARmwEhISlJWV5THmcDg0cOBAhYWFqVWrVsrOzlb37t0lSfn5%2Bfr222/Vvn17NW3aVJZl6YsvvlB8fLz7sREREWrRokWl1o%2BNjS3zdmBu7hkVF9fsHyxfnr%2BkpLTG17868cfvBT3kHTWppvRQxQKpRv71Ekgl3XvvvTpw4ID27dun8%2BfPa%2BPGjTp27JiGDBkiSRo1apTWrVuno0eP6uzZs1q6dKnatm2rdu3aKSYmRv3799dzzz2nvLw8nTx5UqtWrVJKSopCQwMyjwIAAMP8NjG0a9dOklRcXCxJ2r17t6SfXm1q3bq1li5dqkWLFun48eNq2bKl1qxZo%2Buuu06SNHLkSOXm5ur%2B%2B%2B9XQUGBEhMTPe6ZevLJJzVv3jz17dtXtWrV0qBBg8r9MFMAAIDy%2BG3AcjgcV5zv16%2Bf%2BvXrV%2B5cUFCQ0tLSLnvTeYMGDfTss89e8x4BAEDNFJBvEQIAAPgSAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAw2wPWMnJyVq5cqVOnDhh99IAAAC2sD1g3X333dqxY4duv/12jR8/Xm%2B//baKi4vt3gYAAIDX2B6wUlNTtWPHDr3xxhtq1aqVFi5cqF69emnJkiX65ptv7N4OAACAcT67Bys%2BPl4zZ87U3r17NXv2bL3xxhsaMGCAxo0bp88//9xX2wIAALhmPgtYFy9e1I4dO/Tggw9q5syZaty4sR577DG1bdtWY8eO1bZt23y1NQAAgGsSaveCR48e1caNG/Xmm2%2BqoKBA/fv315/%2B9Cd16dLFfU23bt00f/58DR482O7tAQAAXDPbA9bAgQPVokULTZgwQUOHDlVUVFSZa3r16qW8vDy7twYAAGCE7QFr3bp16t69e4XXffbZZzbsBgAAwDzb78Fq06aNJk6cqN27d7vHXn75ZT344INyuVx2bwcAAMA42wPWokWLdObMGbVs2dI91rt3b5WWlmrx4sV2bwcAAMA4298ifO%2B997Rt2zZFR0e7x5o3b66lS5dq0KBBdm8HAADAONtfwSoqKlJYWFjZjQQHq7Cw0O7tAAAAGGd7wOrWrZsWL16sH3/80T126tQpPfHEEx4f1QAAAOCvbH%2BLcPbs2fr3f/933XrrrQoPD1dpaakKCgrUrFkzvfLKK3ZvBwAAwDjbA1azZs301ltv6d1339W3336r4OBgtWjRQj169FBISIjd2wEAADDO9oAlSbVr19btt9/ui6UBAAC8zvaA9d1332nZsmX68ssvVVRUVGb%2BnXfesXtLAAAARvnkHqycnBz16NFD9erVs3t5AAAAr7M9YGVlZemdd95RTEyM3UsDAADYwvaPaWjYsKEtr1wdOnRIY8aMUdeuXfXrX/9aM2bMcP8B6YMHDyolJUWdO3fWwIEDtXXrVo/Hrlu3Tv3791fnzp01atQoZWVleX2/AAAgcNgesCZMmKCVK1fKsiyvrVFcXKyHHnpIHTt21IEDB7R9%2B3bl5eVp/vz5ysnJ0eTJkzVy5EgdPHhQc%2BbM0dy5c%2BVwOCRJe/bs0YoVK/TMM8/owIED6tOnjyZOnKhz5855bb8AACCw2P4W4bvvvquPP/5Ymzdv1g033KDgYM%2BM9/rrr1/zGrm5ucrNzdVdd92l2rVrq3bt2vrNb36jtWvXatu2bWrevLlSUlIkSUlJSUpOTtaGDRvUrl07ZWRkaPjw4erQoYMkafz48Vq3bp327t2rgQMHXvPeAABA4LM9YIWHh6tnz55eXaNx48Zq27atMjIy9Lvf/U5FRUV6%2B%2B231bt3b2VnZysuLs7j%2Bri4OO3cuVOSlJ2drQEDBrjngoOD1bZtWzkcDgIWAACoFNsD1qJFi7y%2BRnBwsFasWKGxY8fqT3/6kySpe/fumj59uiZPnqzGjRt7XB8VFSWn0ylJcrlcioyM9JiPjIx0z1dGTk6OcnNzPcZCQ%2BspNja2Kse5rJAQ29/hvSahofbv91KN/K1Wgc4XvVBV9JB3%2BVMvVBU9VHmBVCOffNDo119/rbfeekv//Oc/3YHrk08%2BUadOnYw8/4ULFzRx4kTdcccd7vunnnjiCc2YMaNSj7/W%2B8MyMjK0cuVKj7HU1FSlpaVd0/P6u%2Bjo%2Bj5bOyKirs/WRlm%2B7IWqooe8wx97oarooYoFUo1sD1gHDx7Ugw8%2BqBYtWujYsWNatGiRvvvuO40ZM0bPPfec%2Bvbta2SN77//XtOmTVNISIgaNGigtLQ03XXXXbrtttvkcrk8rnc6ne6PjYiOji4z73K51KpVq0qvP2LECCUnJ3uMhYbWk9NZUMUTlc/fkr7p81dGSEiwIiLqKj%2B/UCUlpbavj/L5oheqih7yLn/qhaqihyrPGzXyVYi3PWAtX75cjz76qB544AG1b99e0k9/n3Dx4sVatWqVkYBVUlKi0tJSj1eiLly4IOmnm9r/8pe/eFyflZXlvqk9ISFB2dnZGjZsmPu5Dh065L4pvjJiY2PLvB2Ym3tGxcU1%2BwfLl%2BcvKSmt8fWvTvzxe0EPeUdNqik9VLFAqpHtL4H84x//0KhRoyRJQUFB7vE77rhDR48eNbJGp06dVK9ePa1YsUKFhYVyOp1avXq1unXrprvuukvHjx/Xhg0bdP78eWVmZiozM1P33nuvJGnUqFF688039emnn6qwsFCrV69W7dq11bt3byN7AwAAgc/2gNWgQYNy/wZhTk6OateubWSN6Oho/fGPf9THH3%2Bsnj17atCgQapTp46WLVumhg0bas2aNXr11VfVpUsXLVy4UEuWLNHNN98sSerZs6emTZumKVOmqHv37jpw4IDS09NVp04dI3sDAACBz/a3CDt37qyFCxfq8ccfd4998803mjdvnm699VZj6yQkJOiVV14pd65bt27asmXLZR87evRojR492theAABAzWJ7wHrsscf0wAMPKDExUSUlJercubMKCwvVqlUrLV682O7tAAAAGGd7wGrSpIm2b9%2BuzMxMffPNN6pTp45atGihX//61x73ZAEAAPgrn3wOVq1atXT77bf7YmkAAACvsz1gJScnX/GVqnfeecfG3QAAAJhne8AaMGCAR8AqKSnRN998I4fDoQceeMDu7QAAABhne8C63J%2Br2bVrlz744AObdwMAAGBetflbK7fffrveeustX28DAADgmlWbgHXo0KFr/iPLAAAA1YHtbxGOHDmyzFhhYaGOHj2qfv362b0dAAAA42wPWM2bNy/zW4RhYWFKSUnRPffcY/d2AAAAjLM9YPFp7QAAINDZHrDefPPNSl87dOhQL%2B4EAADAO2wPWHPmzFFpaWmZG9qDgoI8xoKCgghYAADAL9kesP77v/9ba9eu1cSJE9WmTRtZlqUjR47oxRdf1H333afExES7twQAAGCUT%2B7BSk9PV%2BPGjd1jXbt2VbNmzTRu3Dht377d7i0BAAAYZfvnYB07dkyRkZFlxiMiInT8%2BHG7twMAAGCc7QGradOmWrx4sZxOp3ssPz9fy5Yt0y9/%2BUu7twMAAGCc7W8Rzp49W9OnT1dGRobq16%2Bv4OBgnT17VnXq1NGqVavs3g4AAIBxtgesHj16aN%2B%2BfcrMzNTJkydlWZYaN26s2267TQ0aNLB7OwAAAMbZHrAkqW7duurbt69OnjypZs2a%2BWILAAAAXmP7PVhFRUWaOXOmOnXqpDvvvFPST/dgjR8/Xvn5%2BXZvBwAAwDjbA9aSJUt0%2BPBhLV26VMHB/798SUmJli5davd2AAAAjLM9YO3atUt/%2BMMfdMcdd7j/6HNERIQWLVqkt99%2B2%2B7tAAAAGGd7wCooKFDz5s3LjMfExOjcuXN2bwcAAMA42wPWL3/5S33wwQeS5PG3B//617/qF7/4hd3bAQAAMM723yIcPXq0HnnkEd19990qLS3VSy%2B9pKysLO3atUtz5syxezsAAADG2R6wRowYodDQUL366qsKCQnRCy%2B8oBYtWmjp0qW644477N4OAACAcbYHrLy8PN199926%2B%2B677V4aAADAFrbfg9W3b1%2BPe68AAAACje0BKzExUTt37rR7WQAAANvY/hbh9ddfr9///vdKT0/XL3/5S9WqVctjftmyZXZvCQAAwCjbA9ZXX32lX/3qV5Ikp9Np9/IAAABeZ1vAmjp1qpYvX65XXnnFPbZq1SqlpqZ6bc3Vq1dr/fr1Onv2rDp27KgFCxbohhtu0MGDB7Vs2TJ9/fXXuv766zVhwgQNGTLE/bh169Zp/fr1ys3NVZs2bTRnzhwlJCR4bZ8AACCw2HYP1p49e8qMpaene2299evXa%2BvWrVq3bp3ee%2B89tWzZUi%2B//LJycnI0efJkjRw5UgcPHtScOXM0d%2B5cORwO9z5XrFihZ555RgcOHFCfPn00ceJEPmUeAABUmm0Bq7zfHPTmbxOuXbtWU6dO1a9%2B9SuFh4fr8ccf1%2BOPP65t27apefPmSklJUVhYmJKSkpScnKwNGzZIkjIyMjR8%2BHB16NBBderU0fjx4yVJe/fu9dpeAQBAYLHtLcJLf9i5ojETTp06pe%2B//14//vijBgwYoNOnTysxMVHz589Xdna24uLiPK6Pi4tz/2Zjdna2BgwY4J4LDg5W27Zt5XA4NHDgwEqtn5OTo9zcXI%2Bx0NB6io2NvcaTeQoJsf2XQK9JaKj9%2B71UI3%2BrVaDzRS9UFT3kXf7UC1VFD1VeINXI9pvc7XDy5ElJP/19w5deekmWZSktLU2PP/64ioqK1LhxY4/ro6Ki3Dfcu1wuRUZGesxHRkZe1Q35GRkZWrlypcdYamqq0tLSqnKcgBEdXd9na0dE1PXZ2ijLl71QVfSQd/hjL1QVPVSxQKpRQAasS289jh8/3h2mHnnkET344INKSkqq9OOrasSIEUpOTvYYCw2tJ6ez4Jqe9%2Bf8LembPn9lhIQEKyKirvLzC1VSUmr7%2BiifL3qhqugh7/KnXqgqeqjyvFEjX4V42wLWxYsXNX369ArHTHwOVqNGjSRJERER7rGmTZvKsixdvHhRLpfL43qn06mYmBhJUnR0dJl5l8ulVq1aVXr92NjYMm8H5uaeUXFxzf7B8uX5S0pKa3z9qxN//F7QQ95Rk2pKD1UskGpk20sgXbp0UU5Ojse/8sZMaNKkicLDw3X48GH32PHjx1WrVi316tVLWVlZHtdnZWWpQ4cOkqSEhARlZ2e750pKSnTo0CH3PAAAQEVsewXrXz//yttCQ0OVkpKiF154Qd26dVN4eLhWrVqlwYMHa9iwYfqv//ovbdiwQUOGDNH777%2BvzMxMZWRkSJJGjRqladOmadCgQWrTpo3%2B%2BMc/qnbt2urdu7dt%2BwcAAP4tIO/BkqTp06frwoULuueee3Tx4kX1799fjz/%2BuOrXr681a9ZowYIFeuKJJ9S0aVMtWbJEN998sySpZ8%2BemjZtmqZMmaLTp0%2BrXbt2Sk9PV506dXx8IgAA4C8CNmDVrl1b8%2BbN07x588rMdevWTVu2bLnsY0ePHq3Ro0d7c3sAACCA%2BdevoQEAAPgBAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwrEYErIULF6pNmzburw8ePKiUlBR17txZAwcO1NatWz2uX7dunfr376/OnTtr1KhRysrKsnvLAADAjwV8wDp8%2BLC2bNni/jonJ0eTJ0/WyJEjdfDgQc2ZM0dz586Vw%2BGQJO3Zs0crVqzQM888owMHDqhPnz6aOHGizp0756sjAAAAPxPQAau0tFTz5s3T2LFj3WPbtm1T8%2BbNlZKSorCwMCUlJSk5OVkbNmyQJGVkZGj48OHq0KGD6tSpo/Hjx0uS9u7d64sjAAAAPxTq6w140%2Buvv66wsDANHjxYzz33nCQpOztbcXFxHtfFxcVp586d7vkBAwa454KDg9W2bVs5HCSUhu4AABJ4SURBVA4NHDiwUuvm5OQoNzfXYyw0tJ5iY2Ov5ThlhIT4Vz4ODbV/v5dq5G%2B1CnS%2B6IWqooe8y596oaroocoLpBoFbMD64YcftGLFCr3yyise4y6XS40bN/YYi4qKktPpdM9HRkZ6zEdGRrrnKyMjI0MrV670GEtNTVVaWtrVHCHgREfX99naERF1fbY2yvJlL1QVPeQd/tgLVUUPVSyQahSwAWvRokUaPny4WrZsqe%2B///6qHmtZ1jWtPWLECCUnJ3uMhYbWk9NZcE3P%2B3P%2BlvRNn78yQkKCFRFRV/n5hSopKbV9fZTPF71QVfSQd/lTL1QVPVR53qiRr0J8QAasgwcP6pNPPtH27dvLzEVHR8vlcnmMOZ1OxcTEXHbe5XKpVatWlV4/Nja2zNuBublnVFxcs3%2BwfHn%2BkpLSGl//6sQfvxf0kHfUpJrSQxULpBr510sglbR161adPn1affr0UWJiooYPHy5JSkxMVOvWrct87EJWVpY6dOggSUpISFB2drZ7rqSkRIcOHXLPAwAAVCQgA9asWbO0a9cubdmyRVu2bFF6erokacuWLRo8eLCOHz%2BuDRs26Pz588rMzFRmZqbuvfdeSdKoUaP05ptv6tNPP1VhYaFWr16t2rVrq3fv3j48EQAA8CcB%2BRZhZGSkx43qxcXFkqQmTZpIktasWaMFCxboiSeeUNOmTbVkyRLdfPPNkqSePXtq2rRpmjJlik6fPq127dopPT1dderUsf8gAADALwVkwPq5G264QUeOHHF/3a1bN48PH/250aNHa/To0XZsDQAABKCAfIsQAADAlwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwLCADVjHjx9XamqqEhMTlZSUpFmzZik/P1%2BSdPjwYd13333q0qWL%2BvXrp7Vr13o8dseOHRo8eLA6deqk4cOH67333vPFEQAAgJ8K2IA1ceJERUREaM%2BePdq8ebO%2B/PJLPf300yoqKtKECRN0yy23aP/%2B/Vq%2BfLnWrFmjt99%2BW9JP4WvmzJmaMWOG3n//fY0dO1YPP/ywTp486eMTAQAAfxGQASs/P18JCQmaPn266tevryZNmmjYsGH68MMPtW/fPl28eFGTJk1SvXr1FB8fr3vuuUcZGRmSpA0bNqhXr17q1auXwsLCNGTIELVu3Vpbt2718akAAIC/CMiAFRERoUWLFqlRo0busRMnTig2NlbZ2dlq06aNQkJC3HNxcXHKysqSJGVnZysuLs7j%2BeLi4uRwOOzZPAAA8Huhvt6AHRwOh1599VWtXr1aO3fuVEREhMd8VFSUXC6XSktL5XK5FBkZ6TEfGRmpr776qtLr5eTkKDc312MsNLSeYmNjq36IcoSE%2BFc%2BDg21f7%2BXauRvtQp0vuiFqqKHvMufeqGq6KHKC6QaBXzA%2BuijjzRp0iRNnz5dSUlJ2rlzZ7nXBQUFuf%2BzZVnXtGZGRoZWrlzpMZaamqq0tLRrel5/Fx1d32drR0TU9dnaKMuXvVBV9JB3%2BGMvVBU9VLFAqlFAB6w9e/bo0Ucf1dy5czV06FBJUkxMjI4dO%2BZxncvlUlRUlIKDgxUdHS2Xy1VmPiYmptLrjhgxQsnJyR5joaH15HQWVO0gl%2BFvSd/0%2BSsjJCRYERF1lZ9fqJKSUtvXR/l80QtVRQ95lz/1QlXRQ5XnjRr5KsQHbMD6%2BOOPNXPmTD3//PPq0aOHezwhIUGvvfaaiouLFRr60/EdDoc6dOjgnr90P9YlDodDAwcOrPTasbGxZd4OzM09o%2BLimv2D5cvzl5SU1vj6Vyf%2B%2BL2gh7yjJtWUHqpYINXIv14CqaTi4mI9/vjjmjFjhke4kqRevXopPDxcq1evVmFhoT777DNt3LhRo0aNkiTde%2B%2B9OnDggPbt26fz589r48aNOnbsmIYMGeKLowAAAD8UkK9gffrppzp69KgWLFigBQsWeMz99a9/1QsvvKB58%2BYpPT1djRo10tSpU9W7d29JUuvWrbV06VItWrRIx48fV8uWLbVmzRpdd911PjgJAADwRwEZsLp27aojR45c8ZrXXnvtsnP9%2BvVTv379TG8LAADUEAH5FiEAAIAvEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhYAAAAhhGwAAAADCNgAQAAGEbAAgAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYQQsAAAAwwhY5Th%2B/LgeeughJSYmqk%2BfPlqyZIlKS0t9vS0AAOAnQn29gerokUceUXx8vHbv3q3Tp09rwoQJatSokf7t3/7N11sDAAB%2BgFewfsbhcOiLL77QjBkz1KBBAzVv3lxjx45VRkaGr7cGAAD8BK9g/Ux2draaNm2qyMhI91h8fLy%2B%2BeYbnT17VuHh4RU%2BR05OjnJzcz3GQkPrKTY21uheQ0L8Kx%2BHhtq/30s18rdaBTpf9EJV0UPe5U%2B9UFX0UOUFUo0IWD/jcrkUERHhMXYpbDmdzkoFrIyMDK1cudJj7OGHH9YjjzxibqP6Kcg90ORLjRgxwnh4CxQ5OTn605/%2Bu0bU6MPf33HVj8nJyVFGRkaNqE9V%2BWMPVaUXrgV9dGW%2B7CG7e6GqcnJytGLFioDqocCJigZZlnVNjx8xYoQ2b97s8W/EiBGGdvf/cnNztXLlyjKvluH/UaMroz4Vo0YVo0ZXRn0qFog14hWsn4mJiZHL5fIYc7lcCgoKUkxMTKWeIzY2NmASOAAAuHq8gvUzCQkJOnHihPLy8txjDodDLVu2VP369X24MwAA4C8IWD8TFxendu3aadmyZTp79qyOHj2ql156SaNGjfL11gAAgJ8ImT9//nxfb6K6ue2227R9%2B3Y99dRTeuutt5SSkqJx48YpKCjI11sro379%2BurevTuvrl0BNboy6lMxalQxanRl1KdigVajIOta7%2BgGAACAB94iBAAAMIyABQAAYBgBCwAAwDACFgAAgGEELAAAAMMIWAAAAIYRsAAAAAwjYAEAABhGwAIAADCMgGWz48ePKzU1VYmJiUpKStKsWbOUn58vSTp8%2BLDuu%2B8%2BdenSRf369dPatWs9Hnvx4kU9/fTTuvnmm/Xuu%2B96zLlcLv3Hf/yHbrnlFnXt2lW//e1v9fnnn192HwcPHlRKSoo6d%2B6sgQMHauvWreYPW0XVoUYffPCB2rRpo3bt2nn827lzp3cOfZW8VaN/tXv3brVp00YffPDBZa%2BpiX30ryqqUXXuI2/V5/7771d8fLzHeYcMGXLZfdTEHrqaGlXnHpK8%2B3P2zjvv6M4771T79u01ePBg/e1vf7vsPqplH1mw1aBBg6xZs2ZZZ8%2BetU6cOGENHz7cmj17tlVYWGjddttt1ooVK6yCggIrKyvL6t69u7Vr1y7LsiyroKDASklJsWbNmmW1bt3ayszM9HjeSZMmWRMnTrTy8vKsoqIia%2BHChdYtt9xiXbhwocweTp06ZXXs2NHasGGDVVRUZP3tb3%2Bz2rdvb33%2B%2Bee21KAi1aFG77//vtWnTx9bzlsV3qrRJQUFBVZycrLVsWNH6/333y/3mpraR5dUpkbVuY%2B8VZ/77rvP2rRpU6X2UFN76GpqVJ17yLK8V6NDhw5Z3bp1szIzM62ioiJrw4YN1ogRI/zqf9N4BctG%2Bfn5SkhI0PTp01W/fn01adJEw4YN04cffqh9%2B/bp4sWLmjRpkurVq6f4%2BHjdc889ysjIkCSdO3dOd999txYtWlTuc99xxx2aO3euoqOjFRYWpmHDhikvL095eXllrt22bZuaN2%2BulJQUhYWFKSkpScnJydqwYYNXz18Z1aVG1Zk3a3TJihUrdOuttyo6Ovqy19TUPrqkMjWqruyoT2XU9B7yd96s0bp16zRkyBD17NlTYWFhSklJ0euvv65atWqVuba69hEBy0YRERFatGiRGjVq5B47ceKEYmNjlZ2drTZt2igkJMQ9FxcXp6ysLElSo0aNNHLkyMs%2B95AhQ/SLX/xCkpSXl6eXX35ZXbt2VWxsbJlrs7OzFRcX5zH2r2v5UnWpkSQVFBS4X/q%2B7bbb9NJLL8mqBn8b3Zs1kqQjR45o69atmjZt2hWvq6l9JFW%2BRlL17CNv12fHjh0aMGCAOnXqpLFjx%2Brbb78t97qa3EOVrZFUPXtI8m6NPvroI0VFRen%2B%2B%2B9Xly5dNHLkSGVnZ5d7bXXtIwKWDzkcDr366quaNGmSXC6XIiIiPOajoqLkcrlUWlpa6efs37%2B/br31Vn3//fd67rnnFBQUVOaay63ldDqrdhAv8lWNwsPD1bp1az3wwAPav3%2B/Fi1apJUrV2rTpk3XfCbTTNbIsizNmzdPv/vd7xQTE3PFa2tqH11Njfylj0zW56abblKrVq305z//We%2B8845iYmI0fvx4Xbhwocy1NbWHrqZG/tJDktkanTx5Ups3b9bMmTOVmZmpm2%2B%2BWRMnTlRhYWGZa6trHxGwfOSjjz7SuHHjNH36dCUlJV32uvL%2Bx/9Kdu3apYMHD6pt27b67W9/W24z%2Bgtf1ig%2BPl6vvPKKunfvrtq1a6tHjx4aOXKkNm/efNXn8CbTNdqwYYMsy9I999xjaos%2B58sa%2BUMfma7P/PnzNXPmTEVFRSkmJkZPPvmkjh8/ro8%2B%2BsjUlm3nyxr5Qw9J5mtkWZbuuusuJSQkKDw8XI8%2B%2Bqjy8vL8qo8IWD6wZ88ePfTQQ5o9e7bGjBkjSYqJiSmTtl0ul6KiohQcfHXfppiYGM2cOVO5ubnKzMwsMx8dHS2Xy%2BUx5nQ6K/z/xu3k6xqVp2nTpsrJybmqdbzJdI3y8vL0/PPPa/78%2BZX6L8Ga2EdXW6PyVKc%2B8vbPmfTTKzCRkZE6depUmbma2EPluVKNylOdekjyTo2uu%2B46j1el6tevr%2BjoaP3www9lrq2ufUTAstnHH3%2BsmTNn6vnnn9fQoUPd4wkJCTpy5IiKi4vdYw6HQx06dKjwOc%2BePavk5GQdOnTIPRYcHCzLshQaGlrm%2Bnbt2pV5bzorK6tSa9mhOtRo586d%2BvOf/%2Bwx9vXXX6tZs2ZVOZJx3qhRZmamXC6Xxo4dq8TERCUmJurEiROaPHmynnrqqTLX18Q%2ButoaVec%2B8tbP2fz58z2CwqVfJCnvzDWxh662RtW5hyTv1Ej66W3Uw4cPu78uKCiQ0%2Bl030f7r6ptH/nq1xdroosXL1p33nmn9frrr5eZO3/%2BvNWnTx/rD3/4g3Xu3Dnr008/tbp27Wrt3bu3zLXl/UrruHHjrAceeMA6deqUVVRUZC1fvtzq1q2bdfr0acuyLOvRRx%2B11q5da1mWZf3www9Wp06drDfeeMMqKiqy9u3bZ7Vv3946fPiw%2BUNfpepSo//5n/%2Bx2rdvb%2B3fv9%2B6cOGC9d5771kdO3Z0/4qxL3mrRufOnbNOnDjh8a9nz57Wjh07LJfLZVkWfXS1NaqufeTNn7OhQ4daDz/8sOV0Oi2Xy2WlpaVZQ4YMsUpKSizLoocs6%2BpqVF17yLK8W6Pdu3dbCQkJVmZmpnXu3Dnrqaeesvr162ddvHjRsiz/6CMClo3%2B/ve/W61bt7YSEhLK/Pv%2B%2B%2B%2BtI0eOWCNHjrQSEhKs3r17W%2BvXr3c/9i9/%2BYv72tatW1vx8fFWQkKCNWfOHMuyLCsvL8969NFHrS5dulidO3e2Ro8ebX3yySfux993333WkiVL3F//7//%2BrzVkyBArPj7e6tevX7X4YbWs6lWj119/3erXr5/Vrl07q0%2BfPtYbb7xhXyGuwJs1%2Brk%2Bffp4fMYTfVRWRTWqjn3kzfocP37cSk1Ntbp372517NjRmjRpknXy5En34%2Bmhq69Rdewhy/L%2Bz9mrr75q9erVy0pISLBGjx5tHTt2zD3nD30UZFnV4Hc9AQAAAgj3YAEAABhGwAIAADCMgAUAAGAYAQsAAMAwAhYAAIBhBCwAAADDCFgAAACGEbAAAAAMI2ABAAAYRsACAAAwjIAFAABgGAELAADAMAIWAACAYf8HE7qgZ26Vn1kAAAAASUVORK5CYII%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common2380535745622305021"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2016</td> | |
<td class="number">1442</td> | |
<td class="number">25.2%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2015</td> | |
<td class="number">1440</td> | |
<td class="number">25.1%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2014</td> | |
<td class="number">1440</td> | |
<td class="number">25.1%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2013</td> | |
<td class="number">1407</td> | |
<td class="number">24.6%</td> | |
<td> | |
<div class="bar" style="width:97%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme2380535745622305021"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2013</td> | |
<td class="number">1407</td> | |
<td class="number">24.6%</td> | |
<td> | |
<div class="bar" style="width:97%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2014</td> | |
<td class="number">1440</td> | |
<td class="number">25.1%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2015</td> | |
<td class="number">1440</td> | |
<td class="number">25.1%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2016</td> | |
<td class="number">1442</td> | |
<td class="number">25.2%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2013</td> | |
<td class="number">1407</td> | |
<td class="number">24.6%</td> | |
<td> | |
<div class="bar" style="width:97%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2014</td> | |
<td class="number">1440</td> | |
<td class="number">25.1%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2015</td> | |
<td class="number">1440</td> | |
<td class="number">25.1%</td> | |
<td> | |
<div class="bar" style="width:99%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2016</td> | |
<td class="number">1442</td> | |
<td class="number">25.2%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HS">HS<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5689</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>99.3%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable1335137620358769913"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[14.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class=""> | |
<th>[8.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
5 | |
</td> | |
</tr><tr class=""> | |
<th>[12.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
5 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5686)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.7%"> | |
5712 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable1335137620358769913, #minifreqtable1335137620358769913" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable1335137620358769913"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[14.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[8.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[12.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[13.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[10.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[11.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[5.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[7.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[7.0, 9.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[19.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5679)</td> | |
<td class="number">5689</td> | |
<td class="number">99.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HST">HST<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5307</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>92.6%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-8435863011619800714"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[3.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.2%"> | |
| |
</div> | |
10 | |
</td> | |
</tr><tr class=""> | |
<th>[2.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class=""> | |
<th>[1.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5304)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.6%"> | |
5705 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-8435863011619800714, #minifreqtable-8435863011619800714" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-8435863011619800714"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[3.0]</td> | |
<td class="number">10</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0, 3.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[6.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[5.0, 3.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[5.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 4.0, 1.0, 6.0, 4.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 3.0, 3.0, 4.0, 4.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5297)</td> | |
<td class="number">5672</td> | |
<td class="number">99.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HF">HF<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5669</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>99.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-4018439860696533749"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[14.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
8 | |
</td> | |
</tr><tr class=""> | |
<th>[13.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class=""> | |
<th>[11.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
6 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5666)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.6%"> | |
5708 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-4018439860696533749, #minifreqtable-4018439860696533749" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-4018439860696533749"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[14.0]</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[13.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[11.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[16.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[17.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[12.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[17.0, 17.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[9.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[17.0, 13.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[13.0, 14.0, 12.0, 17.0, 17.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5659)</td> | |
<td class="number">5687</td> | |
<td class="number">99.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HC">HC<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5500</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>96.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable2439378506919095383"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[5.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
8 | |
</td> | |
</tr><tr class=""> | |
<th>[4.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
8 | |
</td> | |
</tr><tr class=""> | |
<th>[3.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
6 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5497)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.6%"> | |
5707 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable2439378506919095383, #minifreqtable2439378506919095383" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable2439378506919095383"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[5.0]</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0]</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[6.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[8.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[6.0, 7.0, 6.0, 5.0, 3.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 4.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0, 6.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5490)</td> | |
<td class="number">5678</td> | |
<td class="number">99.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HY">HY<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>3071</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>53.6%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-655386636191105204"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[2.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.3%"> | |
| |
</div> | |
19 | |
</td> | |
</tr><tr class=""> | |
<th>[2.0, 1.0, 1.0, 1.0, 1.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.2%"> | |
| |
</div> | |
13 | |
</td> | |
</tr><tr class=""> | |
<th>[2.0, 2.0, 3.0, 2.0, 2.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.2%"> | |
| |
</div> | |
12 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (3068)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.2%"> | |
5685 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-655386636191105204, #minifreqtable-655386636191105204" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-655386636191105204"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[2.0]</td> | |
<td class="number">19</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 1.0, 1.0, 1.0, 1.0]</td> | |
<td class="number">13</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 2.0, 3.0, 2.0, 2.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 1.0, 1.0, 2.0, 1.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 2.0, 2.0, 2.0, 3.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 3.0, 2.0, 3.0, 2.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 1.0, 1.0, 1.0, 1.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 2.0, 2.0, 2.0, 1.0]</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 0.0, 2.0, 2.0, 2.0]</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 1.0, 1.0, 1.0, 2.0]</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (3061)</td> | |
<td class="number">5604</td> | |
<td class="number">97.8%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_HR">HR<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>89</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>1.6%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-8160042772157972612"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[0.0, 0.0, 0.0, 0.0, 0.0]</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 52.9%"> | |
3030 | |
</div> | |
</td> | |
</tr><tr class=""> | |
<th>[1.0, 0.0, 0.0, 0.0, 0.0]</th> | |
<td> | |
<div class="bar" style="width:13%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 6.5%"> | |
| |
</div> | |
372 | |
</td> | |
</tr><tr class=""> | |
<th>[0.0, 0.0, 1.0, 0.0, 0.0]</th> | |
<td> | |
<div class="bar" style="width:12%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 6.4%"> | |
| |
</div> | |
367 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (86)</th> | |
<td> | |
<div class="bar" style="width:65%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 34.2%"> | |
1960 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-8160042772157972612, #minifreqtable-8160042772157972612" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-8160042772157972612"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 0.0, 0.0]</td> | |
<td class="number">3030</td> | |
<td class="number">52.9%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 0.0, 0.0, 0.0, 0.0]</td> | |
<td class="number">372</td> | |
<td class="number">6.5%</td> | |
<td> | |
<div class="bar" style="width:13%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 1.0, 0.0, 0.0]</td> | |
<td class="number">367</td> | |
<td class="number">6.4%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 0.0, 1.0]</td> | |
<td class="number">356</td> | |
<td class="number">6.2%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 1.0, 0.0]</td> | |
<td class="number">342</td> | |
<td class="number">6.0%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 1.0, 0.0, 0.0, 0.0]</td> | |
<td class="number">335</td> | |
<td class="number">5.8%</td> | |
<td> | |
<div class="bar" style="width:11%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 0.0, 0.0, 0.0, 1.0]</td> | |
<td class="number">58</td> | |
<td class="number">1.0%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 1.0, 1.0]</td> | |
<td class="number">53</td> | |
<td class="number">0.9%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0]</td> | |
<td class="number">50</td> | |
<td class="number">0.9%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 0.0, 0.0, 1.0, 0.0]</td> | |
<td class="number">48</td> | |
<td class="number">0.8%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (79)</td> | |
<td class="number">718</td> | |
<td class="number">12.5%</td> | |
<td> | |
<div class="bar" style="width:24%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AS">AS<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5689</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>99.3%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable6884942308335460291"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[14.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class=""> | |
<th>[8.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
5 | |
</td> | |
</tr><tr class=""> | |
<th>[12.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
5 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5686)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.7%"> | |
5712 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable6884942308335460291, #minifreqtable6884942308335460291" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable6884942308335460291"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[14.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[8.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[12.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[13.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[10.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[11.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[5.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[7.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[7.0, 9.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[19.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5679)</td> | |
<td class="number">5689</td> | |
<td class="number">99.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AST">AST<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5307</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>92.6%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable6390755329462107467"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[3.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.2%"> | |
| |
</div> | |
10 | |
</td> | |
</tr><tr class=""> | |
<th>[2.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class=""> | |
<th>[1.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5304)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.6%"> | |
5705 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable6390755329462107467, #minifreqtable6390755329462107467" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable6390755329462107467"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[3.0]</td> | |
<td class="number">10</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0, 3.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[6.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[5.0, 3.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[5.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 4.0, 1.0, 6.0, 4.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 3.0, 3.0, 4.0, 4.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5297)</td> | |
<td class="number">5672</td> | |
<td class="number">99.0%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AF">AF<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5669</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>99.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable6638785151185391699"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[14.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
8 | |
</td> | |
</tr><tr class=""> | |
<th>[13.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
7 | |
</td> | |
</tr><tr class=""> | |
<th>[11.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
6 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5666)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.6%"> | |
5708 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable6638785151185391699, #minifreqtable6638785151185391699" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable6638785151185391699"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[14.0]</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[13.0]</td> | |
<td class="number">7</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[11.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[16.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[17.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[12.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[17.0, 17.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[9.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[17.0, 13.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[13.0, 14.0, 12.0, 17.0, 17.0]</td> | |
<td class="number">2</td> | |
<td class="number">0.0%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5659)</td> | |
<td class="number">5687</td> | |
<td class="number">99.3%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AC">AC<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>5500</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>96.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable4953298190941218711"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[5.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
8 | |
</td> | |
</tr><tr class=""> | |
<th>[4.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
8 | |
</td> | |
</tr><tr class=""> | |
<th>[3.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.1%"> | |
| |
</div> | |
6 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (5497)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.6%"> | |
5707 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable4953298190941218711, #minifreqtable4953298190941218711" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable4953298190941218711"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[5.0]</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0]</td> | |
<td class="number">8</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0]</td> | |
<td class="number">6</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[6.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[8.0]</td> | |
<td class="number">5</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0]</td> | |
<td class="number">4</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[6.0, 7.0, 6.0, 5.0, 3.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 4.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[4.0, 6.0]</td> | |
<td class="number">3</td> | |
<td class="number">0.1%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (5490)</td> | |
<td class="number">5678</td> | |
<td class="number">99.1%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AY">AY<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>3071</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>53.6%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-1402615667311042561"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[2.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.3%"> | |
| |
</div> | |
19 | |
</td> | |
</tr><tr class=""> | |
<th>[2.0, 1.0, 1.0, 1.0, 1.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.2%"> | |
| |
</div> | |
13 | |
</td> | |
</tr><tr class=""> | |
<th>[2.0, 2.0, 3.0, 2.0, 2.0]</th> | |
<td> | |
<div class="bar" style="width:1%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 0.2%"> | |
| |
</div> | |
12 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (3068)</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 99.2%"> | |
5685 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-1402615667311042561, #minifreqtable-1402615667311042561" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-1402615667311042561"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[2.0]</td> | |
<td class="number">19</td> | |
<td class="number">0.3%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 1.0, 1.0, 1.0, 1.0]</td> | |
<td class="number">13</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 2.0, 3.0, 2.0, 2.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 1.0, 1.0, 2.0, 1.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 2.0, 2.0, 2.0, 3.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 3.0, 2.0, 3.0, 2.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 1.0, 1.0, 1.0, 1.0]</td> | |
<td class="number">12</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 2.0, 2.0, 2.0, 1.0]</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[3.0, 0.0, 2.0, 2.0, 2.0]</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[2.0, 1.0, 1.0, 1.0, 2.0]</td> | |
<td class="number">11</td> | |
<td class="number">0.2%</td> | |
<td> | |
<div class="bar" style="width:1%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (3061)</td> | |
<td class="number">5604</td> | |
<td class="number">97.8%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_AR">AR<br/> | |
<small>Categorical</small> | |
</p> | |
</div><div class="col-md-3"> | |
<table class="stats "> | |
<tr class="alert"> | |
<th>Distinct count</th> | |
<td>89</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>1.6%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-6 collapse in" id="minifreqtable-3500998921799330448"> | |
<table class="mini freq"> | |
<tr class=""> | |
<th>[0.0, 0.0, 0.0, 0.0, 0.0]</th> | |
<td> | |
<div class="bar" style="width:100%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 52.9%"> | |
3030 | |
</div> | |
</td> | |
</tr><tr class=""> | |
<th>[1.0, 0.0, 0.0, 0.0, 0.0]</th> | |
<td> | |
<div class="bar" style="width:13%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 6.5%"> | |
| |
</div> | |
372 | |
</td> | |
</tr><tr class=""> | |
<th>[0.0, 0.0, 1.0, 0.0, 0.0]</th> | |
<td> | |
<div class="bar" style="width:12%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 6.4%"> | |
| |
</div> | |
367 | |
</td> | |
</tr><tr class="other"> | |
<th>Other values (86)</th> | |
<td> | |
<div class="bar" style="width:65%" data-toggle="tooltip" data-placement="right" data-html="true" | |
data-delay=500 title="Percentage: 34.2%"> | |
1960 | |
</div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#freqtable-3500998921799330448, #minifreqtable-3500998921799330448" | |
aria-expanded="true" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="col-md-12 extrapadding collapse" id="freqtable-3500998921799330448"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 0.0, 0.0]</td> | |
<td class="number">3030</td> | |
<td class="number">52.9%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 0.0, 0.0, 0.0, 0.0]</td> | |
<td class="number">372</td> | |
<td class="number">6.5%</td> | |
<td> | |
<div class="bar" style="width:13%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 1.0, 0.0, 0.0]</td> | |
<td class="number">367</td> | |
<td class="number">6.4%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 0.0, 1.0]</td> | |
<td class="number">356</td> | |
<td class="number">6.2%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 1.0, 0.0]</td> | |
<td class="number">342</td> | |
<td class="number">6.0%</td> | |
<td> | |
<div class="bar" style="width:12%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 1.0, 0.0, 0.0, 0.0]</td> | |
<td class="number">335</td> | |
<td class="number">5.8%</td> | |
<td> | |
<div class="bar" style="width:11%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 0.0, 0.0, 0.0, 1.0]</td> | |
<td class="number">58</td> | |
<td class="number">1.0%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0, 0.0, 1.0, 1.0]</td> | |
<td class="number">53</td> | |
<td class="number">0.9%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[0.0, 0.0]</td> | |
<td class="number">50</td> | |
<td class="number">0.9%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">[1.0, 0.0, 0.0, 1.0, 0.0]</td> | |
<td class="number">48</td> | |
<td class="number">0.8%</td> | |
<td> | |
<div class="bar" style="width:2%"> </div> | |
</td> | |
</tr><tr class="other"> | |
<td class="fillremaining">Other values (79)</td> | |
<td class="number">718</td> | |
<td class="number">12.5%</td> | |
<td> | |
<div class="bar" style="width:24%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div><div class="row variablerow"> | |
<div class="col-md-3 namecol"> | |
<p class="h4 pp-anchor" id="pp_var_Result">Result<br/> | |
<small>Numeric</small> | |
</p> | |
</div><div class="col-md-6"> | |
<div class="row"> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Distinct count</th> | |
<td>3</td> | |
</tr> | |
<tr> | |
<th>Unique (%)</th> | |
<td>0.1%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Missing (n)</th> | |
<td>0</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (%)</th> | |
<td>0.0%</td> | |
</tr> | |
<tr class="ignore"> | |
<th>Infinite (n)</th> | |
<td>0</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-sm-6"> | |
<table class="stats "> | |
<tr> | |
<th>Mean</th> | |
<td>1.1608</td> | |
</tr> | |
<tr> | |
<th>Minimum</th> | |
<td>0</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>2</td> | |
</tr> | |
<tr class="alert"> | |
<th>Zeros (%)</th> | |
<td>29.6%</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
<div class="col-md-3 collapse in" id="minihistogram3775878360689141340"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAABC0lEQVR4nO3bwQkCQRAAQRVDMghz8m1OBmFOYwLSoCC3nFX/hfk0wzz2ODNzAN46bT0ArOy89QDs1%2BX2%2BPjN8379wSTfs0EgCASCQCAIBIJAIAgEgkAgCASCQCAIBIJAIAgEgkAgCASCQCAIBMJyH6b28MmG/bBBIAgEgkAgLHeD/Ds32FpsEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAgCgSAQCAKBIBAIAoEgEAjHmZmth4BV2SAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQXgauEZNu4QcmAAAAAElFTkSuQmCC"> | |
</div> | |
<div class="col-md-12 text-right"> | |
<a role="button" data-toggle="collapse" data-target="#descriptives3775878360689141340,#minihistogram3775878360689141340" | |
aria-expanded="false" aria-controls="collapseExample"> | |
Toggle details | |
</a> | |
</div> | |
<div class="row collapse col-md-12" id="descriptives3775878360689141340"> | |
<ul class="nav nav-tabs" role="tablist"> | |
<li role="presentation" class="active"><a href="#quantiles3775878360689141340" | |
aria-controls="quantiles3775878360689141340" role="tab" | |
data-toggle="tab">Statistics</a></li> | |
<li role="presentation"><a href="#histogram3775878360689141340" aria-controls="histogram3775878360689141340" | |
role="tab" data-toggle="tab">Histogram</a></li> | |
<li role="presentation"><a href="#common3775878360689141340" aria-controls="common3775878360689141340" | |
role="tab" data-toggle="tab">Common Values</a></li> | |
<li role="presentation"><a href="#extreme3775878360689141340" aria-controls="extreme3775878360689141340" | |
role="tab" data-toggle="tab">Extreme Values</a></li> | |
</ul> | |
<div class="tab-content"> | |
<div role="tabpanel" class="tab-pane active row" id="quantiles3775878360689141340"> | |
<div class="col-md-4 col-md-offset-1"> | |
<p class="h4">Quantile statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Minimum</th> | |
<td>0</td> | |
</tr> | |
<tr> | |
<th>5-th percentile</th> | |
<td>0</td> | |
</tr> | |
<tr> | |
<th>Q1</th> | |
<td>0</td> | |
</tr> | |
<tr> | |
<th>Median</th> | |
<td>1</td> | |
</tr> | |
<tr> | |
<th>Q3</th> | |
<td>2</td> | |
</tr> | |
<tr> | |
<th>95-th percentile</th> | |
<td>2</td> | |
</tr> | |
<tr> | |
<th>Maximum</th> | |
<td>2</td> | |
</tr> | |
<tr> | |
<th>Range</th> | |
<td>2</td> | |
</tr> | |
<tr> | |
<th>Interquartile range</th> | |
<td>2</td> | |
</tr> | |
</table> | |
</div> | |
<div class="col-md-4 col-md-offset-2"> | |
<p class="h4">Descriptive statistics</p> | |
<table class="stats indent"> | |
<tr> | |
<th>Standard deviation</th> | |
<td>0.8521</td> | |
</tr> | |
<tr> | |
<th>Coef of variation</th> | |
<td>0.73409</td> | |
</tr> | |
<tr> | |
<th>Kurtosis</th> | |
<td>-1.5525</td> | |
</tr> | |
<tr> | |
<th>Mean</th> | |
<td>1.1608</td> | |
</tr> | |
<tr> | |
<th>MAD</th> | |
<td>0.76585</td> | |
</tr> | |
<tr class=""> | |
<th>Skewness</th> | |
<td>-0.31293</td> | |
</tr> | |
<tr> | |
<th>Sum</th> | |
<td>6650</td> | |
</tr> | |
<tr> | |
<th>Variance</th> | |
<td>0.72607</td> | |
</tr> | |
<tr> | |
<th>Memory size</th> | |
<td>44.9 KiB</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-8 col-md-offset-2" id="histogram3775878360689141340"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1hVZaLH8R8XxRRBsbCOkjre4qKGphRZeEst09RUpCeN0vKCqaSF42XS0tGeMNNwSppqxskp0iwvmTXeukw5c6qjsyWtQD2YqVCyRUi8wDp/9LhPW7zA%2BLJwr/l%2BnseneN/F2u%2BP5YKfa6%2B98bMsyxIAAACM8a/pBQAAADgNBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGBZY0wv4T1FQcNz4Pv39/RQWVk9Hj5aovNwyvv%2Ba4tRcknOzOTWXRDZf5NRcknOzVWeua66pb3R/lcUVLB/m7%2B8nPz8/%2Bfv71fRSjHJqLsm52ZyaSyKbL3JqLsm52ZyYi4IFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIYF1vQCAABA9bjz%2Bb/X9BIq7Yt5fWt6CUZxBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgmM8WrIMHDyolJUVxcXGKj4/XtGnTVFRUpO%2B//15t27ZVu3btvP688sorns/dsGGD%2Bvfvr9jYWA0ePFiffvqpZ668vFyLFi1Sz5491blzZ40aNUoHDhyoiYgAAMBH%2BWzBGjt2rEJCQrRlyxatXr1a3333nZ555hnPvMvl8vozatQoSdLu3buVlpamqVOnavv27UpOTtaECRN0%2BPBhSdKKFSu0bt06ZWZmauvWrWrevLlSUlJkWVaN5AQAAL7HJwtWUVGRYmJiNGXKFNWrV0/XXnutBg0apC%2B%2B%2BOKSn7ty5UolJCQoISFBQUFBGjBggNq0aaO1a9dKkrKyspScnKyWLVsqODhYqampys3N1c6dO6s7FgAAcAifLFghISGaP3%2B%2Brr76as/YoUOHFB4e7vn4iSeeUNeuXXXzzTdr4cKFOn36tCQpOztbUVFRXvuLioqSy%2BVSaWmpcnJyvOaDg4PVrFkzuVyuak4FAACcwhG/7Nnlcun111/Xiy%2B%2BqNq1ays2NlZ33HGH5s2bp927d%2BvRRx9VYGCgJk2aJLfbrdDQUK/PDw0NVU5Ojo4dOybLss47X1hYWOn15Ofnq6CgwGssMLCuVwE0ISDA3%2Bu/TuHUXJJzszk1l0Q2X%2BTUXJKzs0nOyuXzBevLL7/UuHHjNGXKFMXHx0uS3nzzTc98%2B/btNWbMGC1btkyTJk2SpEveT3W591tlZWUpIyPDaywlJUUTJ068rP1eSEjIVdWy35rm1FySc7M5NZdENl/k1FySc7M5KZdPF6wtW7bo8ccf16xZszRw4MALbtekSRP9%2BOOPsixLDRs2lNvt9pp3u90KCwtTgwYN5O/vf975Ro0aVXpdiYmJ6tGjh9dYYGBdFRaWVHoflREQ4K%2BQkKtUVHRCZWXlRvddk5yaS3JuNqfmksjmi5yaS3J2NknVkqthw3pG91dZPluwvvrqK6WlpWnx4sXq2rWrZ/zzzz/Xjh07NG7cOM/Y3r171aRJE/n5%2BSkmJka7du3y2pfL5VK/fv0UFBSk1q1bKzs7W126dJH0yw31eXl5at%2B%2BfaXXFh4eXuHpwIKC4zpzpnpOhrKy8mrbd01yai7Judmcmksimy9yai7JudmclMsnn%2Bw8c%2BaMZs6cqalTp3qVK0mqX7%2B%2Bli5dqjVr1uj06dNyuVx65ZVXlJSUJEkaNmyYPvvsM23btk0nT57UqlWrtH//fg0YMECSlJSUpOXLlys3N1fFxcVKT09XZGSk2rVrZ3tOAADgm3zyCtaOHTuUm5uruXPnau7cuV5zGzdu1KJFi5SRkaHf/e53ql%2B/vkaMGKEHHnhAktSmTRulp6dr/vz5OnjwoFq1aqVly5bpmmuukSQNHz5cBQUFGjFihEpKShQXF1fhfioAAICL8bN4B01bFBQcN77PwEB/NWxYT4WFJY65pCo5N5fk3GxOzSWRzRc5NZdU9Wx3Pv93G1Zlxhfz%2BlbLMbvmmvpG91dZPvkUIQAAwJWMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAzz2YJ18OBBpaSkKC4uTvHx8Zo2bZqKiookSbt379b999%2BvTp06qXfv3nr11Ve9PnfDhg3q37%2B/YmNjNXjwYH366aeeufLyci1atEg9e/ZU586dNWrUKB04cMDWbAAAwLf5bMEaO3asQkJCtGXLFq1evVrfffednnnmGZWWlmrMmDG6%2Beab9cknn2jRokVatmyZPvzwQ0m/lK%2B0tDRNnTpV27dvV3JysiZMmKDDhw9LklasWKF169YpMzNTW7duVfPmzZWSkiLLsmoyLgAA8CE%2BWbCKiooUExOjKVOmqF69err22ms1aNAgffHFF9q2bZtOnz6tcePGqW7duoqOjtbQoUOVlZUlSVq5cqUSEhKUkJCgoKAgDRgwQG3atNHatWslSVlZWUpOTlbLli0VHBys1NRU5ebmaufOnTUZGQAA%2BBCfLFghISGaP3%2B%2Brr76as/YoUOHFB4eruzsbLVt21YBAQGeuaioKO3atUuSlJ2draioKK/9RUVFyeVyqbS0VDk5OV7zwcHBatasmVwuVzWnAgAAThFY0wswweVy6fXXX9eLL76o999/XyEhIV7zDRo0kNvtVnl5udxut0JDQ73mQ0NDlZOTo2PHjsmyrPPOFxYWVno9%2Bfn5Kigo8BoLDKyr8PDwKia7uIAAf6//OoVTc0nOzebUXBLZfJFTc0nOziY5K5fPF6wvv/xS48aN05QpUxQfH6/333//vNv5%2Bfl5/v9S91Nd7v1WWVlZysjI8BpLSUnRxIkTL2u/FxISclW17LemOTWX5NxsTs0lkc0XOTWX5NxsTsrl0wVry5YtevzxxzVr1iwNHDhQkhQWFqb9%2B/d7bed2u9WgQQP5%2B/urYcOGcrvdFebDwsI825xvvlGjRpVeV2Jionr06OE1FhhYV4WFJVVId2kBAf4KCblKRUUnVFZWbnTfNcmpuSTnZnNqLolsvsipuSRnZ5NULbkaNqxndH%2BV5bMF66uvvlJaWpoWL16srl27esZjYmL0xhtv6MyZMwoM/CWey%2BVShw4dPPNn78c6y%2BVyqV%2B/fgoKClLr1q2VnZ2tLl26SPrlhvq8vDy1b9%2B%2B0msLDw%2Bv8HRgQcFxnTlTPSdDWVl5te27Jjk1l%2BTcbE7NJZHNFzk1l%2BTcbE7K5ZNPdp45c0YzZ87U1KlTvcqVJCUkJCg4OFgvvviiTpw4oZ07d2rVqlVKSkqSJA0bNkyfffaZtm3bppMnT2rVqlXav3%2B/BgwYIElKSkrS8uXLlZubq%2BLiYqWnpysyMlLt2rWzPScAAPBNPnkFa8eOHcrNzdXcuXM1d%2B5cr7mNGzfqpZde0pNPPqnMzExdffXVSk1NVbdu3SRJbdq0UXp6uubPn6%2BDBw%2BqVatWWrZsma655hpJ0vDhw1VQUKARI0aopKREcXFxFe6nAgAAuBg/i3fQtEVBwXHj%2BwwM9FfDhvVUWFjimEuqknNzSc7N5tRcEtl8kVNzSVXPdufzf7dhVWZ8Ma9vtRyza66pb3R/leWTTxECAABcyShYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYFhgTS8Al%2BemGRtregmV9v7kW2t6CQAA2IIrWAAAAIZRsAAAAAyjYAEAABhme8Hq0aOHMjIydOjQIbsfGgAAwBa2F6x7771XGzZsUK9evTR69Gh9%2BOGHOnPmjN3LAAAAqDa2F6yUlBRt2LBBb731llq3bq3f//73SkhI0LPPPqt9%2B/bZvRwAAADjauwerOjoaKWlpWnr1q2aPn263nrrLd11110aNWqU/vWvf9XUsgAAAC5bjRWs06dPa8OGDXr44YeVlpamxo0b67e//a0iIyOVnJysdevW1dTSAAAALovtbzSam5urVatW6d1331VJSYn69OmjP//5z%2BrUqZNnm86dO2v27Nnq37%2B/3csDAAC4bLYXrH79%2BqlFixYaM2aMBg4cqAYNGlTYJiEhQUePHrV7aQAAAEbYXrCWL1%2BuLl26XHK7nTt32rAaAAAA82y/B6tt27YaO3asNm3a5Bn705/%2BpIcfflhut9vu5QAAABhne8GaP3%2B%2Bjh8/rlatWnnGunXrpvLyci1YsMDu5QAAABhn%2B1OEn376qdatW6eGDRt6xpo3b6709HTdfffddi8HAADAONuvYJWWliooKKjiQvz9deLECbuXAwAAYJztBatz585asGCBjh075hk7cuSI5syZ4/VWDQAAAL7K9qcIp0%2Bfroceeki33HKLgoODVV5erpKSEkVEROgvf/mL3csBAAAwzvaCFRERoffee08ff/yx8vLy5O/vrxYtWqhr164KCAio0r4%2B%2BeQTpaWlKS4uTosWLfKMr169WtOnT1etWrW8tl%2BxYoXat2%2Bv8vJyLV68WOvXr1dRUZHat2%2Bv2bNnKyIiQpLkdrs1e/Zs/fOf/5S/v78SEhI0a9Ys1alT5/K/AAAAwPFsL1iSVLt2bfXq1euy9vHyyy9r1apVatas2XnnO3fufMErYitWrNC6dev08ssvq3Hjxlq0aJFSUlK0Zs0a%2Bfn5adasWTp16pTWr1%2Bv06dPa9KkSUpPT9fMmTMva80AAOA/g%2B0F68CBA1q4cKG%2B%2B%2B47lZaWVpjfvHlzpfYTFBSkVatWad68eTp58mSV1pCVlaXk5GS1bNlSkpSamqq4uDjt3LlTTZs21aZNm/TOO%2B8oLCxMkjR%2B/HhNmjRJaWlpFa6KAQAAnKtG7sHKz89X165dVbdu3X97PyNHjrzo/KFDh/Tggw9q165dCgkJ0cSJE3XPPfeotLRUOTk5ioqK8mwbHBysZs2ayeVy6fjx4woICFDbtm0989HR0fr555%2B1d%2B9er/ELyc/PV0FBgddYYGBdhYeHVzHlxQUE1Njv6v63BAZWbr1nc/lavspwajan5pLI5oucmktydjbJWblsL1i7du3S5s2bPVeHqkNYWJiaN2%2Buxx57TK1atdLf/vY3PfHEEwoPD9dvfvMbWZal0NBQr88JDQ1VYWGhGjRooODgYPn5%2BXnNSVJhYWGlHj8rK0sZGRleYykpKZo4ceJlJvNtDRvWq9L2ISFXVdNKap5Tszk1l0Q2X%2BTUXJJzszkpl%2B0Fq1GjRpd15aoyunXrpm7dunk%2B7tevn/72t79p9erVmjp1qiTJsqwLfv7F5iojMTFRPXr08BoLDKyrwsKSy9rvuXyt6Vc2f0CAv0JCrlJR0QmVlZVX86rs5dRsTs0lkc0XOTWX5OxskqolV1X/cW%2BK7QVrzJgxysjI0JQpU7yuElW3Jk2aaNeuXWrQoIH8/f0r/N5Dt9utRo0aKSwsTMXFxSorK/O8qvHsto0aNarUY4WHh1d4OrCg4LjOnHHeyVAVVc1fVlbu2K%2BZU7M5NZdENl/k1FySc7M5KZftBevjjz/WV199pdWrV6tp06by9/e%2BCvPmm29e9mO88cYbCg0N1V133eUZy83NVUREhIKCgtS6dWtlZ2erS5cukqSioiLl5eWpffv2atKkiSzL0p49exQdHS1JcrlcCgkJUYsWLS57bQAAwPlsL1jBwcG6/fbbq/UxTp06paeffloRERG64YYb9MEHH%2Bjjjz/WW2%2B9JUlKSkpSZmambr/9djVu3Fjp6emKjIxUu3btJEl9%2BvTR888/r2eeeUanTp3S0qVLNWTIEAUG1si7WgAAAB9je2OYP3%2B%2Bkf2cLUNnzpyRJG3atEnSL1ebRo4cqZKSEk2aNEkFBQVq2rSpli5dqpiYGEnS8OHDVVBQoBEjRqikpERxcXFeN6U/9dRTevLJJ9WzZ0/VqlVLd999t1JTU42sGwAAOF%2BNXJLZu3ev3nvvPf3www%2BewvU///M/io2NrfQ%2BXC7XBef8/Pw0fvx4jR8//oLzEydOvOCr%2BurXr6/nnnuu0msBAAD4Ndtfhvb5559rwIAB%2BvDDD7V%2B/XpJv7z56MiRIyv9JqMAAABXMtsL1qJFi/T4449r3bp1nlcRRkREaMGCBVq6dKndywEAADDO9qcIv/32W73%2B%2BuuS5PU2DX379tX06dPtXg4AXNJNMzbW9BKq5P3Jt9b0EoD/eLZfwapfv/55fwdhfn6%2BateubfdyAAAAjLO9YHXs2FG///3vVVxc7Bnbt2%2Bf0tLSdMstt9i9HAAAAONsf4rwt7/9rR544AHFxcWprKxMHTt21IkTJ9S6dWstWLDA7uUAAAAYZ3vBuvbaa7V%2B/Xp99NFH2rdvn%2BrUqaMWLVro1ltvtfVX5wAAAFSXGnkfrFq1aqlXr1418dAAAADVzvaC1aNHj4teqeK9sAAAgK%2BzvWDdddddXgWrrKxM%2B/btk8vl0gMPPGD3cgAAAIyzvWBNnTr1vOMffPCB/vGPf9i8GgAAAPNsf5uGC%2BnVq5fee%2B%2B9ml4GAADAZbtiCtbXX38ty7JqehkAAACXzfanCIcPH15h7MSJE8rNzVXv3r3tXg4AAIBxthes5s2bV3gVYVBQkIYMGaKhQ4favRwAAADjbC9YvFs7AABwOtsL1rvvvlvpbQcOHFiNKwEAAKgethesGTNmqLy8vMIN7X5%2Bfl5jfn5%2BFCwAAOCTbC9Yf/zjH/Xqq69q7Nixatu2rSzL0jfffKOXX35Z999/v%2BLi4uxeEgAAgFE1cg9WZmamGjdu7Bm76aabFBERoVGjRmn9%2BvV2LwkAAMAo298Ha//%2B/QoNDa0wHhISooMHD9q9HAAAAONsL1hNmjTRggULVFhY6BkrKirSwoULdf3119u9HAAAAONsf4pw%2BvTpmjJlirKyslSvXj35%2B/uruLhYderU0dKlS%2B1eDgAAgHG2F6yuXbtq27Zt%2Buijj3T48GFZlqXGjRvrtttuU/369e1eDgAAgHG2FyxJuuqqq9SzZ08dPnxYERERNbEEAACAamP7PVilpaVKS0tTbGys7rzzTkm/3IM1evRoFRUV2b0cAAAA42wvWM8%2B%2B6x2796t9PR0%2Bfv//8OXlZUpPT3d7uUAAAAYZ3vB%2BuCDD7RkyRL17dvX80ufQ0JCNH/%2BfH344Yd2LwcAAMA42wtWSUmJmjdvXmE8LCxMP//8s93LAQAAMM72gnX99dfrH//4hyR5/e7BjRs36r/%2B67/sXg4AAIBxtr%2BK8L777tOjjz6qe%2B%2B9V%2BXl5Xrttde0a9cuffDBB5oxY4bdywEAADDO9oKVmJiowMBAvf766woICNBLL72kFi1aKD09XX379rV7OQAAAMbZXrCOHj2qe%2B%2B9V/fee6/dDw0AAGAL2%2B/B6tmzp9e9VwAAAE5je8GKi4vT%2B%2B%2B/b/fDAgAA2Mb2pwivu%2B46zZs3T5mZmbr%2B%2ButVq1Ytr/mFCxfavSQAAACjbC9YOTk5%2Bs1vfiNJKiwstPvhAQAAqp1tBSs1NVWLFi3SX/7yF8/Y0qVLlZKSYtcSAAAAbGHbPVhbtmypMJaZmWnXwwMAANjGtoJ1vlcO8mpCAADgRLYVrLO/2PlSYwAAAL7O9rdpAAAAcDoKFgAAgGG2vYrw9OnTmjJlyiXHeB8sAADg62wrWJ06dVJ%2Bfv4lxwAAAHydbQXr1%2B9/BQAA4GTcgwUAAGCYTxesTz75RPHx8UpNTa0wt2HDBvXv31%2BxsbEaPHiwPv30U89ceXm5Fi1apJ49e6pz584aNWqUDhw44Jl3u92aPHmy4uPj1bVrV82YMUOlpaW2ZAIAAL7PZwvWyy%2B/rLlz56pZs2YV5nbv3q20tDRNnTpV27dvV3JysiZMmKDDhw9LklasWKF169YpMzNTW7duVfPmzZWSkuJ549NZs2bpxIkTWr9%2Bvd5%2B%2B23l5uYqPT3d1nwAAMB3%2BWzBCgoK0qpVq85bsFauXKmEhAQlJCQoKChIAwYMUJs2bbR27VpJUlZWlpKTk9WyZUsFBwcrNTVVubm52rlzp3788Udt2rRJqampCgsLU%2BPGjTV%2B/Hi9/fbbOn36tN0xAQCAD7LtJnfTRo4cecG57OxsJSQkeI1FRUXJ5XKptLRUOTk5ioqK8swFBwerWbNmcrlcOn78uAICAtS2bVvPfHR0tH7%2B%2BWft3bvXa/xC8vPzVVBQ4DUWGFhX4eHhlY1XKQEBvtWPAwMrt96zuXwtX2U4NZtTc0m%2Bmek//Vxzai7J2dkkZ%2BXy2YJ1MW63W6GhoV5joaGhysnJ0bFjx2RZ1nnnCwsL1aBBAwUHB3v9Gp%2Bz2xYWFlbq8bOyspSRkeE1lpKSookTJ/47cRyjYcN6Vdo%2BJOSqalpJzXNqNqfm8jWca79wai7JudmclMuRBUu69C%2BSvtj85f4S6sTERPXo0cNrLDCwrgoLSy5rv%2BfytaZf2fwBAf4KCblKRUUnVFZWXs2rspdTszk1l%2BR755nEuebUXJKzs0mqllxV/QeHKY4sWA0bNpTb7fYac7vdCgsLU4MGDeTv73/e%2BUaNGiksLEzFxcUqKytTQECAZ06SGjVqVKnHDw8Pr/B0YEHBcZ0547yToSqqmr%2BsrNyxXzOnZnNqLl/DufYLp%2BaSnJvNSbl8759mlRATE6Ndu3Z5jblcLnXo0EFBQUFq3bq1srOzPXNFRUXKy8tT%2B/btFRkZKcuytGfPHq/PDQkJUYsWLWzLAAAAfJcjC9awYcP02Wefadu2bTp58qRWrVql/fv3a8CAAZKkpKQkLV%2B%2BXLm5uSouLlZ6eroiIyPVrl07hYWFqU%2BfPnr%2B%2Bed19OhRHT58WEuXLtWQIUMUGOjIC34AAMAwn20M7dq1kySdOXNGkrRp0yZJv1xtatOmjdLT0zV//nwdPHhQrVq10rJly3TNNddIkoYPH66CggKNGDFCJSUliouL87op/amnntKTTz6pnj17qlatWrr77rvP%2B2amAAAA5%2BOzBcvlcl10vnfv3urdu/d55/z8/DRx4sQLvqqvfv36eu655y57jQAA4D%2BTI58iBAAAqEkULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYJhjC1bbtm0VExOjdu3aef48/fTTkqTPP/9cQ4YMUceOHdWvXz%2BtXbvW63OXL1%2BuPn36qGPHjkpKStKuXbtqIgIAAPBRgTW9gOq0ceNGNW3a1GssPz9f48eP14wZM9S/f399%2BeWXGjdunFq0aKF27dppy5YteuGFF/THP/5Rbdu21fLlyzV27Fh9%2BOGHqlu3bg0lAQAAvsSxV7AuZN26dWrevLmGDBmioKAgxcfHq0ePHlq5cqUkKSsrS4MHD1aHDh1Up04djR49WpK0devWmlw2AADwIY4uWAsXLlS3bt100003adasWSopKVF2draioqK8touKivI8DXjuvL%2B/vyIjI%2BVyuWxdOwAA8F2OfYrwxhtvVHx8vJ555hkdOHBAkydP1pw5c%2BR2u9W4cWOvbRs0aKDCwkJJktvtVmhoqNd8aGioZ74y8vPzVVBQ4DUWGFhX4eHh/2aa8wsI8K1%2BHBhYufWezeVr%2BSrDqdmcmkvyzUz/6eeaU3NJzs4mOSuXYwtWVlaW5/9btmypqVOnaty4cerUqdMlP9eyrMt%2B7IyMDK%2BxlJQUTZw48bL26%2BsaNqxXpe1DQq6qppXUPKdmc2ouX8O59gun5pKcm81JuRxbsM7VtGlTlZWVyd/fX26322uusLBQYWFhkqSGDRtWmHe73WrdunWlHysxMVE9evTwGgsMrKvCwpJ/c/Xn52tNv7L5AwL8FRJylYqKTqisrLyaV2Uvp2Zzai7J984ziXPNqbkkZ2eTVC25qvoPDlMcWbC%2B/vprrV27VtOmTfOM5ebmqnbt2kpISNA777zjtf2uXbvUoUMHSVJMTIyys0TBH2sAABGpSURBVLM1aNAgSVJZWZm%2B/vprDRkypNKPHx4eXuHpwIKC4zpzxnknQ1VUNX9ZWbljv2ZOzebUXL6Gc%2B0XTs0lOTebk3L53j/NKqFRo0bKyspSZmamTp06pX379mnx4sVKTEzUPffco4MHD2rlypU6efKkPvroI3300UcaNmyYJCkpKUnvvvuuduzYoRMnTujFF19U7dq11a1bt5oNBQAAfIYjr2A1btxYmZmZWrhwoacgDRo0SKmpqQoKCtKyZcs0d%2B5czZkzR02aNNGzzz6rG264QZJ0%2B%2B2367HHHtPkyZP1008/qV27dsrMzFSdOnVqOBUAAPAVjixYktS5c2e9%2BeabF5xbs2bNBT/3vvvu03333VddSwMAAA7nyKcIAQAAahIFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYAEAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYRQsAAAAwyhYAAAAhlGwAAAADKNgAQAAGEbBAgAAMIyCdR4HDx7UI488ori4OHXv3l3PPvusysvLa3pZAADARwTW9AKuRI8%2B%2Bqiio6O1adMm/fTTTxozZoyuvvpqPfjggzW9NAAA4AO4gnUOl8ulPXv2aOrUqapfv76aN2%2Bu5ORkZWVl1fTSAACAj%2BAK1jmys7PVpEkThYaGesaio6O1b98%2BFRcXKzg4%2BJL7yM/PV0FBgddYYGBdhYeHG11rQIBv9ePAwMqt92wuX8tXGU7N5tRckm9m%2Bk8/15yaS3J2NslZuShY53C73QoJCfEaO1u2CgsLK1WwsrKylJGR4TU2YcIEPfroo%2BYWql%2BK3APXfqfExETj5a0m5efn689//qPjcknOzebUXJJzzzPJucfNqbmkqmf7Yl5fG1Z1%2BfLz8/XCCy846pg5pyoaZFnWZX1%2BYmKiVq9e7fUnMTHR0Or%2BX0FBgTIyMipcLfN1Ts0lOTebU3NJZPNFTs0lOTebE3NxBescYWFhcrvdXmNut1t%2Bfn4KCwur1D7Cw8Md08ABAEDVcQXrHDExMTp06JCOHj3qGXO5XGrVqpXq1atXgysDAAC%2BgoJ1jqioKLVr104LFy5UcXGxcnNz9dprrykpKammlwYAAHxEwOzZs2fX9CKuNLfddpvWr1%2Bvp59%2BWu%2B9956GDBmiUaNGyc/Pr6aXVkG9evXUpUsXx11dc2ouybnZnJpLIpsvcmouybnZnJbLz7rcO7oBAADghacIAQAADKNgAQAAGEbBAgAAMIyCBQAAYBgFCwAAwDAKFgAAgGEULAAAAMMoWAAAAIZRsAAAAAyjYF1hDh48qEceeURxcXHq3r27nn32WZWXl5932%2BXLl6tPnz7q2LGjkpKStGvXLs/cyZMn9bvf/U6333674uLiNHHiRBUWFtoVo4Kq5HrjjTfUp08fxcbG6p577tGmTZs8c9OmTfP8vsizf2666Sa7YpxXZbO98MILioyM9Fp7u3bt9OOPP0ry3WP20EMPVcgUGRmpjIwMSdKIESMUHR3tNT9gwAC741TwySefKD4%2BXqmpqRfdrry8XIsWLVLPnj3VuXNnjRo1SgcOHPDMu91uTZ48WfHx8eratatmzJih0tLS6l7%2BBVUlV0ZGhnr06KHY2FglJibqiy%2B%2B8Mxficetstku9X3CV49Znz59KpxrN9xwg9555x1JUo8ePRQTE%2BM1P3bsWDsinNfBgweVkpKiuLg4xcfHa9q0aSoqKjrvths2bFD//v0VGxurwYMH69NPP/XMXeocvGJZuKIMGjTImjlzplVUVGTt27fP6t27t/Xqq69W2G7z5s3WTTfdZO3YscM6ceKEtWzZMuvWW2%2B1SkpKLMuyrPnz51uDBw%2B2fvjhB6uwsNCaMGGCNWbMGLvjeFQ218aNG61OnTpZX3zxhXXq1CnrrbfesqKjo628vDzLsiwrLS3NWrJkid3Lv6jKZluyZImVlpZ2wf346jE717Fjx6xbb73V2rNnj2VZlnX//fdbb7/9dnUvt0oyMzOt3r17W8OHD7cmT5580W2XL19ude/e3crJybGOHz9uPfXUU1b//v2t8vJyy7Isa8KECdYjjzxi/fTTT9bhw4etxMRE6%2Bmnn7YjRgVVyfXKK69Y3bp1s7799lvr5MmT1pIlS6wuXbpYx48ftyzryjtuVcl2qe8TvnrMzpWXl2fdcsstVkFBgWVZltW9e3dr%2B/bt1bHMf8vdd99tTZs2zSouLrYOHTpkDR482Jo%2BfXqF7b7%2B%2BmsrJibG2rZtm1VaWmqtWbPG6tChg3Xo0CHLsi59Dl6puIJ1BXG5XNqzZ4%2BmTp2q%2BvXrq3nz5kpOTlZWVlaFbbOysjR48GB16NBBderU0ejRoyVJW7du1ZkzZ7Rq1SqNHz9e1113nRo0aKDJkydr27ZtOnLkiN2xqpSrtLRUjz32mDp16qRatWpp6NChqlevnnbs2GH7uiujKtkuxpeP2bmef/553XHHHWrbtq0NK/33BAUFadWqVWrWrNklt83KylJycrJatmyp4OBgpaamKjc3Vzt37tSPP/6oTZs2KTU1VWFhYWrcuLHGjx%2Bvt99%2BW6dPn7Yhibeq5PL399cTTzyh1q1bq3bt2nrooYfkdrv17bff2rDSqqtKtovx5WN2rnnz5umhhx7S1VdfXQ0ruzxFRUWKiYnRlClTVK9ePV177bUaNGiQ11XSs1auXKmEhAQlJCQoKChIAwYMUJs2bbR27VpJFz8Hr2QUrCtIdna2mjRpotDQUM9YdHS09u3bp%2BLi4grbRkVFeT729/dXZGSkXC6X8vLydPz4cUVHR3vmW7ZsqTp16ig7O7v6g5yjKrnuuece3XfffZ6Pi4qKVFJSosaNG3vGtm/froEDByo2NlZDhgzxemrUblXJJknffPONhg8fro4dO6pfv36ey%2BC%2BfMx%2B7X//93/17rvv6tFHH/Ua37Bhg%2B666y7FxsYqOTlZeXl51bb2yhg5cqTq169/ye1KS0uVk5Pjda4FBwerWbNmcrlc2r17twICArzKZHR0tH7%2B%2BWft3bu3WtZ%2BMZXNJUnJycm68847PR8fPnxYkhQeHu4Zu5KOW1WySRf%2BPuHLx%2BzXtm/frt27d2vkyJFe48uXL1evXr0UGxuriRMn6qeffjK11CoJCQnR/PnzvcrfoUOHvP5%2BnXXuzzNJioqKksvluuQ5eCWjYF1B3G63QkJCvMbO/oA7914ct9vt9cPv7LaFhYVyu92SVGFfISEhNXJPT1Vy/ZplWZo5c6Y6dOigLl26SJIiIiLUrFkzLVu2TJ988oluuukmPfTQQzV2r1JVsl177bWKiIjQM888o7///e8aOnSoxo4dq7179zrmmGVmZuree%2B9VWFiYZ6xly5Zq3bq1/vrXv2rz5s0KCwvT6NGjderUqepZvEHHjh2TZVkXPdeCg4Pl5%2BfnNSdd/Ot0pTl16pRmzJihAQMGqGnTppJ8%2B7hd7PuEU47ZSy%2B9pAcffFC1a9f2jEVGRqp9%2B/Zas2aNNmzYILfbrUmTJtXgKv%2Bfy%2BXS66%2B/rnHjxlWYu9jPs0udg1eywJpeALxZlmVs26rsq7pVdS2nT5/WtGnTlJOTo%2BXLl3vGU1JSvLZ7/PHHtX79em3atElDhw41staqqmy2oUOHeq0xOTlZ7733ntauXavbb7%2B9SvuyQ1XX4na7tWbNGr3//vte47Nnz/b6%2BKmnnlJcXJy%2B/PJL3XLLLZe7TFtc7GtxJR2zf0dxcbFSUlIUEBCgOXPmeMZ9%2Bbhd7PtEnTp1fP6Yffvtt9qxY4f%2B8Ic/eI0vXbrU8//16tXTk08%2Bqbvuukt5eXm6/vrr7V6mx5dffqlx48ZpypQpio%2BPP%2B82vvTzrLK4gnUFCQsL81zJOMvtdsvPz8/rioAkNWzY8LzbhoWFebY9d/7YsWNq1KhRNaz84qqSS/rlaZkxY8bohx9%2B0IoVKy56f0FAQICuu%2B465efnG193ZVQ127maNGmi/Px8nz9mkrR582a1aNFCERERF913cHCwQkNDa%2BTesqpq0KCB/P39z/u1aNSokcLCwlRcXKyysjKvOUk1ctyq6ujRo7r//vtVv359vfLKK6pbt%2B4Ft/Wl43auX3%2Bf8PVjJkkbN27UzTfffNHjJf3y/UVSjX1/lKQtW7bokUce0fTp0ys8nXnWxX6eXeocvJJRsK4gMTExOnTokI4ePeoZc7lcatWqlerVq1dh21/fm1NWVqavv/5aHTp0UEREhEJDQ73mv/32W506dUoxMTHVH%2BQcVcllWZZSU1MVGBioP/3pT2rYsKHX3Pz587Vnzx7P2KlTp5SXl3fJH%2BrVpSrZ/vCHP%2Bjzzz/3GsvNzVVERIRPH7OzNm/erFtvvdVrrLi4WLNnz/b6oXz06FEdPXq0xo5ZVQQFBal169Zex6WoqEh5eXlq3769IiMjZVmW199Jl8ulkJAQtWjRoiaWXGknT57UmDFjFB0drSVLlqhOnTqeOV8%2Bbpf6PuHLx%2Bys851rBw8e1JNPPun1FG5ubq4k1dgx%2B%2Bqrr5SWlqbFixdr4MCBF9wuJiamwr20LpdLHTp0uOQ5eCWjYF1Bzr5vy8KFC1VcXKzc3Fy99tprSkpKkiT17dvX8wqMpKQkvfvuu9qxY4dOnDihF198UbVr11a3bt0UEBCgYcOG6aWXXtKhQ4dUWFio5557TnfccUeNvNqkKrnWrVunnJwcLV68WEFBQV778fPz0/fff685c%2BboyJEjKikpUXp6umrVqqVevXrZnkuqWja32605c%2BZo7969OnnypF599VXl5eVp0KBBPn3Mztq9e7fn/p2zgoODtXPnTs2dO1dut1vHjh3TnDlz1LZtW8XGxtqWpyqOHDmivn37et5nJykpScuXL1dubq6Ki4uVnp7ueT%2BzsLAw9enTR88//7yOHj2qw4cPa%2BnSpRoyZIgCA6%2BsOzDOzfXqq6%2BqVq1aevrpp%2BXv7/2jwNeO26%2BzXer7hC8fM%2BmXspiTk1PhXGvUqJG2bNmiBQsW6Oeff9aRI0c0f/58de/e3etFQnY5c%2BaMZs6cqalTp6pr164V5h944AFt2LBBkjRs2DB99tln2rZtm06ePKlVq1Zp//79nvddu9g5eEWz910hcCmHDh2yRo8ebbVv396Kj4%2B3lixZ4nmvjzZt2lgfffSRZ9sVK1ZYCQkJVkxMjJWUlGR98803nrmTJ09as2fPtjp37mzFxsZajz32mFVUVGR7nrMqm2vkyJFWZGSkFRMT4/VnxowZlmVZVmFhoTVt2jQrPj7eat%2B%2BvXX//fdbOTk5NZbLsiqfrbS01Jo3b5512223We3atbMGDRpkffXVV579%2BOoxOys6Otp6//33K%2Bzn4MGDVkpKitWlSxfrxhtvtMaNG2cdPnzYlgwXcvbv1Q033GDdcMMNno8ty7IOHDhgtWnTxvP3qry83Fq8eLF1yy23WO3bt7cefvhhz/vzWJZlFRUVWampqdaNN95ode7c2ZozZ4518uTJKz5Xz549raioqArn2tKlSy3LuvKOW1WyXer7hK8eM8uyrCNHjlht2rSx/vWvf1XY1549e6zk5GSrU6dOVqdOnaxp06ZZx44dsy3Lr/33f/%2B31aZNmwp/v2JiYqzvv//e6t69u/XXv/7Vs/0HH3xg9e7d24qOjrbuuece65///Kdn7lLn4JXKz7J88M4xAACAKxhPEQIAABhGwQIAADCMggUAAGAYBQsAAMAwChYAAIBhFCwAAADDKFgAAACGUbAAAAAMo2ABAAAYRsECAAAwjIIFAABgGAULAADAMAoWAACAYf8HgF0FSdnyvOYAAAAASUVORK5CYII%3D"/> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="common3775878360689141340"> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">2</td> | |
<td class="number">2614</td> | |
<td class="number">45.6%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">0</td> | |
<td class="number">1693</td> | |
<td class="number">29.6%</td> | |
<td> | |
<div class="bar" style="width:65%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1</td> | |
<td class="number">1422</td> | |
<td class="number">24.8%</td> | |
<td> | |
<div class="bar" style="width:54%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
<div role="tabpanel" class="tab-pane col-md-12" id="extreme3775878360689141340"> | |
<p class="h4">Minimum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0</td> | |
<td class="number">1693</td> | |
<td class="number">29.6%</td> | |
<td> | |
<div class="bar" style="width:65%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1</td> | |
<td class="number">1422</td> | |
<td class="number">24.8%</td> | |
<td> | |
<div class="bar" style="width:54%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2</td> | |
<td class="number">2614</td> | |
<td class="number">45.6%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
<p class="h4">Maximum 5 values</p> | |
<table class="freq table table-hover"> | |
<thead> | |
<tr> | |
<td class="fillremaining">Value</td> | |
<td class="number">Count</td> | |
<td class="number">Frequency (%)</td> | |
<td style="min-width:200px"> </td> | |
</tr> | |
</thead> | |
<tr class=""> | |
<td class="fillremaining">0</td> | |
<td class="number">1693</td> | |
<td class="number">29.6%</td> | |
<td> | |
<div class="bar" style="width:65%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">1</td> | |
<td class="number">1422</td> | |
<td class="number">24.8%</td> | |
<td> | |
<div class="bar" style="width:54%"> </div> | |
</td> | |
</tr><tr class=""> | |
<td class="fillremaining">2</td> | |
<td class="number">2614</td> | |
<td class="number">45.6%</td> | |
<td> | |
<div class="bar" style="width:100%"> </div> | |
</td> | |
</tr> | |
</table> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="row headerrow highlight"> | |
<h1>Correlations</h1> | |
</div> | |
<div class="row variablerow"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeVxVdf748Re7IriggkXa5HIhNsVEQKAZ0dTM3BWXXNNywmX8Md%2BcHNImHRs1x8YlzRxRycpGKJmSFq0xBdwyFVFccEUNZUtRBNT7%2B%2BPKjQvnnHvtokC%2Bn48Hj1vns5zP534%2BFz6ee877Y6PX6/UIIYQQQoiHgm1NN0AIIYQQQjw4svgTQgghhHiIyOJPCCGEEOIhIos/IYQQQoiHiCz%2BhBBCCCEeIrL4E0IIIYR4iMjiTwghhBDiISKLPyGEEEKIh4gs/oQQQgghHiKy%2BBNCCCGEeIjY13QDhBC1k5eXl2qag4MDjRs3xs/Pj/79%2B9OzZ09sbGweYOuEEEL8Wjayt68QQkn54i8gIIDmzZubpJWUlHDq1CkuXrwIQNeuXVmyZAmOjo4PvJ1CCCHujSz%2BhBCKyhd/y5cvp3v37op5tm7dyv/93/9x48YNxo8fz4wZMx5kE4UQQvwKcs%2BfEOJX6969OzExMQB89NFHlJSU1HCLhBBCmCP3/AkhrNKjRw/mzJlDcXExR44cITAw0CQ9LS2NDRs2cODAAQoLC3FxccHb25tBgwbx/PPPK9ZZWFhIXFwc27dv5%2BzZs5SWltKoUSMCAgIYN24cwcHBVcpERkZy4cIF3n//fUpKSli8eDHnz59n7dq1PPXUUwAcP36cNWvWsG/fPnJycrC3t8fd3Z3OnTvzwgsvKN7neO3aNdatW8e2bds4e/YsZWVlNGvWjI4dOzJ27Fj8/f1N8mdnZ9OtWzcADh06RFZWFitWrODHH3%2BksLAQd3d3unXrxvTp03F2dv5V77kQQlhDrvwJIazSuHFj439fvXrVJG3x4sWMHTuWb775BhcXF4KDg3FzcyMtLY0///nP/OlPf%2BL27dsmZa5cucLAgQNZuXIlp06dwsfHh5CQEBwdHfnuu%2B8YM2YMCQkJqu05deoU06dPx8HBgZCQEOrVqwfAnj17GDRoEJ9%2B%2BiklJSU89dRTBAYGUlRUxCeffMLQoUNJS0szqevChQsMGDCApUuXcvLkSby9vQkJCUGv1/P5558zdOhQNm3apNqW/fv3M2LECDIyMvD29uaJJ57gwoULrF%2B/nilTplj8HgshRLXSCyGEAp1Op9fpdPpvvvlGM19WVpYx76FDh4zHv/76a71Op9MHBQXpd%2B/ebVJmz549%2Bi5duuh1Op0%2BLi7OJG3u3Ll6nU6n79mzpz43N9d4/NatW/q///3vep1Op3/qqaf0RUVFJuW6du2q1%2Bl0%2BsjISP2KFSuqtHPIkCF6nU6n/8c//qG/ffu2Sb2LFy/W63Q6fZ8%2BfUzKjBgxQq/T6fQDBw7U5%2BTkGI/fvn1bv3TpUr1Op9P7%2BfnpT506ZUw7f/688f34wx/%2BoF%2B1apX%2Bzp07xvRPP/3UmH706FGtt1YIIe4LufInhLDK119/DUCjRo148sknjcdXrFgBwIwZM%2BjcubNJmaCgIF599VUA1q1bZ5Lm7u7Oc889x%2BTJk2natKnxuJ2dHdOnT8fW1pZr165x4MABxfbcuXOHl156qcrxo0ePAjBw4EBsbX/51WdnZ8fUqVOZOnUqo0aNorS0FICDBw%2Byb98%2BABYsWIC7u7uxjK2tLZMnT8bX15fS0lI%2B/vhjxba0a9eOiRMnmoTB6devH25ubsZzCCHEgyb3/AkhfrXt27fz3nvvATBhwgTs7Q2/UnJycsjIyADgmWeeUSzbvXt3bGxsuHjxIqdPn%2BaJJ54AYOLEiarnq1%2B/Pk2bNuXKlStcuXJFMU9ISIjJ4q5cw4YNyc3NZcuWLUybNs0kzdbWlujoaJNjO3bsAAxPPbdp00a1DxkZGVW%2BLi6ndE%2BjjY0NLVu2JD8/n4KCAsVyQghxP8niTwih6b333iMxMdHkWGlpKWfOnOH8%2BfOA4WrahAkTjOnHjx83/vdf/vIX1brt7e0pKyvjzJkzxsVfef3bt2/n8OHDXL58matXr6K/G5Xq2rVrgOEKnxIPDw/F42PGjGHRokW8%2B%2B677Nixgz59%2BhAaGqoazPrkyZOA4eqdmtatWwOG%2BwyVtGrVSvG4k5MTAGVlZap1CyHE/SKLPyGEpkOHDlU5ZmdnR5MmTejWrRtRUVH8/ve/N0n/%2Beefjf%2B9bds2s%2BcoX9ABZGZmEh0dTXZ29q9qb6NGjRSPl38V/N5775Genk56ejoAzZs3p1evXowZM4aWLVtWaVPDhg1Vz%2BXq6goYFnE3b940PlxSToJeCyFqI1n8CSE0aQV5VlN%2Bj5uDgwPp6ekWb/128%2BZN/vjHP3Lx4kV%2B97vf8corrxAaGkqTJk1wcHAAfgnpYu7cSl566SWGDRvG1q1b2b59O6mpqVy5coX4%2BHg2btzIggULePbZZy3up75CjHylr5qFEKI2ksWfEKLalYd/KSsro6CgwPiAgznff/89Fy9exMbGhlWrVvH4449XyXPz5k2r2tawYUMGDhzIwIEDuX37NqmpqSxfvpwff/yRv/71r4SEhNCkSRPjFcTK4WsqKk%2BrV6%2BeXOUTQtQZ8k9VIUS10%2Bl0xv8%2BceKExeXOnDkDGO6VU1r4nTt3jry8PKvbV87Ozo6IiAjWr1%2BPh4cH169fN37NXX6vX8X7FysrT9O6L1AIIWobWfwJIapd8%2BbN8fX1BeCTTz5RzHP69Gn69etnDAkDv9xDp7ZN3PLly43/XTk4tJaDBw8yc%2BZM1qxZo5ju6OhIs2bNgF%2BuLJbfx3j8%2BHHFBeCdO3eMYW4iIiIsbosQQtQ0WfwJIe6LSZMmAfD555%2Bzdu1ak/vjzp49y9SpU8nMzOTSpUvG497e3gD89NNPbN261Xi8uLiYuXPnkp6ebtw%2BTu0JWyV2dnYkJCSwZMkS/ve//1VJ/%2Babbzh69CgODg507NgRAB8fH8LDwwGYOXMm%2Bfn5xvy3bt1i4cKFZGVl4erqyrBhwyxuixBC1DS5508IcV/06NGDl156iVWrVvHWW2%2Bxfv16WrduTUFBAUePHuX27dv4%2BPjw5z//2VgmMDCQ8PBwdu7cyZQpU2jfvj1OTk4cPnwYe3t74uLi%2BOKLL/jxxx9Zv349x44d449//CNBQUGabfHz82P8%2BPGsWbOGl19%2BGU9PTx5//HFsbW3Jzs42ft3817/%2BlebNmxvLzZs3jzFjxpCenk5kZCQ6nQ4nJydOnDhBQUEB9erVY9GiRarhZYQQojaSxZ8Q4r6JiYmhS5cufPDBBxw4cIC0tDScnJzw8/Ojd%2B/ejBgxosqDEu%2B88w5vv/0227Zt4/Dhw7i7u9OzZ08mTZpEq1ataNGiBUeOHGH//v2cOHHC4ieJZ8yYQVBQEJ999hmHDx/mxx9/5NatWzRv3pw%2BffrwwgsvGK8qlvPw8GDTpk2sXbuWb775hhMnTnDr1i08PDzo0aMHL774ouK9iUIIUZvZ6Ct%2BFyOEEEIIIX7T5J4/IYQQQoiHiCz%2BhBBCCCEeIrL4E0IIIYR4iNT44i8yMhJfX1/8/f0JCAggLCyMmJgYcnJyACgsLOTVV18lJCSETp06MXLkyCp7ja5YsYLw8HA6dOjA2LFjjXuC7t69Gy8vL/z9/U1%2BkpOTAUhMTCQsLEyxXWFhYVU2sxdCCCGEULJjxw66dOnC9OnTNfPduXOHxYsX061bN4KCgnjxxRc5f/68Mb2wsJA//elPdOnShfDwcP76179avbNRZTW%2B%2BAOIjY0lPT2dQ4cOkZiYSG5uLrNmzQIM8bWuXbtGcnIyKSkp%2BPn58fLLL1NWVgbAhg0bSEpKYv369ezcuZO2bduydu1aY92enp7GTdzLf%2B5l704hhBBCCC3vv/8%2Bc%2BfOtejp/w0bNvDf//6XVatW8d133/G73/2O6OhoYyzU119/neLiYj7//HMSEhLIysri7bffrtb21orFX0XlIRROnz4NQK9evXj99ddp0qQJTk5ODBgwgPz8fGPA1TVr1jB9%2BnRat26Ni4sLsbGxxMbG1mQXhBBCCPEQcXJyYtOmTRYt/jZu3MjYsWNp06YNLi4uTJ8%2BnaysLA4ePEhubi5bt25l%2BvTpuLm54eHhwSuvvEJCQoLxold1qFVx/vR6PdnZ2WzevJk%2BffoA0LdvX2N6fn4%2Ba9eupVOnTri7u5OTk0N2djY///wzvXv3Ji8vj%2BDgYN544w3jRvLXr18nOjqaffv24ejoyPjx4xk7dqzFscEsdfnyZa5cuWJyrHnz5ri7u1freYQQQghRvaz9Gz569GiL8t28eZOTJ0/i4%2BNjPObi4sLjjz9Oeno6165dw87ODi8vL2O6r68vN27c4NSpUybHrVErFn9z585l3rx56PV6ysrKCA0NZeTIkSZ5evbsyZkzZwgKCuKdd97BxsaGn376CYAvv/ySuLg49Ho9U6dOJTY2lnfffRcXFxd0Oh1jxoxh8eLF7Nmzh2nTpuHq6srgwYMByM3Nxd/fv0qbSktL76kPGzduZNmyZSbHJr/yClOmTbuneoQQQgihoZov3gBsXLKk6t/wyZOZMmVKtZ7n559/Rq/X06hRI5PjjRo1oqCggMaNG%2BPi4mJygao8b0FBQbW1o1Ys/mJjYxk%2BfDgAV69eJT4%2Bnv79%2B5OUlESTJk0A%2BOqrr8jPz2fFihWMHDmSzZs3G78fnzBhgnF7pSlTpjBx4kRKSkrw9fUlPj7eeJ7w8HCGDRtGYmKicfHXrFkzUlJSqrRJ7UEQNVFRUURGRpoca/7887BunXohb2/48EMYMQIyM6skr3xpv%2BY5mzWDwYNh0ybIzVXOo3V6nc6QPmYMKOxbD0BaSUf1Csy0H2DdNO0%2BuLnB88/Df/8LFbZONVq1SrM4Oh3ExcG4cep9SCnrrF6BlxfEx8OoUXDsmGKWhBl7NNvQuDF06wbbtkFhYdX0f/1Lszg6HaxeDRMmqPfh%2ByLrxmH1K%2Brj0LQpDBgAn34KeXnKeeLi1E8PFo5DsXV9WDtVvQ9ubtC3LyQlKc8jMLzHWnQ6WLMGxo9X7sPOGxrthzoxDppjADXeB0vm0fffq5cvZ2cHt28rp9lacLOTjQ1obX9gg5m9EcxVYAmNOkrLtBc/Njbg4ABlZerNcHSwsg/3YQFWkxT/hlfY6rG6ae2v8SD23qgVi7%2BKGjZsSHR0NAkJCSQnJzNixAhjmpubGzNmzGDTpk1s374dPz8/Y5lynp6e6PV68vLyePTRR6vU7%2BnpyVdffVXt7XZ3d696efjufYtmZWbCjz9WOVxhv3tNubnqeQ8cMF/%2B%2BHGNfDertqsKlfYDXL5svjgY/mAr5bWk/WCmD6UW9OHYMdU%2BqC2sKyssVM578KBl5Y8f18h71bpxuHuRXFNennq%2BahmHG9b14W4AAE35%2Ber5rB6HIgvaD7V7HCwZA6jxPmjOI2HxulKvt34NWitZsoK/R4p/w%2B%2BDxo0bY2trS2GlKwWFhYU0bdoUNzc3ioqKuH37NnZ2dsY0gKZNm1ZbO2rdAx8V5efnExkZyZEjR4zHbG1t0ev12Nvb06JFC1xcXDh69Kgx/cKFCzg4OODu7k5ycjIffvihSZ2nTp2iZcuWD6wPQgghhBBgeDCkXbt2ZGRkGI9dvXqVc%2BfOERAQwJNPPoleryezwpX39PR0GjZsyBNPPFFt7ah1i7%2BSkhLi4uIoKCigb9%2B%2BtG7dmgULFnD58mVKSkpYsmQJjo6OdOzYEXt7ewYPHszKlSs5e/YseXl5LF%2B%2BnOeffx57e3scHByYP38%2BO3fupKysjJSUFBISEoxfMQshhBCijrG1rf6f%2BygnJ4devXoZY/kNHz6c9evXk5WVRVFREW%2B//TZPPvkk/v7%2BuLm50bNnT9555x3y8/P56aefWL58OYMHD8bevvq%2BrK0VX/uWP/ABhlWxj48Pq1evplWrVixcuJC33nqL3r17o9fr8fb2ZtWqVcaneWNiYigtLWXIkCGUlZXRs2dPY6iX7t27M3PmTObMmcOlS5do1qwZM2fOpEePHjXWVyGEEEL8tpQ/OHrr1i0Atm7dChiu2pWVlXH69Gnjg6TDhg3jypUrjBo1iuvXrxMcHGzysMmbb77J7Nmz6datGw4ODvTp08ds4Oh7VeOLv2%2B//VYzvUmTJixYsEA13dHRkdmzZzN79mzF9KioKKKiohTTBg4cyMCBAxXTlB4CEUIIIUQNu89X6n6N9PR01bTHHnuMYxUeKLSxsWHq1KlMnTpVMb%2Brqyv//Oc/q72NFdX44k8IIYQQwmK1cPFX19joH8QzxQ8plYuRRo88ApMmwcqVyk/r/u1NM4/SBwbC/v3QsaPqk3ncvfSsyNUVOneGPXvg2jXFLLO/76Za3Fz7Af620kP9/AD%2B/oY2du8OSv9y%2BuAD7fKurhASArt2qfZhzq5nVIu3aAETJ8L776s/nfj61xHabdDp4N//hhdfVI5PMXOmdvmGDSEsDFJS4OpVxSyzd6lvSWjROPzTVf387dvDzp0QHq7%2BSKy5fa4tGIe/pWqPw8svw3vvqY/D7Hc15pK5eQSGECZazHweXv%2Bf%2BmcBDOPwyivw7rvq4zBnpUboiIAAQ7ygbt2g0v7lRpZ8Hrp0gdRUxT7MTu2pWdyiufROI%2BUEMMyl77%2BHp5/%2BdXPJgt9J/OEP6uXLacV6MRfD1cYG6tWDmzdVH5Utpr41xc0yV4e5tY%2BNDTg6Grqq1gZzdZSHitFKrzH11d//X624uPrrrMXkyp8QQggh6g658mc1WfwJIYQQou6QxZ/V5B0UQgghhHiI1PiVv8jISHJycrC1tcXGxgZXV1dCQkJ49dVX8fDwoLCwkHnz5vH9999z69YtvLy8mDFjBgEBAcY6VqxYwYYNGygqKqJDhw7MnTuXxx57jN27dzN69GgcHR1NzrlgwQKeffZZEhMTee2114zpDg4OtGvXjr59%2BzJs2DBjdG0hhBBC1BJy5c9qteIdjI2NJT09nUOHDpGYmEhubi6zZs0CYObMmVy7do3k5GRSUlLw8/Pj5ZdfpuzunagbNmwgKSmJ9evXs3PnTtq2bcvatWuNdXt6epKenm7y8%2Byzv9w836xZM%2BPxrVu3MmnSJOLj45k0aRK31W4YFkIIIYSoo2r8yl9lHh4e9OjRg3Xr1gHQq1cvOnXqRJMmTQAYMGAAa9euJT8/Hw8PD9asWcOMGTNo3bo1gDHA86/h5uZG165d8fPzo3fv3nz22WcMGjTI%2Bk4JIYQQonrIlT%2Br1arFn16vJzs7m82bN9OnTx8A%2Bvbta0zPz89n7dq1dOrUCXd3d3JycsjOzubnn3%2Bmd%2B/e5OXlERwczBtvvGHcAeT69etER0ezb98%2BHB0dGT9%2BPGPHjsXGRj2MSvPmzXnuuef48ssvLV78Xb58mStXrpgcc3RsTtOm6htFN2tm%2BlpFYKD2Sb29TV%2BVuGqE%2BHB2Nn1V8Mgj6sXNth8MITi0tG1r%2BlqZVvvBoj60aKFevHyfbM39snU67Ta0amX6WlnDhtrlGzQwfVVg9Ti0b6%2BeVt4/rX7e53Gwei6Zm0dgdR%2B0xgAs7EOF21WqaNfO9FWJuT6YmUvV0of7OZcsmEdW0/jdb5KukU%2BrBguKm2WujmroQt0miz%2Br1Xicv4r3/On1esrKyggNDWXRokU0rfAXuWfPnpw5c4agoCAWL15M8%2BbNOXjwIEOHDiU8PJx58%2Bah1%2BuZOnUqzZo149133yUjI4N//OMfTJkyhQ4dOrBnzx6mTZvGa6%2B9xuDBg0lMTGTRokWKu3msW7eOjz/%2BmOTkZIv6sXTpUpPtWQCioyczdeoU694gIYQQQvxC81/rv1JeXvXXWYvViit/sbGxDB8%2BHICrV68SHx9P//79SUpKMn7d%2B9VXX5Gfn8%2BKFSsYOXIkmzdvpnzdOmHCBDw8DAFgp0yZwsSJEykpKcHX15f4%2BHjjecLDwxk2bBiJiYkMHjxYs023b9%2B%2Bpwc%2BoqKiiIyMNDn22WfNWblSvUyzZjB4MGzaBLm5VdMnreqofVJvb0Pg2hEjIDNTOY9WA5ydwc8PDh%2BGGzeUi%2B/vrFrcXPsBJm3qrn5%2BMFypWbnSEFn25Mmq6XPnapd3djZcTTl0SLUP76eHqBZv2hQGDjTEnVX77E/c9aJ2G1q1MkT0/tvf4Ny5qunjx2uXb9AAOnSAAwfg%2BnXFLCvTw1SLWzQOH4Srn1%2BngzVrDO1UClIN8Pbb6uXBonF476D6ODRrBoMGQUKCeh9e/o/GXDI3jwDu7h%2Buyszn4d196p8FMPRh6FD45BP1PrySoBEoul27X/pw4oRynjlzNNtAgwaGK3MHDyrOpZWHumgWt2guffi0egU6HaxeDRMm/Lq5ZMHvJJ56Sr18Oa0gz1qRi8FwuczJCUpKVCMk36SeNcXNMleHJUGey4M0q7XB3FXBWh3kWa78Wa1WLP4qatiwIdHR0SQkJJCcnMyIESOMaW5ubsyYMYNNmzaxfft2/Pz8jGXKeXp6otfrycvL49FHH61Sv6enJ1999ZXZdhw5csR4H6El3N3dcXc3/Yr3k0/Uo%2BRXlJurkk9t147KMjPV86pFya/oxg3VfFa1H9R3W6js5EnlvJa0HzT7oLZjREV5eRr51P6IVXbunHJelV07qrh%2BXTWv1eOgtttCRcePq%2Bd7QOOQm6uRz5K5pDaPwOo%2BWDIGYGYc1HbuqOjECfV8lvbh%2BvX714cHMZc05pHVLF2R6fWqeS2pQaO4xdTqqIYu/Ha/EhYWqdXL5/z8fCIjIzly5IjxWPnXw/b29rRo0QIXFxeOHj1qTL9w4QIODg64u7uTnJzMh5W2dDp16hQtW7bUPG9WVhbJycnG%2Bw6FEEIIUUvY2lb/z0Om1vW4pKSEuLg4CgoK6Nu3L61bt2bBggVcvnyZkpISlixZgqOjIx07dsTe3p7BgwezcuVKzp49S15eHsuXL%2Bf555/H3t4eBwcH5s%2Bfz86dOykrKyMlJYWEhATjV8yVlZWVsWPHDiZNmkT37t3p0aPHA%2B69EEIIITTJ4s9qteJr37lz5zLv7v04Tk5O%2BPj4sHr1alq1asXChQt566236N27N3q9Hm9vb1atWmV8mjcmJobS0lKGDBlCWVkZPXv2NIZ76d69OzNnzmTOnDlcunSJZs2aMXPmTJNFXW5uLv53nyK0sbHh8ccfZ%2BTIkYwaNeoBvwtCCCGEEPdfjS/%2Bvv32W830Jk2asGDBAtV0R0dHZs%2BezezZsxXTo6KiiIqKUkwbOHAgAwcOtLyxQgghhKhZD%2BGVuuom76AQQgghxEOkxuP8/ZbVr6%2Bd3qEDpKVBaKghykdlxZ9v067A1RU6d4Y9e9SfjOuuER4jMBD274eOHVWfFm7grD49OnSAlBQIC1NuP8D1r3aqnx8MoSkCAw3nVwpz8rRGWAkwlP3hB0P4B5U%2BuDa4o1q8fXvYuRPCwzUeTvw6TbsNDRr8EuZEqQ9/%2BIN2%2BQ4dYPduCA5WfSMb2JdoFjc7Dlu2q5/fxcXw/v3wAxQVKecx1wcL5lL9etpzSeuzAFD89Q718zdoYDj3/v2q4XL4/e/Vy4PZudSgvvo8AgvH4fPv1CtwcYGgINi7V30cKoWTqsLMOGh9nuEBzaWuXdXLW/B5Vg3hUpGNjepjrrfvmH/MVStSDIDdHTPhYszFSbGEVh2WXPky1wlL4sVoLQ9q8nFhMw9t/irnz1d/nbVYjX/tK4QQQghhMfna12ryDgohhBBCPETkyp8QQggh6g658me1Gn8HIyMj8fX1xd/fn4CAAMLCwoiJiSEnJweAwsJCXn31VUJCQujUqRMjR47kUKXo9ytWrCA8PJwOHTowduxYsrOzAdi9ezdeXl74%2B/ub/Cjt1zts2DB8fX25cuXK/e%2B0EEIIIUQNqfHFHxj29k1PT%2BfQoUMkJiaSm5vLrFmzAJg5cybXrl0jOTmZlJQU/Pz8ePnllym7eyPshg0bSEpKYv369ezcuZO2bduydu1aY92enp6kp6eb/Dz77LMm5z958iQnTpwgLCyMTz/99IH1WwghhBD3SII8W63W9djDw4MePXpw%2BvRpAHr16sXrr79OkyZNcHJyYsCAAeTn55Ofnw/AmjVrmD59Oq1bt8bFxYXY2FhjkGdLbdq0ia5du9KnTx8SExOrvU9CCCGEqCay%2BLNareqxXq/n/PnzbN682bivbt%2B%2BfXn00UcBw16/a9eupVOnTri7u5OTk0N2djY///wzvXv3Jjg4mKlTpxoXhgDXr18nOjqa4OBgIiIiiIuLo2J0m9LSUjZv3kzfvn3p3r07OTk57Nu378F2XAghhBDiAakVD3yUb%2B%2Bm1%2BspKysjNDSUkSNHmuTp2bMnZ86cISgoiHfeeQcbGxt%2B%2BuknAL788kvjom7q1KnExsby7rvv4uLigk6nY8yYMSxevJg9e/Ywbdo0XF1dGTx4MGDYYcTOzo6wsDDs7Ozo0aMHCQkJdOrU6Z76cPny5Sr3Cz7%2BeHOaNHFXLaPTmb5W4eqqfVJnZ9NXJYGB6mne3qavCjpoxCo0234wxF/TUh4MUS0oolb7waI%2BtK/pPnTooF3ey8v0VakKjU%2BqRX1wcVFPM9d%2BqJZx6OCkXtzqcXgAfehQT7u41eNg7ecZzPfBTOzRGp9LFswjIR7GK3XVrcaDPEdGRjJx4kSGDx8OwNWrV4mPj%2Bfjjz8mKSmJJk2aGPPm5%2BezYsUKtm/fzubNmzl27BhRUVGsXbuW0NBQAHbs2MHEiRM5ePAgTk5V/9osXLiQH3/8kQ8//BCAF198kbZt2/Laa68BkJqaSnR0NDt37qSBuT/6FSxdupRly5aZHHvllclMmzbl3t4QIYQQQqjT%2BIfyr3bsWPXXWYvViit/FTVs2JDo6GgSEhJITk5mxIgRxjQ3NzdmzJjBpk2b2L59O35%2BfsYy5Tw9PdHr9eTl5Rm/Lq7I09OTr776CoCLFy%2BSmprKnj17%2BOSTT4x5bty4wZYtWxgyZIjF7Y6KiiKyUvT9QYOa8/HH6mV0Oli3DsaMgePHq6an/WuP9kmdncHPDw4fhhs3lPNMmqRe3tsbPvwQRnmjFpAAACAASURBVIyAzEzFLGH196sW1%2BkgLg7GjVNuP0DKMpUo/eXq1ze0IzMTiourpk%2BYoF3e2xs2bICRI1X7EF7/B9XiOh2sWQPjx6v3Yee7h5QTytWvD%2B3awYkTyn2YOFG7vJcXrF8Po0er/gIKs9%2BtWtyicVii/h5Qvz74%2BMCRI8rtB/N9sGAuhTppzyWtzwJA2nL18tSvD08%2BCUePWtcHjbkUVk/jPcTCcXhnr3oFzs7g6wsZGeqf55df1myDuXHQ%2BjzDA5pLL72kXt6CzzOW3JYjO3z8tnf4kCt/Vqt1i7%2BK8vPziYyMZNmyZfj4%2BABga2uLXq/H3t6eFi1a4OLiwtGjR/H19QXgwoULODg44O7uTnJyMgUFBSYLyFOnTtHy7tYwiYmJtGnThuXLl5ucd82aNSQkJNzT4s/d3R13d9OveM%2BeNfyYc/y4ylZKalu2VXbjhnpetS2SKsrMVM13QOMbqHKq7Qf1rbYqKy5WzmtJ%2B0GzDwctuIB7/Lj69m5W90H1zank2DHVvAcs%2BKRqjoPaVlsVFRer56uGcThg5mtTqIa5pDYGYHUfDpj5yrSc1eNw48Z9GwdLPs9QC%2BaSxjwSQhZ/1qt172BJSQlxcXEUFBTQt29fWrduzYIFC7h8%2BTIlJSUsWbIER0dHOnbsiL29PYMHD2blypWcPXuWvLw8li9fzvPPP4%2B9vT0ODg7Mnz%2BfnTt3UlZWRkpKCgkJCQwfPpw7d%2B6QmJjIoEGDePzxx01%2BXnjhBX788UeysrJq%2Bu0QQgghhKhWteLKX/kDHwBOTk74%2BPiwevVqWrVqxcKFC3nrrbfo3bs3er0eb29vVq1ahZubGwAxMTGUlpYyZMgQysrK6NmzpzHUS/fu3Zk5cyZz5szh0qVLNGvWjJkzZ9KjRw927tzJ5cuX6devX5X2tGvXjoCAABISEnj11Vcf3BshhBBCCG1y5c9qNb74%2B/bbbzXTmzRpwoIFC1TTHR0dmT17NrNnz1ZMj4qKIioqqsrx8PBwDh8%2BrFrvf/7zH812CSGEEELURTW%2B%2BBNCCCGEsJhc%2BbOaLP6EEEIIUXfI4s9qsvi7j4pvmnkUviQQ2E9aSUe4WfXJttnfa4dgfOQRmNQZVu7vzKVLynnedlavo0N9SMEQ/kHtKcDrNzT6UGxof0pxR7ih/GTe4r3afXB3h5GBsOFIIJcvV02f1eCOZvn29WEnhnAuak/1XrvpoF5BaSCwh52lnRXHAOC9Q9ohG5o1g0EBkHAigNzcqumv1ivRLN/eCb4HnnbazUGVJ2KvX7VuHObuUB%2BHFi1gwlOw%2BsenuBs3vYq3NOYRWDaXios1fmGXBgI/kFb6FJQo92F%2Bqvpc8PCAsR1h7aGO5OQo55lr5Vy6XmTm82zJOKSYGYcgWH0w6L6Ng%2BbnGR7IXJqvMQ6WfJ6vqpb%2BhQ2gR7mvlq4bNPPZWvCn074a/ryq1GHub4uNDdSzg5tldqrRWurXq9EQv6KGyeJPCCGEEHWHXPmzmryDQgghhBAPEbnyJ4QQQoi6Q678Wa3OvIORkZH4%2Bvri7%2B9PQEAAYWFhxMTEkJOTw/z58xk8eLBJ/tu3bxMUFMTcuXNNjmdmZuLl5UVWVhZLly5l6NChVc5VUlKCl5cXu3erb6klhBBCiBpga1v9Pw%2BZOtXj2NhY0tPTOXToEImJieTm5jJr1iwiIiLIyMigsLDQmPfw4cPcunWL1NRUkzrS0tLw9PSkTZs2D7r5QgghhBA1rk4t/iry8PCgR48enD59mk6dOlGvXj127dplTE9NTeXZZ5/lwoUL5FR4/C81NZXw8PCaaLIQQgghrCVX/qxWJ%2B/50%2Bv1ZGdns3nzZvr06YOjoyOdO3cmNTWVXr16AYZF3qBBgzh//jxpaWn079%2BfsrIy9u3bx8KFC6u9TZcvX%2BbKlSsmx5o/8QTujRurF/L2Nn2t5JFHtM/ZrJnpq5IOHdTTdDrTV0XFgeppZtoPhlAuWpo0MX2trH177fIW9aFUow9eXqavCrTeX4DyIVYb6mrpQ5F149CihXrxpk1NX5VozSOwsA83reuDh4d68bu7PRpflVg9Djc02g91Yxy0Ps/wQPqgNQ4WzSOBjZmIPeXp5vKJh5eNXq8WBah2iYyMJCcnB1tbW/R6PWVlZYSGhrJo0SKaNm3KBx98QFxcHNu2baO4uJjOnTuzdetWNm3axNmzZ1mwYAF79%2B5l3Lhx7Nq1CxcXF5YuXcry5ctxcKgaB660tJT169cTHBxsUfuWLl3KsmXLTI5NfuUVpkybVi39F0IIIQQQFlb9daakWF3FhQsX%2BNvf/sbBgwdxdnamd%2B/exMTEYFvpyuL48ePZu3evybFbt24RHR3N5MmTGTVqFPv37zcp98QTT5CUlGR1G8vVqSt/sbGxDB8%2BHICrV68SHx9P//79SUpKIiIigjlz5nD27FnOnTuHp6cnHh4ehIaG8vHHHwOGq4GBgYG4uLgY6wwICOCTTz4xOU9JSQkBAQH31LaoqCgiIyNNjjV//nlYt069kLc3fPghjBgBmZlVkle%2BtF/znM2aweDBsGkTisGFAeLj1cvrdBAXB%2BPGwfHjynlSijuqV2Cm/QAbYrT70KQJ9O4NW7ZAQUHV9BUrNIuj08GaNTB%2BvHofdpZ2Vq/Ay8vwJo0aBceOKWZJmLFHsw2NG0O3brBtG1S47dToX//SLI5OB6tXw4QJ6n34vsi6cVj9ivo4NG0KAwbAp59CXp5ynrg49dODhXPp5lPqFXh7w4YNMHKkah/WTvlBtbibG/TtC0lJkJ%2BvnGf1avXTg/m5tPOGxhhAnRgHzc8zPJA%2BrF2rfnpLPs87dqiXL2djg2pwY0uYK2%2BDmcqtbYCZOm6WmA/y7OQEJSXqzajnZGUfavKyYi39mnbKlCn4%2BvqydetW8vLyePnll2nWrBnjxo0zybdmzRqT/7969Sq9e/fmmWeeMR6bM2cOAwcOvG9trVOLv4oaNmxIdHQ0CQkJJCcnM2LECFq1akVqairZ2dmEhoYChsVdUVERWVlZpKWlVVmgVRd3d3fcK3/Hefq0ZYUzM%2BHHqtH01XbtqCw3Vz3vgQPmyx8/rpFPJcq/CZX2A4q7digpKFDOe/CgZeWPH9fIq7Jzh4ljx1T7oLawrqywUDlvtfThqnXjoLbbQkV5eer5LJlHYGYuFVvXB7WdOyrKz1fPZ/U4FFnQfqjd42DJ5xnuax8sGQfNz4KweF2p11u/BhWWSU9PJzMzk7i4OFxdXXF1dWXs2LGsW7euyuKvsnfeeYdnnnkGL43bj6pbnV38VVRSYtg%2BKyIigr1795Kdnc2ECRMAsLe3p1OnTuzYsYPDhw8ze/bsmmyqEEIIIaxxH678Kd6337x51Ys6KjIyMvD09KRRo0bGY76%2Bvpw%2BfZqioiKTbxwrOnv2LJ999hlbt241Ob5lyxZWr17NpUuXaN%2B%2BPW%2B%2B%2BSatWrW6x16pq53XTi1QUlJCXFwcBQUFdOvWDTAs/vbt28exY8dM7tULCQlhw4YNNG7cGG%2BNG5mFEEIIUcvdh6d9N27cyMCBA01%2BNm7caHGTCgsLadiwocmx8oVggdI9TXetWrWKQYMG4VbhabU2bdrQrl07PvzwQ7Zt24abmxsTJkygtLT0Ht8odXXqyt/cuXOZN28eAE5OTvj4%2BLB69Wrjajg4OJiCggLatWtnsvoODQ1lwYIFDBgwABt5/EkIIYQQFSjet9%2B8%2BT3Vca/PzxYWFrJ582aSk5NNjr/xxhsm///mm28SHBzMDz/8YLylzVp1ZvH37bffms3j7OxMenp6leM%2BPj4cU7iZf8qUKUyZMqXKcScnJ8X8QgghhKhh9%2BFrX8X79u%2BBm5ubyUYTYFjc2djYmFzVq2jbtm088cQTtGzZUrNuFxcXGjVqZBKz2Fp19mtfIYQQQojawM/Pj0uXLpFfIdxAeno6bdu2pUGDBopltm3bRlilsDVFRUW88cYbJgu9/Px88vPzzS4S70WdifNXF5mLJe3uDmPGGKLBKD3p%2Bn9va0S1BfD3h61boXt3ULjiCUBCgnr5Bg0gMNDwVN/164pZFu9V3w3F3d0QmWPDBvWneqf/PzNfswcGwv790LGj8tOFX36pXd7VFbp0gdRUuHZNMcuiwz1Vi7u7G6K8xMer9yFm67PabWjTBpYtg8mTISuravqrr2qXd3GBoCDYuxeKihSzLNzXVbW4uXkE8H/LHlc/v58ffPEFPPccHD6snOeDD9TLg2EudexoGEuVubRoT4RqcYvGYZXGk3A%2BPob4IgMGwJEjynn%2B/W/18mD28zA/RXtnIA8PGDvWEMpE7R/oM1a3U6/Axwc2b4Z%2B/dT7YC5ejYsLPPUU/PCD4lxauOf3msUtmkvvPqFega8vfP459OkDGRnKebTiT1nwO8miGG9aYUpUPmNGtraGdly/DnfuKFdh46pZ3NkZbtxQLW6WuTpcnMrMV%2BLgAGXq%2BW7bVo1vW5GdHdy%2BrZ1eYyqERKk233xjdRVDhw6lXbt2vPbaa%2BTk5PDSSy8xfvx4Ro4cSa9evZg7dy6dOnUy5u/atSsvvvgiL7zwgkk9AwYM4LHHHmPOnDnY2Ngwa9Yszpw5w6efflolZuCvJVf%2BhBBCCFF31NLt3ZYsWcLly5cJCwtj9OjR9O/fnxEjRgBw%2BvRpbty4YZL/ypUrNFPYQmr58uXo9Xp69uzJH/7wB8rKyli1alW1LfygDt3zJ4QQQghRW7Vo0YL3339fMU3pOYLDKt%2B0PProo1V2DKtusvgTQgghRN1RS3f4qEvqzDsYGRmJr68v/v7%2BBAQEEBYWRkxMDDk5OcyfP5/Bgweb5L99%2BzZBQUHMnTvX5HhmZiZeXl5kZWWxdOlSvL298ff3x8/Pj6CgIEaPHl2t%2B%2BcJIYQQQtQmdWbxB4a9fdPT0zl06BCJiYnk5uYya9YsIiIiyMjIMHnM%2BvDhw9y6dYvU1FSTOtLS0vD09KRNmzaAYfu39PR0Dh8%2BzOeff87QoUNZsGABr7/%2B%2BgPtmxBCCCEsUEvv%2BatL6myPPTw86NGjB6dPn6ZTp07Uq1ePXbt2GdNTU1N59tlnuXDhgskj06mpqYSHKz%2B15%2BHhQZ8%2BfVizZg2JiYkm9QkhhBCiFpDFn9Xq5D1/er2e7OxsNm/eTJ8%2BfXB0dKRz586kpqbSq1cvwLDIGzRoEOfPnyctLY3%2B/ftTVlbGvn37WGgmBotOp6NLly58%2BeWXhISEWNQmpX0B7eya07SpetDI8riPKvEfDaFctLRta/qqRCW%2BEAD165u%2BKtCKedmkiemrosBAjUSgfLs9tW33XNVDKgC/9E%2Bjn1p9MDsGYAjlouWxx0xfK1PZ09HI2dn0VYHVffDzU08r759WP7XmEVg9lyzqg4%2BPelrr1qavSqzsg4eZyEsPpA/m5pKZPpiLYWtRH3x91dOsnUsWzCOrmftDX56ukc9WI4JV%2BSZSNja/fk1RHXUIoaXOxPmLjIwkJycHW1tb9Ho9ZWVlhIaGsmjRIpo2bcoHH3xAXFwc27Zto7i4mM6dO7N161Y2bdrE2bNnWbBgAXv37mXcuHHs2rULFxcXli5dyo4dO/jkk0%2BqnG/evHmcOnWK1ebiat21dOnSKk/nREdPZurUqjuICCGEEOJX6tev%2BuvcvLn666zF6tSVv9jYWIYPHw7A1atXiY%2BPp3///iQlJREREcGcOXM4e/Ys586dw9PTEw8PD0JDQ/n4448Bw9XAwMBAXMz96xnDAyN29xDFUmlfwK%2B%2Bas66depl3Nzg%2Befhv/%2BFCkHBjcbEd9c%2Badu2sHIlTJoEJ08q59G6ylm/vuGKW2YmFBcrZtlwRP3KXZMm0Ls3bNkCavtWj1zUUf38YDj/hx/CiBGGdlRm7nH3Bg2gfXs4eFA1KGx8VhfV4m5uhtjGX3yhPAYAo3ZP1m7DY4/BX/4C//gHZGdXTR8zRru8s7PhakpGhiGqq4J1R4JUi5ubRwBjPnlO/fxt2sCSJTB1qnKQaoA5c9TLg2EuPfkkHD2qOpfiM9TngkXjkDhA/fytW8OiRRATA6dOKeeZNUu9PJj9PKw9qH0V280N%2BvaFpCT1Poz9VOOPVuvWsHgxTJ9uXR98fAxBohX6sO7wU5rFLZpL/%2BmjXkGbNvCvf8G0ab9uLlnwO4kOHdTLl9MK8qzyGTOytTW0o7hYNUrzDRv1q5c2Nr8U/7WXVszV4ezwkAd5FlarU4u/iho2bEh0dDQJCQkkJyczYsQIWrVqRWpqKtnZ2cbNjwMCAigqKiIrK4u0tLQqCzQ1R44coYMlv2TuUtoXcMsW9Sj5FeXnq%2BRT27WjspMn1fOqRcmvqLhYNZ8l7S8o0MintGuHksxM5bwqu3ZUcf26al6rxgDU/4hVlp2tnNfcjgLlbtxQzWt1H9R27qgoK0s9nyXzCKyeS5p9UNv1oqJTp9TzWdkHS7fVzM/XyGttHyydS8XFinktGQMwMw5qO3dUlJWlns/K30lWs3TbjTt3VPPe0fjat/xrWr3euh0%2BrK3jN02%2BC7fab%2BIdLCkpASAiIoK9e/eyd%2B9e4%2BLP3t6eTp06sWPHDg4fPkxEhPoWU%2BVSU1PZv38/zz2ncbVECCGEEA%2BePPBhtTrb45KSEuLi4igoKKBbt26AYfG3b98%2Bjh07RnBwsDFvSEgIGzZsoHHjxnirPVhwt87k5GRiYmIYP348flo3yQshhBBC1EF16mvfuXPnMm/ePACcnJzw8fFh9erVtGrVCoDg4GAKCgpo164djRo1MpYLDQ1lwYIFDBgwABsb0%2Bv1hw4dwv/uU7V2dna0a9eOGTNm0L9//wfUKyGEEEJY7CG8Ulfd6szi79tvvzWbx9nZmXSFe998fHwU99WbMmUKU6bI07hCCCGEeHjUmcWfEEIIIYRc%2BbNenYnzVxeZiynboQOkpEBYGBw4UDX9%2BmffaFfg6gohIbBrl/pTsT17qpcPDIQffoCnnlJ9Kte1gfqjZu3bw86dEB5uiLSi5Nqmr9TPD4Y%2BdOkCqanKfbgbtFtVYCDs3w8dO6r2oVFD9Snevj18/z08/bR6H37%2BMk27DQ0aQEAAHDqk/ISiuSfMO3SAtDQIDVWeCEADW5WwF5ifRwDXt2xXP7%2BLi2EO/PCD%2BtOkXbuqlweL5lKD%2BupzyaI%2BfLlD/fwNGhjmwP796k%2BJdjcTOqlDB9i9G4KDFRvRwL7EbHGzffj8O/UKXFwgKAj27lUfhx49NNtAYCDs2QOdOyuOQwNH7RAhD2QuaY2DmfYDUFqqXr6cRqiX21qP6t5lNswJGomWVGAJrToseQTYTKgX7M1c%2B9EKl1OeXlPuhnyrVh99VP111mKyfBZCCCGEeIjI175CCCGEqDvka1%2BryTsohBBCCPEQqTOLv8jISHx9ffH39ycgIICwsDBiYmLIyclh/vz5DB482CT/7du3CQoKYu7cuSbHMzMz8fLyIqvCTgx37tzh97//PcHBwZRacj%2BJEEIIIWqGBHm2Wp3qcWxsLOnp6Rw6dIjExERyc3OZNWsWERERZGRkUFhYaMx7%2BPBhbt26RWpqqkkdaWlpeHp60qZNG%2BOxHTt2UL9%2BfR555BG2bt36wPojhBBCiHskiz%2Br1dkee3h40KNHD06fPk2nTp2oV68eu3btMqanpqby7LPPcuHCBXIqbLSZmppKeHi4SV2bNm2iZ8%2Be9OzZk4SEhAfWByGEEEKIB61OPvCh1%2BvJzs5m8%2BbN9OnTB0dHRzp37kxqaiq97oYGSU1NZdCgQZw/f560tDT69%2B9PWVkZ%2B/btY%2BHChca68vLy%2BO677/jTn/6Ek5MTS5cu5eLFizz66KP31KbLly9z5coVk2OPP96cJk3cVcvodKavVbi6ap/U2dn0VUlgoHpa%2BVZ3Glveta%2BvXtxs%2B8F8H8rj4ajFxdFqP1jWBxf14hb1wVzMnvr1TV8r69BBu7wFjeig8c80i/rgovEmmGs/VMs4dKinXtzqcbCkD%2BbGwcvL9LVycTO/La0eB2s/z2C%2BDw7axWt8LplpvxDAQ3mlrrrVmTh/kZGR5OTkYGtri16vp6ysjNDQUBYtWkTTpk354IMPiIuLY9u2bRQXF9O5c2e2bt3Kpk2bOHv2LAsWLGDv3r2MGzeOXbt24XL3F9i///1vtmzZYrzi98ILLxASEsLkyZPvqX1Lly5l2bJlJsdeeWUy06bJDiJCCCFEtRk3rvrrjIur/jprsTp15S82Npbhd4M7Xr16lfj4ePr3709SUhIRERHMmTOHs2fPcu7cOTw9PfHw8CA0NJSPP/4YMFwNDAwMNC78wPCV7/AKASP79evHihUriI6OrrIPsJaoqCgiKwXzHTKkOZ98ol5GpzPMt3Hj4Pjxqukpi3ZVPViRs/MvwYVv3FDOEx2tXt7bGzZsgJEjITNTMUt4/R9Ui%2Bt0sGYNjB%2Bv3H6AnQtSlRPKNWhgiLR88KBycF5zi3Bvb/jwQxgxQrUPT7vsVy2u08Hq1TBhgnofvl92SLsN9etDu3Zw4gQUKwRjfvll7fI6HaxbB2PGqDYizFY90LS5eQSQskR9HKlfH3x84MgR5fYDvPSSenmwaC6F1dOeS2b7sFR9HKlfH558Eo4eVe/DH/%2BoXh4MV5vWr4fRo0FhO8gw%2B92axS3qwzt71StwdgZfX8jI%2BHWfZzD0IT4eRo1S7oPDHs3iD2QuaY2DmfYDhkDc5kiQ5992kGe58me1OrX4q6hhw4ZER0eTkJBAcnIyI0aMoFWrVqSmppKdnU1oaCgAAQEBFBUVkZWVRVpamskCbd%2B%2BfZw6dYpFixaxePFiwPDk782bN9m1a5exDku4u7vj7m76Fe/Zs4Yfc44fV4mmr7ZrR2U3bqjnVYuSX1Fmpmq%2Bg2a%2B8QRD%2B9V2x7C4D9evK%2Be1pP2g3YeG5otr9kFtx4jKiouV86ptlaDUCJW8Byz4XadRXH23hYqKi9XzVcM4HND4JrCcZh8sGQe1MQDLx%2BHYMcW8Byz8bWn1ONy4Yf04HDummPeAo2XFa3wuqbRfCEAWf9XgN/EOlpQYtl2KiIhg79697N2717hws7e3p1OnTuzYsYPDhw8TERFhLJeQkEB4eDhJSUl89tlnfPbZZyQlJdG1a1c2bdpUI30RQgghhLif6uzir6SkhLi4OAoKCujWrRtgWPzt27ePY8eOERwcbMwbEhLChg0baNy4Md53b0gvKiriyy%2B/JCoqiscff9zkZ9iwYXzzzTdcvXq1RvomhBBCCBUS6sVqdarHc%2BfOxd/fH39/f8LCwvjuu%2B9YvXo1rVq1AiA4OJiCggLatGlDo0aNjOVCQ0M5d%2B4c4eHhxvv4vvjiC5ycnOiqsGF9REQEjRo14r///e%2BD6ZgQQgghxANSZ%2B75%2B/bbb83mcXZ2Jj09vcpxHx8fjlW6eTgqKoqoqCjFeuzs7NixY8eva6gQQggh7p%2BH8Epddasziz8hhBBCCFn8WU/eQSGEEEKIh4hc%2BbuPrpeaCadfFgjsIaWsM5RWDWswZ5dGjCagRQuYGALvp4fw00/KeRY0UI8H1b4%2B7MQQy08tpMu1mxp9KDW0f2dpZ7ipHJZh0WHtPri7w6guEJ/VhcuXq6a/2VA7Bnl7F/geQyw/tZAuP1/ViEdVFAjs5/uijnBVuQ%2Bf/qTdhkaNIBL4NjeAn3%2Bumj6poUq8s7v8G8BWoHuDNNJV%2BnA9X2MczMwjgPkac8nDA8Y%2BBWvTn6LCTogm5mrMI7BsLl0vdVKv4FYHYDcpt4LhlnKMkUV7SlSLu7vDqI4Qn9FRcR4BzHVWLw8QUA%2B2A7%2Bvt5tDCptsXC%2By7vMMMH%2BPmXEIgrUZQerjUE/789Te8e44OO7hoMKOKte1Ps/wQObSPGf18u3r3f0819vDQZWNTgqVD5uwAfQof%2B4tvWiklU%2BPnfnz22rnMUerjtJbZs5vA45Aqd5BNVSfE3VifwdlcuXPavIOCiGEEEI8ROTKnxBCCCHqDrnyZzVZ/AkhhBCi7pDFn9Xq9Ds4atQoFi5cSGhoKBs2bDBJ%2B/rrr/Hy8iIjI8Pk%2BFtvvcXQoUMBiIyM5KOPPqpS70cffVRln14hhBBCiN%2BCOr34A7CxsSEsLIzU1FST4ykpKTg7O1c5npqaarLFmxBCCCHqENnhw2q/iR5HRESwe/dubt%2B%2BbTyWlpbGgAEDSEtLMx7Ly8vjxIkTsvgTQggh6ipZ/FntN3HPX0REBEVFRRw6dIjAwEAuXrxITk4Oo0ePpl%2B/fpSWluLo6EhqaiqNGjUiICCg2ttw%2BfJlrly5YnKs%2BRNP4N64sXohLy/T10patNA%2BZ9Ompq9K2rdXT9PpTF8VlQaqp5lpPxhCcGhxczN9rUyr/WBhH4o0%2BnB3r2fjq4IKOwUqcnExfa3M31%2B7fNu2pq%2BKrlo3Dh4e6sXNjQFU0ziUdVBPs3IuWdIHcx/7du1MX6so1hgDqBvjoPV5hhrvg0XzSGCjEb2qYrq5fOLhZaPXq0UBqv1GjRpF%2B/bt%2BfOf/8zAgQOJjIxk8uTJ/Oc//2HLli3ExcXRvXt35syZQ2hoKK%2B99ho3b95k8eLFgOGev5ycHGwrrfrv3LmDh4eHRVvKlVu6dCnLli0zOTb5lVeYMm2a9R0VQgghhMGMGdVf5/z51V9nLfabuPIHhqt/KSkpTJ48mbS0NEJDQwEIDQ01/v%2BuXbuYMmWKSbnY2FiGDx9ucuyjjz7i/fffv6fzR0VFVXlIpPmAAVDpQRQTXl4QHw%2BjRkGlvYcB3p%2B4R/OcTZvCwIGQmAh5ecp51q1TL6/TwZo1MH48HD%2BunGdnaWf1Csy0HyB%2BinYf3Nzguefgiy8gP79qurlh0Olg9WqYMEG9D98XdVSvwNsbPvwQRoyAzEzFLN%2B%2BvV%2BzDS4u0Lkz7NkDRUVV0%2BfN0yxO27awciVMmgQnTyrn2XrVunFY%2B4r6OLi5Qd%2B%2BkJSkPAZgeI%2B1WDSXyoLVK/DygvXrYfRo9bk0ebdqcXPzCMz3oV27X%2BbSiRNV07cXQ2Qh0AAAIABJREFUa4wB1Ilx0Pw8wwPpw5o16qe35PO8fbt6%2BXI2NqgGN7ZETZc3V0eZdqxvbGzAwcGQT60ORwczDTTXCbmsWKf9phZ/q1evpqioiN27dzN27FgAQkJCWLt2LWfOnOHixYuEh4ffl/O7u7vjXvl7qdOnLSt87Bj8WDWavtquHZXl5annPXjQfPnjxzXyqezcYUKl/YDqbguV5ecr57Wk/WCmDyo7d5jIzFTtg9KuHUqKipTzpqdbVv7kSY28%2BdaNg9puCyanyFfPVy3jUKq8c4eJY8fggHI%2BS%2BaS2jwCOHTIfHkwLPwU8xZZMAZQu8fBks8z1HgfNOeRsHhhqddbvwitlR7Ce/Sq22/mHezQoQP169cnISGB0tJSfH19AcPi7%2BjRo/zvf//D29u76gJNCCGEEHWHPPBhtd9Mj%2B3t7enSpQvx8fF07twZOzvD3odNmzbld7/7HRs2bJCnfIUQQghxX1y4cIGXXnqJ4OBgunbtysKFC7lzp%2Bq%2B6EuXLuXJJ5/E39/f5Cc3NxeAkpISZs2axdNPP01wcDBTp06loKCgWtv6m1n8geGr3/PnzxMSEmJyPCQkhHPnzsniTwghhKjraumVvylTpuDh4cHWrVuJi4tj69atrFO58b5fv36kp6eb/DRr1gyAxYsXk5GRwcaNG/nqq6/Q6/W89tpr1dLGcnX6nr/4%2BHiT/x8yZAhDhgypki82NpbY2Ngqx9We5h0%2BfHiVh0CEEEIIIZSkp6eTmZlJXFwcrq6uuLq6MnbsWNatW8e4ceMsrufWrVts2rSJ%2BfPn88gjjwDwpz/9ieeee46cnBw8tGIt3YM6vfgTQgghxEPmPtyjpxirt3lzi58TyMjIwNPTk0YVAsP6%2Bvpy%2BvRpioqKcKkUCPbYsWMMGzaM48eP88gjj/Daa68RHh7OuXPnuHbtmvG5BYA2bdpQr149MjIyZPFXF7y3TPt5/GbNYBCQMGMPd7/qN/H6B2a%2BptbpYOK/mbjrRdW4CK9/vUC9fIMGQAA73z0E168rZnnvkHofzLUfIOazZ9XPD9CmDYxaxqjdkyErq2r5L2dpl7/bh%2B%2BXqffh05/UH3dr1AgiMYRzUXuqd8BAMyENAgNh/34i/9xR8QnJAevXa5d3cwOeY%2Bt09Tgl792wbhxmbNTYq7pdOxj7HmPTXlaOcQLM%2BPrv6uXBorn0/uES1eJNm8JAIHHGbtWwRTGf9lY/f5s2MGopo/ZMUZxHADFbXlcvD8Y%2BbF%2Bq3IcVB8x/nocA//k/jXFI0vg8tGkDY5cxdp/yZwFgxteWfR7UxkHr8wwWzqVNz6hX0LYtjF3B2N1/VI1bNOPLN9XLW/B55o6ZcDUAdnbY3LmtnHbrlnZZGxtwdMSmrFT1UdkSnMwV1wyzYo65Ouwt/Mt999Z3RbfvaP9es7PTzqNV9313HxZ/GzdurBqrd/LkKuHh1BQWFtKwYUOTY%2BULwYKCApPFX4sWLWjZsiUxMTG4u7uzceNGJk2aRFJSEoWFhQBV6mrYsGG13vcniz8hhBBCPNQUY/U2b35PdVi6Z0blW9TGjh3LF198QVJSEk8//fQ91fVryeJPCCGEEHXHfbjypxir9x64ubkZr9qVKywsxMbGBjet/Q7v8vT05PLly8a8hYWFNGjQwJj%2B888/01RrL9d79Jt62lcIIYQQ4kHz8/Pj0qVL5Fe4dSc9PZ22bduaLOIA3n33XdLS0kyOZWVl0bJlS1q2bEmjRo3IyMgwph0/fpzS0lL8/Pyqrb11evE3atQoFi5cSGhoKBsqbaP29ddf4%2BXlZfIGArz11lsMHToUMOzt6%2Bvra4yx07VrV/7yl79wUm2PLSGEEELUrFoY6sXHxwd/f38WLVpEUVERWVlZxMXFGSOH9OrVi3379gGGq3p/%2B9vfOHXqFCUlJaxZs4Zz584xYMAA7OzsGDp0KCtXruTSpUsUFBTwz3/%2Bk2eeecYYCqY61OnFH4CNjQ1hYWGkpqaaHE9JScHZ2bnK8dTUVJN4f7GxsaSnp7N//35Wr15NkyZNGDRoUJVVuRBCCCFqgVq4%2BANYsmQJly9fJiwsjNGjR9O/f39GjBgBwOnTp7lx4wYAMTExPP3004wdO5agoCA%2B//xz1q5dS4sWLQCYOnUq7du3p1%2B/fnTr1o0GDRrw97%2BbeejuHv0m7vmLiIhgzpw53L5927izR1paGgMGDCAtLY2JEycCkJeXx4kTJ5gzZ06VOhwcHGjTpg0zZszAzs6O2NhYvv76a2N9QgghhBBqWrRowfvvv6%2BYduzYMeN/Ozk5MXPmTGbOnKmY19HRkdmzZzN79v9n783jqiq3x//3AUEZNEVB%2B5QNDoApMpjKpN7QRjXTNKdUsixT1AbL6/1aNvjRa6kNcPtUehXl51BOYWZlZkUCzuFAIWZWeu2KiZQMxiC/P44Qh7OfvbcdUA6s9%2BvFa%2Bt%2B1nr2Wmc9%2B7B49n7WM7tW7IR6lPzl5%2Bdz8OBBQkNDOXXqFKdPn2bs2LEMGjSI4uJi3N3dSUtL45prrqFr1666/cXGxrJ48WIyMzMNZSvQqhEEvrRqpX6BtHlz26Md/v76F73hBtujFtXeNbDBw8P2qIHeLLOh/WAtX6HH9dfbHqujZz%2BY8qFK2SU7KlbfVyvBZEtoqL4NgYG2x%2BoYvexbsaS/2tL%2BqrTyVKubikPHjuq2tm1tj1rUQBz03lV2eCwZjSNw2AejJy4NxocOHdRtjo4lE%2BPIYSwGpZsq2nXk9HowoW5ITfRRr2mAe/HWNJby2l5PXIuMGTOG4OBgpk%2BfzpAhQ4iJiSEuLo61a9eyZcsWli1bRr9%2B/Xj55ZeJiIhg5syZXLhwgddeew2wvvM3YcIEzd08unfvzosvvsg99%2BjUFqtCfHy8XY2gyZPjmDrVXI0gQRAEQRBMMH9%2Bzfc5Y0bN91mHqRczf2Cd/UtNTSUuLo709HQiIiIAiIiIqPz/zp07TRdsLC0txeUy/rrQqhG0Y4cv69erdZo3h7594fPPodoKcQDu3/Kw/kVvuAFmz4YXX4Sff9aWmTZNre/hYZ0ROnoUioo0RdYfVc98GtkPcP8Xcerrg3WW4%2B9/h3/%2BE06etG9/9FF9fRM%2BbP9V7YO3N/ToAbt3Q36%2BtkzM9DB9GwIDYdUqGDUKsrLs2zVeM7ChWTPo1Qu%2B/hp%2B/11TZP2F/kp1U3HY%2Bpj6%2Bm3bwqxZMGcOnDihLTN5slofTMVhw/f6YykmBrZvV/sw5Aude/f6661f3vPna48jgEuvfygx8GHtEf2nAM2bw%2B23w2efqX0Y9pXO/WB0L4DD94Pe/Qwmx9K2x9UdtG0L//gHzJ2rHkuP6%2BibGEdU2flAiasrlCmKPKvOV2CxgJubbpXmYtwdUTfEqA8zbyPpfQRmMNKvb0WeGxr1KvlbsmQJ%2Bfn57Nq1i9jYWADCw8NJTEzkxx9/5NSpU0RHRxv29dNPP1FYWEi7du1MX1%2BrRtCOHSir5FclL08hp9i1w46ff1bLqqrkV6WoSCnnkP2g3KnAjpMntWXN2A%2B6Pqh27qhKfr6OnMauHZpkZWnLKnbtsOP335WyvxYaq%2BvGQbFzhw0nTqjlaiAOqp07qpKXpyNnZiypxhE47IOZewFq4H6o6z6YqYZw4oRazsHvJIcxm5GVlytlzfSgo26amuijXiLJn8PUm08wJCQEDw8P1q9fT3FxceW%2BeOHh4Xz33Xd8%2BeWXBAYGmiriGB8fj7%2B/P/5G79wJgiAIgiA4GfVm5q9Ro0ZERkaSlJREjx49KlfptmzZkptuuomVK1dy55136vZx%2BvRpli5dyueff87y5cuvhNmCIAiCIFwOMvPnMPXqE%2BzVqxcnTpwgPDzc5nx4eDg///yzTX2/CubMmUNQUBBdunTh3nvv5fTp06xdu9b0Kl9BEARBEARnwqln/pKSkmz%2BX32z5ApmzZrFrFmz7M5v37691mwTBEEQBKEWkJk/h3Hq5E8QBEEQhAaGJH8O49R1/uo6esWFAYKDISUFeveGAwfs239b87F%2BB82aQVQUpKYqS4Rw331q/ZAQ2LULevaEjAxNkWua/KFUN7If4LcPvlBfH6y1Vrp3hz17tGutGNVZDAmB9HSIiFD60LqZomQEEBQE27ZBv35w6JC2zOkFSdoNFfj4QP/%2B8NFH2qt1x47V1w8Nhf37ISxMubL4mmbq29RUHDZ8rr5%2B06Z/1rs5f15bZsAAtT6YisM17uo4ODyWjMYRWGOkR0gIpKVBZKSmD9e46S%2B5NuXDus/UHTRtCuHhsHOnOg733qtrg1Ec9GIAdWAsmRhHFJpY%2Bm6xKJfJll00rpxsWOYEgxoqjtZZMeqjtFRf12IBd3coLlYvF3ZXl6up7EMvPbiaFajj42u%2BT5Nl4OoLMvMnCIIgCILzIDN/DiOfoCAIgiAIQgNCZv4EQRAEQXAeZObPYZz%2BExwzZgyvvvoqERERrFy50qZt69atBAQEkJmZaXN%2B3rx5PPDAAzbnduzYQUBAAC%2B%2B%2BGKt2ywIgiAIwl/ExaXmfxoY9cJji8VCVFQUaWlpNudTU1Px9PS0O5%2BWlmZX82/t2rX079%2Bfjz76iD/%2BUC9yEARBEARBcGbqRfIH1gLPu3btoqzK6qj09HQGDx5Menp65bmzZ89y9OhRm%2BTv3LlzbN%2B%2BnalTp9KiRQs%2B%2B0xnRZ4gCIIgCFcPmflzmHrzzl%2BvXr3Iz8/n4MGDhIaGcurUKU6fPs3YsWMZNGgQxcXFuLu7k5aWxjXXXGOzg0dycjKdOnXipptuYuDAgaxbt44BRqUtqpGTk8OZM2dszt14oy/Nm6v3Eq7YOli5hXCzZvoX9fKyPWoREqJuCwiwPWoQ3Fitbmg/WEtw6OHpaXusjp79Jo0I0vl4OnSwPWri46NvQ0WcVPEKDdXXDwy0PWoQrPMxmopD06bqNqMYQI3EIdjNIXX9sXQFfAg2%2BLZ0hjjoxcCEupXa9MGUAYJhmZWK9qtZjkWo0zh9nb8xY8YQHBzM9OnTGTJkCDExMcTFxbF27Vq2bNnCsmXL6NevHy%2B//DIRERHMnDmTCxcu8Nprr1X2MWDAAEaOHMno0aM5ceIEd9xxB5999hnXX3%2B9aTvi4%2BNJSEiwOTdpUhzTpjWs2kGCIAiCUKv8%2B9813%2BfDD9d8n3WYejPzB9bZv9TUVOLi4khPTyciIgKAiIiIyv/v3LmTKVWKOWZkZPDjjz9y9913A9C2bVtCQkLYsGEDU6dONX3t4cOHExMTY3Nu5Ehf1q9X6/j7w5Il8MgjkJ1t354yL1X/ol5e1r%2BiMzKgoEBb5qmn1PoBAbBihbUI8ZEjmiK9G%2B9SqhvZD5CycI/6%2BmCdIejcGTIztYu3GsXA3x%2BWL4dx45RG9PNK1zwP1hm/t9%2BGiRPh%2B%2B%2B1ZbY9%2BZG%2BDc2aQa9e8PXX2sW2n3tOXz8wEFatglGjICtLU6S3936luqk4LNitvr6nJ3TpAocPqwvoTpum1q8wwiAOvd3UcXB4LBmNIzDnQ2IixMZqGtG7UZrduerqhj68slPdgacndO0KBw%2BqfXjySV0bjOKgF4MK9as6lkyMI9L04wDU/yLPRn1bLODmBiUl6kLNbgbTwHW5yHMDfExb09S75G/JkiXk5%2Beza9cuYmNjAQgPDycxMZEff/yRU6dOER0dXamzdu1aSktL6du3b%2BW5kpISTp8%2BTVxcHC4mB5mfnx9%2BfraPeH/6yfpjRHa2opq%2BateO6hQUqGVVVfKrcuSIUu5AE2N1pf2g3m2hOoWF2rJm7K8wQiF7yODpOVgTP9UOH5q7dmjx%2B%2B/asopdO%2BzIylLKHjDhg24cVLstVKWwUC1XA3E4YLChQIW6Q2NJNY7AYR8OGPyurKpeV%2BNgJgYV6lfVB51xJKCflFWXc%2B6He0ItUa%2BSv5CQEDw8PFi/fj3FxcV07twZsCZ/M2bM4MsvvyQwMLAySSsoKGDLli28%2BOKLhIeHV/ZTVFTE0KFDSU9PJyoq6qr4IgiCIAiCBjLz5zD1Kvlr1KgRkZGRJCUl0aNHD1xdXQFo2bIlN910EytXruTOO%2B%2BslN%2ByZQuNGzdm8ODBuFfb5zAmJoZ169ZJ8icIgiAIQr2i3qXPvXr14sSJEzYzeWCd/fv5559tSrysX7%2BegQMH2iV%2BAPfffz/btm0jLy%2Bv1m0WBEEQBMEkUurFYZx%2B5i8pKcnm/8OGDWPYsGF2crNmzWLWrFk259asWaPst0%2BfPhxSvgQmCIIgCMJVoQEmazWNfIKCIAiCIAgNCKef%2BRMEQRAEoQEhM38OI8lfLfLb7wZ1kPJDgf2k5IfB7/YlPmbv1F%2Bif%2B21MDEK3j4UxS%2B/aMssaKTepzikEaQCUY12kaEYCQV6PhjYD/DqXn0f/PxgXHdY/m13cnLs219wKdLVD3G55INLOhmK74OCXJ0aHb%2BHArvZ9nsPyNX24Z3CEl0bWnnC/cD6C/35VaO02bPNxujqB3tDCtZafqqSLrpjyUQc5uvEoXVriO0Bid/24PRpbZmXaiIO53W%2BsAtCgX2kFHSD86qxdFGpbjSOAF5yVdSdu0SwC%2BwAol3SOOBq337ewfsZYM4udRzatIFHwmHJ4XD%2B%2B19tmXkOxkH3fgZTPszbrT%2BWxveApYfVY2mOjg9mxtHv6mFQiaurup6f2bxBT64cjQFSBQtQ7qIvY4ReH6Um%2BnYDSizu1o4026UETENGkj9BEARBEJwHmflzGEn%2BBEEQBEFwHiT5cxin/gRjYmJYvXq13fmTJ08SEBBAly5dCAoKIjg4mL59%2B/Lqq69SWlpqqL969Wq7rdoEQRAEQRDqA/V65i85OZn27dtTXl5OVlYWEyZMwMfHh4cb2AbOgiAIglBvkJk/h6nXyV8FFouFTp06ERYWxvHjx6%2B2OYIgCIIg/FUk%2BXOYBvEJlpaWsn//fvbs2cPdd999tc0RBEEQBEG4atTrmb9BgwZhsVi4ePEiZWVljB07lh49etjIzJkzh7lz59qcu3jxIq1bt76sa%2BXk5HDmzBmbc74334xf8%2BZqpcBA22M1rr1W/5qtWtketQgJUbf5%2B9seNSkKVbcZ2A/WEhx6%2BPjYHqujZz%2BY9KFEx4eAANujBnqfL0BFiFWhDg7W1zflQ75jcdAbzkYxgBqKw4XaG0tmfHA4DoU69oMpH9q0Uau3bGl71MLhOOjdz%2BDwWHLUB1PjSBBk5s9hLOXl5U5b7CcmJoYJEyYwcuRIm/MnT56kb9%2B%2BbNmypfKdv1OnTjFv3jyKior497//rau/evVqFi9ezPbt203bEh8fT0JCgs25uEmTmDJt2l/0ThAEQRAEO5KTa77PQYNqvs86TL2e%2BavAYrFw3XXXMXPmTGJiYjh27Bjt27ev0WsMHz7cboWw78CBsHy5WikwEFatglGjICvLrvntR/frXrNVKxg6FNatg19/1ZaptvWxDf7%2BsGwZPPQQZGdry6QWhak7MLAfYPk0fR98fGDgQPjwQ8jNtW9/911ddXM%2BlPTQbgDrjF9SEowZA0eOaIqsn7Fb14bmzaFvX/j8c8jLs29/4w1ddfz9YckSeOQRtQ8p%2BY7FIXGqOg4%2BPnDvvbBpk3YMABYvVl8eTMbhQjd1B4GBsHIljB6tHktT9ynVjcYRmPNh6VIYP17bhx2FOjEAU3FYMkkdh5YtYfBg2LgRzp7Vllm2TN8Eozjo3s9gyoelcfo%2BDBpk/d2s8uHS396amBlHKSlq/QpcXaGsTLvNzKSRxQKOTIs4qm/UR5WiFUrc3KBEpz69WyMDA42csBgUDK9NZObPYRpE8ledCxcu1Hiffn5%2B%2BFV/LmV2cUlWFnxjX01ftWtHdX79VS2bkWGsn52tI1eoXeXfBoX9gHK3herk5mrLmrEfDHwoNuHDkSNKH1SJdXXy8rRlDxwwp5%2BdrSOr2G3BBp04qHZbqEpurlquRuJQVPtjSTWOoAbikG/CftD1QbVzR1XOnlXLORwHM/czODyWzp51bCzpjiNBkOTPYRrMJ5ibm8uiRYvw9/cnUOd9FkEQBEEQhPqM08/8aS3YWH7pUWvFgg8Ab29voqKiePfdd3F1dWzPRUEQBEEQrhIy8%2BcwTp386S3IOKJ4f8uM/siRI%2B0WgQiCIAiCINQHnDr5EwRBEAShgSEzfw4jyZ8gCIIgCM6DJH8O49R1/uo6c%2Bbot7dpYy3vsWSJ9uq%2BWfOb6ncQHAw7dkB0tHop4%2BbNan1vb%2BjWDfbtg/x8TZE5X/dRqhvZDzBr8Y3q6wN06QIffQT9%2B8Phw/btK1bo65vwYf5OtQ%2BtW0NsLCQmqlcnzvg0Rruhgo4d4Z134LHH4OhR%2B/b/9//09Zs2hR49YPduOH9eU2T%2B3r5KdVM%2B/F2nLENoKOzfD2FhyhWefPKJWh%2BsPkRGQlqa2oeMO5Xqpnx4S2csGY0jcHgs6d0LUAP3gxkfli7VtcFoLM1JV48jMOnDv3SqzwcFwdatcMcdcOiQtsyaNWp9E/cz0dFq/Qr0ar0UF%2BvrWizQpAlcuKAsdVKEhyPqhhj10cjEtI1RqRdH9d3c/nrfDvPZZzXf5%2B23O9zFf/7zH1588UUOHDiAp6cn99xzD08//TQuGsnq6tWrSUxMJCcnhxtuuIEpU6bQr18/AP7%2B97%2BzadMmm/UJjRs3Zu/evQ7bWIHM/AmCIAiC4DzU0Zm/KVOm0LlzZ7Zt28bZs2d57LHHaNWqFQ899JCN3KeffsrChQt555136Nq1Kx988AFPPPEEH3/8MW3btgXg8ccfZ8qUKbVma938BAVBEARBEJyEQ4cOkZWVxfTp02natCk33XQTsbGxvPfee3ayFy5c4KmnnqJbt264ubkxbNgwvLy8yLiCxS1l5k8QBEEQBOehFmb%2BcnJyOHPmjM05X19f%2B80bFGRmZnLddddxzTXXVJ7r3Lkzx48fJz8/H29v78rzg6ptJff7779TUFBA6yobZ%2B/cuZPPP/%2Bcn376ifbt2/PCCy/QpUuXv%2BKaJk6d/Bnt7evm5obFYsHFxYVWrVpx11138eSTT9Lo0gsTMTExnD59uvJ5fKtWrejZsyePPPIIHTp0uOL%2BCIIgCIJgQC0kf%2B%2B99x4JCQk25%2BLi4kw/es3Ly6NZs2Y25yoSwXPnztkkf1UpLy9n1qxZBAcH06OHdSvStm3b4uLiwrRp0/Dy8iIhIYHx48fz6aef0qJFi8t1TROnTv6MSE5Opn379pSXl5OVlcWECRPw8fHh4YcfrpSZNWsWI0eOpKSkhJ9//pl169Zx//338/bbbxMREXEVrRcEQRAE4UowfPhwYmJsF/f5%2BvpeVh%2BXu362pKSEv//973z//fesqLIgbfLkyTZyzzzzDJs3b2bbtm0MGzbssq6hol4nfxVYLBY6depEWFgYxxX77bq5udG%2BfXtmzJiBq6srs2bNYuvWrbIbiCAIgiDUJWph5s/Pz8/0I14tfHx8yMvLszmXl5eHxWLBx8fHTv7ChQtMmjSJoqIiVq5cqTuj5%2BrqyrXXXkuOmQ3OTdIgkr/S0lIOHjzInj17WLBggaF8bGwsixcvJjMzk65du5q6htb7Am5uvrRsqR5MLVvaHu0IDta/qL%2B/7VELxVQzAB4etkcN2rRRqxvaD9byFXq0b297rI6e/WDKhyqvUdhRcU9q3Jt/0rGjvg2XVmdVHqvT1KBkj6en7VEDh30IDVW3Vex1rbfntZEPXl62Rw0c9kFvLBmNI3B4LOndC1AD94MZHxwcSzXiQ1CQuq3idRm912Yc/E5yGItO2aOq7Tpyej2YUDekJvoQrixdunThl19%2BITc3tzLZO3ToEB06dMCr2vdieXl55StoiYmJNG7c2Kbtn//8J4MHDybw0ndycXExP//8c%2BVK4JrAqev8mX3n7%2BLFi5SVlTF27FieeeYZ3C4VKFLpA3Tv3p0XX3yRe%2B65x5Qt8fHxdu8LTJ4cx9SptbdUWxAEQRAaHKmpNd9nVJTDXTzwwAN07NiRmTNncvr0aR599FHGjx/P6NGjueuuu5gzZw633normzZtIj4%2Bnk2bNuGh8YfO5MmTyc3N5fXXX8fb25s33niDLVu2sHXrVjx1Jgkuh3o981f1nb9Tp04xb948Jk6cyL///W9D3dLSUs3CjCq03hfYvNmXJUvUOi1bwuDBsHEjnD1r3/5IokExU39/a9HX8eMhO1tb5o031PoeHnDLLfDtt1BUpCmy5JtuSnUj%2BwEe2dhffX2wznK8%2BSZMnQrHjtm3v/SSvr4JHxIPqX3w8YF774VNmyA3V1smNv0xfRvatoVZs6xVvU%2BcsG%2Bv8o6pJp6e1hmhw4ehsFBTJPHbHkp1Uz68Gaa%2BfmAgrFoFo0ZBVpa2TLU/bOzw8rLOVB84AAUFmiKJ2ZFKdVM%2BrNUZS0bjCBweS3r3AtTA/WDGh9mzdW0wGktLDqrHEZj04f071B106ABvvQWTJsH332vLzJun1jdxPxMSotavQK/Is1HlY4sFGjeGP/5QVmm%2BQBNH1A0x6sPM20j1ushzHa3z9%2Babb/Lcc88RFRWFt7c3I0aMYNSoUQAcP36cwkv35Pr16/nPf/5TucCjgkGDBjFnzhz%2B93//l/nz5zNkyBDy8/Pp2rUry5cvr7HED%2Bp58leBxWLhuuuuY%2BbMmcTExHDs2DHa6zxa%2BemnnygsLKRdu3amr6H1vsDGjeoq%2BVU5e1Yhp9q1ozrZ2WpZVZX8qhQVKeUcsh/UOxVU59gxbVkz9oOuD6odI6qSm6sjp7VrhxYnTmjLKna8sKOwUCnrsA%2BqnTuqkpWlljPrQ0FB7flgZiypxhE4PJbM3AtQA/eDng8OjqUa8UG1c0dVvv9eLefgd5LDmM3IysuVsmZ60FE3TU30IVw52rRpw%2BLFizXbjhw5Uvnv5cuX6/bTvHlz5un9kVQDNIjkrzoXLlzQbY%2BPj8ff3x9/vXfpBEEQBEG48tTRmT9nosEkf7m5uSxatAh/f//Klyirc/r0aZYuXcrnn39umJkLgiAIgiA4I06f/M0JfCYuAAAgAElEQVSZM4e5c%2BfanKtI3AYNGoTl0nIpb29voqKiePfdd23Kt1Tol5eX4%2BXlRUREBGvXrpUiz4IgCIJQF5GZP4dx6uRv%2B/btyraqz9f/ir4gCIIgCHUQSf4cRj5BQRAEQRCEBoRT1/mr6%2BjUuwWsFQtSU63lhTIy7NsLPvhMv4OmTSE8HHbuVK8CvEOnLENoKOzfD2FhylWeXp7q4WFkP0DBJ1%2Brrw/WDykszGqHVomQPn309UNDYd8%2B6NZN6UNTr4tK9eBg2LEDoqPVC6bPb03Xt8HLC7p2hYMHtX2oVgLIjpAQSE%2BHiAjlB%2Bnloih7gck4bPhUff2mTSEyEtLS1OPorrvU%2BnBlxtKWr9TX9/a2joF9%2B9SrRPv1U%2BuD1Yfdu6FHD00fvNz162aY8mHT5%2BoOmja1Xnv3bnUcbr9d1waj%2B8HLQ30vgEkfNn%2Bh7sDbG7p3hz171HHo21etb%2BJ%2BVpZwqYrFolwmW3bRuHKyXqUYANeLBjVUHK2zYtRHIxMP7XQ%2BA1MY6V/NCtRmqhdcLnqF8OshMvMnCIIgCILQgHDqd/4EQRAEQWhgyDt/DiPJnyAIgiAIzoMkfw7j9J9gTEwMq1evtjt/8uRJAgIC6NKlC0FBQQQHB9O3b19effVVSktL7eR37NhBQEAAL7744pUwWxAEQRAE4arg9MmfEcnJyRw6dIiMjAwSEhJITk7WLOC8du1a%2Bvfvz0cffcQff/xxFSwVBEEQBMEQF5ea/2lgNBiPLRYLnTp1IiwsjOPHj9u0nTt3ju3btzN16lRatGjBZ58ZrLIVBEEQBEFwUhrMO3%2BlpaUcPHiQPXv2sGDBApu25ORkOnXqxE033cTAgQNZt24dAwYMuKz%2Bc3JyOHPmjM25G2/0pUULP6VOxdbByi2EmzbVv6inp%2B1RC73l6xXb3Cm2uwMI8VCrG9oPxvVuPDxsj9UxWn5vwofgq%2B1DSIi%2BvgkjQnT%2BTDPlg95YqvBPz88aiIPDY8nbW91mFAMw9iEgwPZYjRA3fXWH4%2BDo/QyGcQhpoq/ucByuwHeSIDTEmbqaxunr/MXExDBhwgRGjhxpc/7kyZP07dsXNzc3LBYLFy9epKysjLFjx/LMM8/g5vbnN/mAAQMYOXIko0eP5sSJE9xxxx189tlnXH/99abtiI%2BPJyEhwebcpElxTJs2xTEHBUEQBEH4ExM7eF02ij/66iv1fuYvOTmZ9u3bU15ezqlTp5g3bx4TJ07k3//%2BNwAZGRn8%2BOOP3H333QC0bduWkJAQNmzYwNSpU01fZ/jw4cRUK%2BY7bJgv77%2Bv1vH3h2XL4KGHIDvbvj114U79i3p6/llcuLBQW2bSJLV%2BYCCsWgWjRkFWlqZIlMd%2BpbqR/QCp8Wp9wDpT06kTfPcdFGkUMp4wQV8/MBBWroTRo5U%2BRHvsU6r7%2B8PSpTB%2BvNqHHW8d1LfBwwM6doSjR7V9eOwxfX1/f1i%2BHMaNUxoR5aIuNG0qDq%2Bmqa/v5WWtdn3ggHaRaoC4OLU%2BXJmx9KY6jnh4wC23wLffascA4PHH1fpg/fJPSoIxYzR/uUS57dZVN%2BXDazp9eHpCly5w%2BLD6fjbyweB%2BiGqi8xli0ofX96g78PSEzp0hM1Ptw8SJan0T9zN796r1K5Aiz/W7yLPgMPU%2B%2BavAYrFw3XXXMXPmTGJiYjh27Bjt27dn7dq1lJaW0rdK1fmSkhJOnz5NXFwcLianl/38/PDzs33E%2B9NP1h8jsrMV1fRVVf6rU1ioljVTCT0rSymXofP0pgKl/aBOJqpTVKQta7aSu44PBwye2oLVB9UOHw77oPxwNIxQyGaYGIa6cTAzlgoKHBtHULtjSbVjRFWKitRyZn04ckRTNsPdnLrDcXD0fgZlHDJ0nopXxeE4FBY6FgedcSQI8tjXcRpM8ledCxcuUFBQwJYtW3jxxRcJDw%2BvbCsqKmLo0KGkp6cTFRV1Fa0UBEEQBEGoWRpU8pebm8uiRYvw9/cnMDCQDRs20LhxYwYPHoy7u%2B2f9TExMaxbt06SP0EQBEGoS8jMn8PUi%2BRvzpw5zJ071%2BZcRS2/QYMGYbn0boK3tzdRUVG8%2B%2B67uLq6sn79egYOHGiX%2BAHcf//9xMXFkZeXR/PmzWvfCUEQBEEQjJHkz2GcPvnbvn27su2IwYqgNWvWKNv69OnDoUOH/rJdgiAIgiAIdRGnT/4EQRAEQWhAyMyfw0jyJwiCIAiC8yDJn8NI8leLFBQa1EEqCgX2k1oUBoX2ZQ1eTNOv0dSmDTwWDu8cCOe//9WW%2BWcTdR8hjSEdiGi8nwxF5f%2BiIp2b7EIosI/UC92gSLssw8LdF9X6gJ8fjAmDpMwwcnLs25/30NcPaQKpWOuXqcpYFBQ3VndQEgLsYkdJTyjWrm2x%2BLD%2BXs8tW8KQrrDh%2B66cPWvfPt1dUXfuEsFukAL0dkvngKKcSMF5x%2BIwP0P9ObZuDbGRkJgdyenT2jIveeqPxRCPS3Hw2K8s6aJ7PxjcCwDxB9U2%2BPrCiG6w5mg3qm20U8ksT/26a8FNLsWhyW4OaPhQ8Ltj9zPA/L1qH1q3htgekPhtD3UcHLwfHP1OApi/28CH7pCY2V3pwxwvtQ/BHrADa21OVYmmPP2PALhUp09Rz89s3qAnV%2B6iv92LBShvZLAljAF6fZSWGuu7uUFJqTrebo2cen8HwUEk%2BRMEQRAEwXmQmT%2BHkU9QEARBEAShAeG0yV9MTAydO3cmKCiIoKAgunXrxqhRo9i9%2B8/tk5KTkxk6dCi33norQUFBDBw4kLVr11a2b9iwQVnHLyoqig0bNtS6H4IgCIIgXAYuLjX/08Bw6se%2Bs2bNYuTIkYB1V47Vq1fz6KOP8uGHH5KZmclLL73E66%2B/Ts%2BePbFYLKSkpDB9%2BnQ8PDwYMGDAVbZeEARBEITLpgEmazVNvfkEPTw8GD9%2BPH5%2BfqSkpJCWlkZYWBi9evXC3d0dNzc3%2BvbtS3x8PB06dLja5gqCIAiCIFwV6k3yV0FZWRmurq60a9eOvXv3sm3bNi5e/HN5WHR0NIGBgVfRQkEQBEEQ/jLy2NdhnPqxb1UKCgpYs2YNubm59OnTh5YtW3LkyBGmTJlCs2bNCA0NJTIykv79%2B9OyZctKvV9//ZWgoCC7/oqLiy/r%2Bjk5OZypVmPC9%2Bab8dPbGq4iCVUko23a6F%2BzVSvboxYhIeo2f3/boybFoeo2A/vBWspFDx8f22N19OwHkz6U6nQSEGB71KDKcNGkIsSqUAcH6%2Bub8qHAsTi0bq1WN4oB1FAcihzzwddXrd6ihe1RC4fjkK9jPzhHHPRiAFfEB704mBpHgiA4jKW8vNwpi/3ExMRw%2BvRpXC5l7E2aNKFTp048/fTTBFf5djlz5gypqans2bOHL7/8ksLCQv71r38RGRnJhg0bWLhwIampqXb9R0VF8fTTTzNkyBBT9sTHx5OQkGBzLm7SJKZMm%2BaAl4IgCIIg2KBVUNVRjP7Kr2c49cxf1QUfKnx9fbnvvvu47777KCkpYfLkySxatIjIyMgatWX48OHExMTYXnvgQFi%2BXK0UGAirVsGoUZCVZdf8zmP7da/ZqhXcfz%2BsXw%2B//qotk5io1vf3t5o3bhxkZ2vLpBd3U3cQGAgrV8Lo0Zr2AyQ9sU%2Btj3WGoH9/%2BOgjyM21b3/7bV11/P1h2TJ46CG1D6mlPdUdBATAihUwdiwo9oLeMGOXrg3Nm0NMDGzfDnl59u2vv66rjr8/LFkCjzyi9iGlwLE4JE5Rx8HHB%2B69FzZt0o4BwOLF6suDyTgUhak7MLgXANY8q74fWrSAO%2B%2BETz%2BFc%2Be0Zd56S315MI5DSr6O/WDKh8Spah%2BuRBx0YwBXxIclS9SX9/eHpUth/Hj1OPrqK7V%2BBa6uUFam3WbmCZ/FAo5Miziqb9SH6SLPOnXNDYs8GzlhMSgYXps0wMe0NY1TJ38qysvLWbRoEbfffjtdu3atPO/m5kZ4eDjr16%2Bv8Wv6%2BfnhV/0Z5/Hj5pSzsuAb%2B2r6ql07qvPrr2rZDO1NK2zIztaR%2B0O7yr8NCvsBzV07tMjN1ZY1Yz8Y%2BFBqopMjR5QdmP0jMy9PW/bAAXP62dk6sucdi4Nqt4Wq5Oaq5WokDoodI2zQ8UG1c0dVzp1Tyzkch99N2A91Ow5mYgC16oOZOOjeC4IgOEy9TJ8tFgs5OTk8%2B%2Byz7N27l%2BLiYkpLS/nmm29YtWoVffv2vdomCoIgCILwV5AFHw5TL2f%2BAF5%2B%2BWXeeecdnn/%2BeX755RfKysq44YYbGDFiBA899NDVNk8QBEEQBOGq4LTJ3/bt23Xb3d3dmTJlClOmTFHKDBkyRLmgQ2sRiCAIgiAIV5kGOFNX0zht8icIgiAIQgNEkj%2BHkU9QEARBEAShAeG0df6cgfnz9dtbt4bYWGs5Fq2VcTMW6VRTBQgKgm3boF8/OHRIW2bdOrW%2BlxeEhcH%2B/VBQoCkyP62XUt3IfoAZS9XFkwG45RbYuBEGD4Zvv7Vv16sLAaZ8WLhb7YOfH4wZA0lJ6pXJT39%2Bj74N7dtDfDxMmQLHjtm3P/OMvr63N3TvDnv2QH6%2Bpsire29Tqvv5Wcv1LF%2Bu9uGZhBvV1%2B/SxVprp39/OHxYW2bFCrU%2BWH3o1g327VP6EH%2Bwj1Ld1xdGjIA1a9SrdadM1SktERpqHQNhYcpVqnz4oVofoFkz6N0bUlLg99/tmudn6u8Hbup%2BWNJR3cEtt0ByMgwapH0vgPH9YBCHV3erYwAmx9KbbdUddOkCH38Md9%2BtHkurVqn1TdzPmCnTpVfr5cIFfV0XF/DwgKIiqLI7VFXyy7101T09obBQqW6IUR8eHsZ96H0EYGybYakYN2Mbao2ioprv08yHWo%2BQmT9BEARBEIQGhLzzJwiCIAiC8yDv/DmMJH%2BCIAiCIDgPkvw5jNN%2BgjExMXTu3JmgoCCCgoLo1q0bo0aNYvfu3ZUyycnJDB06lFtvvZWgoCAGDhzI2rVrK9s3bNhAQEBAZR9hYWEMHz6clStXUqb3soQgCIIgCEIV/vOf//Doo4/Ss2dPbrvtNl599VUuKl6uXLFiBXfeeSdhYWGMHDmSw1Xekf3jjz94/vnn6d27Nz179mTq1KmcU%2B1b%2BRdx2uQPrHv7Hjp0iEOHDrFjxw769evHo48%2ByokTJ/jkk0946aWXmDZtGmlpaezfv58nnniCuXPnsnnz5so%2BWrVqVdnHtm3bmDhxIklJSUycOFESQEEQBEGoa9TRHT6mTJlC69at2bZtG8uWLWPbtm0sX77cTm779u3Ex8fzyiuvkJaWxm233cbEiRMpLCwE4LXXXiMzM5P33nuPTz/9lPLycmbOnFkjNlbg1MlfVTw8PBg/fjx%2Bfn6kpKSQlpZGWFgYvXr1wt3dHTc3N/r27Ut8fDwdOnTQ7MPHx4fbbruNpKQkMjIy%2BOCDD66wF4IgCIIgOBuHDh0iKyuL6dOn07RpU2666SZiY2N577337GTfe%2B89hgwZQnBwME2aNOGRRx4B4IsvvqC0tJR169YxadIkrr32Wpo3b84TTzzBl19%2ByWkzG2ubpN6981dWVoarqyvt2rXjww8/ZNu2bcTExOByKbOPjo427MPX15f%2B/fvzySefcP/995u6bk5ODmeq1ahwdfWlVSs/pY6Pj%2B3RjqAg/YtWJLGKZBawlk5QUbG0XWeJe2udajOG9oO1fIUe7drZHqujZz%2BY8sFPHQJzPrRvr2/D9dfbHqvj7a2v7%2Blpe9TAYR%2B6dFG3Vfin56eRDybi4OurVm/RwvaoSWioui0w0PaoRbNmOp3zp48KX/XuBaiB%2B8HoXtCxrRKDOOiNI7hCY8nB7ySHMZrlsVj%2BPCpkXXQKpJlQN6Qm%2BqjX1MKHovU73NfXFz%2Bjm%2BYSmZmZXHfddVxzzTWV5zp37szx48fJz8/Hu8q9m5mZyT33/FlCzMXFhU6dOnHo0CE6derE%2BfPn6dy5c2V7%2B/btadKkCZmZmbQ2%2BiIySb1J/goKClizZg25ubn06dOHli1bcuTIEaZMmUKzZs0IDQ0lMjKS/v3707JlS8P%2Bbr75Znbt2mX6%2Bu%2B99x4JCQk25yZPjiM2Vr29XAX33qtoiN1m7uJvv21OTkWnTsqm2DBjdaX9ALEbzdmwcKE5ORU6Powx4UP//jqNY%2BLN2TBjhjk5FVVu9uqM626sPnCgTuO4j4w7ePNNYxkjdJKbEd2M1e%2B8U6dxxH7jDvRqyJklTHvAxPY2p65/PyQbd/Daa%2BYupIciDuNMxACMxtLHxh1U%2By68bHTuZ9O4umqfN5tYNmmibFL/mXb5l6nNPlQfgVFbBVe1lp8O5ejU/PyLaP0Oj4uL090itip5eXk0q/YHZkUieO7cOZvkLy8vzyZJrJA9d%2B4ceXl5AHZ9NWvWrEbf%2B3Pq5G/OnDnMnTsXgCZNmtCpUycSExO59tprAZg3bx5PPfUUqamp7Nmzh3feeYfXXnuNf/3rX0QaFAqtmEE0y/Dhw4mJibE59/HHviQmqnV8fKy/KDZtgtxc%2B/bY/6%2Bf/kU7dLAmfhMnwvffa8u88opa38PD%2BiX73XfKopmJB9WZk5H9ALHJg9XXB%2Bssx8KF8PTT8MMP9u3PPaevb8KHpEx9H/r3t9Y4VvkwZrfBzX/99dbEb/58OHnSvn3sWH19T09r4peZaa3qqsHyb9XZn4%2BP9Zf1hx%2BqfRj3vk522769NfGbOlW7SDXASy%2Bp9cEah1tusRYnVsRhzVF15tGihTXx%2B/RTUH2/jXhFJ4sPDLQmfqNGQVaWtszrr6v1wTqrVlFgWKNAcuIP%2Btmfqfth4yB1B%2B3aWRO/J5/UvhcAnn9e1wajOCw/rJ/9mRpLa%2B5Wd9C%2BvTXxi4tTj6X//V%2B1von7meBgtX4FehWOi4v1dS0Wa%2BJ34QIo9kAoLFdnZRbLnzWi/%2BoWCkZ9NG5s3Ee9LvJcC2j9DvfVe1yhweXsmWEkW9v7bzh18jdr1ixGjhypK%2BPr68t9993HfffdR0lJCZMnT2bRokWGyd%2B3335LO73HL9Xw8/Ozmx7evFld6b8qubkKOdWuHdX5/nu1rKpKflWKipRyDtkP6p0KqvPDD9qyZuwHXR9UOxVUJTdXR071S6w6J09qyyp2vLCjsFAp67APqt0WqnLsmFrOrA9FRUpZ1c4dVTl3TkdOtXNHVbKy1HIau3Zokp%2BvKWv2dRuH7wfVvVBhmxkUcTAzjqCWx5KD30kOY5T1VDxSLC9Xyl7U%2Bb1sQt2QmuijPlMbn4nW7/DLwcfHp3LWroK8vDwsFgs%2B1d6jaNGihaZsx44dK2Xz8vLwqvKKxG%2B//WbqqaVZ6uXbBOXl5SxcuJCDBw/anHdzcyM8PJwig61hjh07xscff8yAAfrbOQmCIAiCIHTp0oVffvmF3CpT5ocOHaJDhw42SVyFbGZmZuX/y8rK%2BPbbbwkODqZt27Zcc801Nu3Z2dkUFxfTRe9928ukXiZ/FouFnJwcnn32Wfbu3UtxcTGlpaV88803rFq1ir59%2B2rqlZSU8PXXXzNx4kT69evHHXfccYUtFwRBEARBj4sXa/7HUW655RaCgoJYuHAh%2Bfn5HDt2jGXLllU%2BnbzrrrvYu3cvACNHjuSDDz4gIyODoqIi/u///g93d3f%2B9re/4erqygMPPMDbb7/NL7/8wrlz51i0aBG33347rVq1ctzQSzj1Y189Xn75Zd555x2ef/55fvnlF8rKyrjhhhsYMWIEDz30UKXcr7/%2BStClVbUWi4Ubb7yR0aNHM2bMmKtluiAIgiAICurqo/A333yT5557jqioKLy9vRkxYgSjRo0C4Pjx45V1/Hr37s1TTz3FE088wdmzZwkKCuLdd9%2BlyaVFRlOnTqWgoIBBgwZRWlrKbbfdxgsvvFCjtjpt8rd9%2B3bddnd3d6ZMmaK7UmfIkCEMGTKkpk0TBEEQBKGB0aZNGxYvXqzZduTIEZv/jxo1qjIxrI67uzuzZ89m9uzZNW5jBU6b/AmCIAiC0PCoqzN/zoSlvLbXEzdgmjbVbw8Ohh07IDoaDhywbz//wefGF%2BjRA3bvhvPntWVuv12tHxoK%2B/ZBt27KFZJNvdR3mZH9AOc/3qG%2BPlgLvoaGWq%2BvtbpP8X5mJSEhsGsX9OwJGRmaIi08/1Cqd%2B0KX30FffpAtfVBlZzbkq5vg5eXtaODB/%2B6D2lpEBmp9KGpq3YJGDAZh81fqa/v7W0dA/v2qVeT9jMoOxQaah2HPXoox9I1nuq6EcHBkJICvXurffht5WbtBrAWcO7d29qJalWvbvE6rD7s328t96LhQ1Nv/a9KU3HY9IW6A29v6N4d9uxRx8HoPWSDODRtolO7gzrgg4lxZFiqBay1UhS/2kpKjWvEGZY5Qf9zNOzADI72YaTfyGDuR%2BczrGy/Shis2fxL1GZd8bqIzPwJgiAIguA0yMyf40jyJwiCIAiC0yDJn%2BPUy1IvgiAIgiAIgjZOO/MXExPD6dOncblUCt3d3Z2AgACeeOIJevToAUBycjJJSUn8%2BOOP/PHHH9x0002MHTuWYcOG2fU3YsQIDh06xJdffnnZW7oIgiAIgnBlkJk/x3Ha5A9st3crKipi9erVPProo3z44YdkZmby0ksv8frrr9OzZ08sFgspKSlMnz4dDw8Pm907vv/%2Be44ePUpUVBQbN27k0UcfvVouCYIgCIIg1Cr15rGvh4cH48ePx8/Pj5SUFNLS0ggLC6NXr164u7vj5uZG3759iY%2BPp0OHDja669at47bbbmPAgAFs2LDhKnkgCIIgCIIRdXGHD2fDqWf%2BtCgrK8PV1ZV27drx4Ycfsm3bNmJiYiofD0dHR9vIFxcXk5yczPz587n11luZPXs2e/fu5dZbb72s6%2Bbk5HCm2o70N97oS/Pm6o2i/f1tj3YY1Yrx9LQ9ahEaqm4LDLQ9ahCss/zd0H6wlkHRo2J9vWqdfUiIvn5AgO1Rg65N1OodO9oeNaltH0x8kME6f6aZioO3t7rNyH7QH0dgKg7BOnEw5UOzZuq2Cv/0/DTyweB%2BCNa5zaAG4uDo/QyGcQh211e/6j6YGEeC0BCTtZrGaev8xcTEMGHChMrHvgUFBaxZs4aEhAS2bNlCy5YtmT17Nh988AHNmjUjNDSUyMhI%2BvfvT8uWLSv7%2BeSTT5gzZw5fffUVrq6uzJgxAxcXF%2BbNm3dZ9sTHx5OQkGBzbtKkOKZNU%2B8wIgiCIAjC5XH2bM33WSUtaBA4dfJXdcFHkyZN6NSpE08//TTBwcGVcmfOnCE1NZU9e/bw5ZdfUlhYyL/%2B9S8iIyMBePjhh%2BnQoQMzZ84EIC0tjcmTJ7Njxw68jGZ8qqA18zd8uPHM39KlMH48ZGfbt%2B9YtFv/op6e0KULHD4MhYoiwI8/rtYPDISVK2H0aMjK0hSJ9tinVDeyH2BHvKJQawUeHlY7srK0K3dOnKivHxAAK1bA2LFQbfucCvo02aVU79gRliyBRx6Bo0e1Zb6KV1R/rsDDw9rR0aN/zQd/f0hMhNhY5QcZ7ZKmq24YhzfUccTDA265Bb79Vl09VW8cgTUOSUkwZowyDr2bqMezv/%2BfcVD5kDInRX19b29rceb9%2B9XFhZ94Qq0P1nG4ahWMGqV5P0R77tdVNxWH1/aoO/D0hM6dITNTfT9Pnqxrg1Ecot31v1Ouug8mxhG71PdzJVLkuV4Xea72q7ZGaGjrPJ36sW/VBR8qfH19ue%2B%2B%2B7jvvvsoKSlh8uTJLFq0iMjISE6dOkVaWhq7d%2B/m/fffr9QpLCxky5YtmquCVfj5%2BeHnZ5vo/fST9ceI7GxFNX3Vrh3VKSxUy6qq5FclK0spd8BE/qu0H7R3vNCiqEhbVrHjhR1HjihlDxo8rgNr3qba4eOK%2BZCdrZQ94GpOXRkHVUJUlaIitZyZcQTWOKjGkok46Pqg2rmjKvn5ajmzPijuhwM6Tzur4nAcCgtrLQ4HdB69V%2BWq%2B6AzjgRBHvs6Tr1Z8FGV8vJyFi5cyMFqv83d3NwIDw%2Bn6NLsxoYNG2jfvj2bN2/mgw8%2BqPwZMWIE69evvxqmC4IgCIIg1Cr1MvmzWCzk5OTw7LPPsnfvXoqLiyktLeWbb75h1apV9O3bl4sXL7Jhwwbuv/9%2BbrzxRpufBx98kG%2B%2B%2BYZjx45dbVcEQRAEQaiCrPZ1HKd%2B7KvHyy%2B/zDvvvMPzzz/PL7/8QllZGTfccAMjRozgoYceIi0tjZycHAYNGmSn27FjR7p27cr69et59tlnr4L1giAIgiAItYPTJn/bt2/XbXd3d2fKlClMmaK92jY6OprDhw8r9deuXeuQfYIgCIIg1DwNcaaupnHa5E8QBEEQhIaHJH%2BOI8lfLXI%2B32ApfGEosJ8dhWGQb7%2By7bkv9avwXHstTOoBb%2B3twS%2B/aMss8lDfJSFNIBWIarKPDEV93wI9HwzsB5ifqu9D69YQGwqJB0I5fdq%2B/aVGf%2BjqhzS65EOjXWQoRnNBvpu6g6JQYDdfFfVQ%2BvB/GfrlFlq1gmFdYe2Rrvz6q337390UJS8uEdwIUoDejdI4oDD1/O%2BOxWHO1%2Bo4tGkDj3SDJd9047//1ZaZ567/GYS4XYqD224yFIWEC/R8yLf6kJIfBr8rxlKm2ofWrSG2NyT%2B0FtzHAHM8dYfi8GesANrSRetlb2O3s8Ac3TuhzZt4JHusORA91qLg%2B79DFfdBzPj6HcTv/hdXaHsoravRhVOzMmZ6MTshf5CH6bK1QAlqL/73HDKKm9CDSHJnyAIgiAIToPM/DlOvVztKwiCIAiCIGgjM3%2BCIAiCIDgNMvPnOHV%2B5m/IkCG88sorNucyMzMJCAhg69atNudXrFhBdHQ0Dz74IAsWLLDrKyUlhYAqG4aPGTPGlJwgCIIgCHUDqfPnOHU%2B%2BevVqxdpabb7mqampuLp6Wl3Pi0tjejoaCxXcc9BQRAEQRCEuoxTJH9ZWVnk5uZWnktPT2fw4MGkp6dXnistLWXPnj306tXrapgpCJYUN38AACAASURBVIIgCMIVQGb%2BHKfOv/MXEhKCt7c3aWlpDBgwgOLiYvbv38/s2bNZv349p06d4n/%2B5384ePAghYWFREVFsWbNmituZ05ODmfOnLE553vzzfg1b65WCgy0PVbj2mv1r9mqle1Ri5AQdZu/v%2B1Rk6JQdZuB/WAtwaGHj4/tsTp69oNJH0p0fKh4vK/zmF/v8wWoCLEq1MHB%2BvqmfMh3LA5t2qjVW7a0PWpRI3GoxbFkNI6gBuJQqGM/OEcc9GIAV90HU%2BNIEASHsZSXl9f5Yj9Tp07Fy8uLefPmkZ6ezuzZs9m6dSvjxo1j4MCBDB06lISEBFJSUnj//fcZM2YM%2B/btw9XV1aaf8vJySkpKOHLkCIBpOTPEx8eTkJBgcy5u0iSmTJv2F70WBEEQBKE6l/Gr2TQN7TX/Oj/zB9ZHvxWJVVpaGuHh4QBERESQnp7O0KFDSU9Pt3nkO378eKZPn27TT0pKChMmTLA5Z1bOiOHDhxMTE2NzznfgQFi%2BXK0UGAirVsGoUZCVZdf81iP7da/ZqhU88AC8/z6axYUBVq5U6/v7w7Jl8NBDkJ2tLZNaFKbuwMB%2BgMSp%2Bj74%2BMC998KmTVDlyX4lixfrqpvzoaSHuoOAAEhKgjFjlN8oa5/ZrWtD8%2BZw%2B%2B3w2WeQl2ffHh%2Bvq46/PyxZAo88ovYhJd%2BxOCyZpI5Dy5YweDBs3Ahnz2rLLFumvjxc/bFkNI7A%2Bhnr4e8PS5fC%2BPHaPuwo1LEfnCIOujGAq%2B6DmXGUkqLWr8DVFcrKtNtcTLzsZLGA3rSIxahAslEHZtDpw1SRZzco0akJ7tbIQR%2Bu4rv1DfExbU3jNMnfrFmzOHbsGDt37mT8%2BPEAhIeHk5SURGFhIQcOHOCZZ565ajb6%2Bfnh5%2Bdne/L4cXPKWVnwjX01fdWuHdX59Ve1bEaGsX52to5coXaVfxsU9gPK3Raqk5urLWvGfjDwodiED0eOKH1QJdbVycvTlj1wwJx%2BdraOrGLXCxt04qDabaEqZ8%2Bq5WokDldgLKnGEdRAHBQ7XthRl%2BNgJgZw1X3QHUeCIDiMUyR/bdq0oWPHjqSkpPDdd9/Rs2dPALp06UJRUREbNmzAy8uLrl27XmVLBUEQBEGoTWTmz3Hq/GrfCnr16sXKlSvp0KEDPpfe6m7UqBHdu3dn%2BfLlREZG4mJmPl8QBEEQBKEB4zTZUq9evThx4kTl%2B34VRERE8PPPP0uJF0EQBEFoAEipF8dxise%2BAJGRkZqrb2NjY4mNjbU5l5SUpNlH7969bfowKycIgiAIQt2gISZrNY3TzPwJgiAIgiAIjuM0M3%2BCIAiCIAgy8%2Bc4TlHk2VmZM0e/vU0ba223JUu0yyLMesNXv4OuXeHzz6FvXzh4UFvm/ffV%2Bt7e0L077NkD%2BfmaInNSb1OqG9kPMGt5R/X1AW65BZKTYdAg%2BPZb%2B/Z339XXN%2BHD/N1qH1q3hthYSExUlwiZ8eXd%2Bja0bw8JCRAXB8eO2bc/9ZS%2BftOmEB4OO3fC%2BfOaInN23a5UNxWHxTeqr9%2BlC3z0EfTvD4cPa8ssXarWB6sPPXrA7t1KH%2Bbv7atUNxWHJTpjyWgcgcNjSe9eAJNxeE6nNlpoKOzfD2FhyjIrbNmiawPNmkFUFKSmwu%2B/2zXP2ac/lq/IWEpMVOubuJ/529/U%2BhXo1ajT%2BFxscHGxjufz55VZxnmXa3TVvbygoOCvJylGfXh6GvehV%2BsQjG0zrBPoZmxDbaG6PRwh1GDzm/qGzPwJgiAIguA0yMyf40jyJwiCIAiC0yDJn%2BPU%2BQUfQ4YM4ZVXXrE5l5mZSUBAAFu3brU5v2LFCqKjo3nwwQdZsGCBXV8pKSkEVNnAb8yYMdxyyy0EBQURFBREdHQ0U6dO5ZvamFMWBEEQBEGoA9T55K9Xr16kpaXZnEtNTcXT09PufFpaGtHR0VguY8/B8ePHc%2BjQITIyMli1ahWdO3dm3LhxfPDBBzVivyAIgiAINYfU%2BXMcp0j%2BsrKyyK2yW3t6ejqDBw8mPT298lxpaSl79uz5y8WeXV1dueGGG3jssceYOXMmL7/8Mr8bvRgsCIIgCILgZNT55C8kJARvb%2B/KWb7i4mL279/P2LFj%2Be9//8upU6cAOHjwIIWFhURFRTl8zWHDhlFeXs6OHTsc7ksQBEEQhJpDZv4cp84v%2BGjUqBGRkZGkpqYyYMAA9u3bR%2BvWrbnpppsICQkhLS2NoUOHkpaWRlBQEM2bNwdg6dKlLF%2B%2B3KYvs1VtGjVqxA033MDJkydN25mTk8OZM2dszrm5%2BdKypZ9Sp2VL26MdXbvqX7RjR9ujFt7e6raKegE6dQPatFGrG9oP1hIcerRrZ3usjp79YMqH1q3V6pe2ia48atK%2Bvb4N119ve6xO06b6%2BlciDl26qNsq/NPzswZ8cDgOemPJaByBw2NJLwZgMg569SQCA22PWjRrpm%2BEl5ftsRo14oOjY8nB7ySHMdoDvqJdR06vCxPqhtREH/WZhpis1TROUedv7dq1JCQk8NVXX7Fw4UJ%2B%2B%2B03XnrpJd5%2B%2B22OHj3KwoULGT16NOHh4UyZMoUxY8YQHBzM9OnTbfpJSUlhwoQJlVu3qeQABg4cyH333cfDDz9sysb4%2BHgSEhJszk2eHMfUqVP%2BoteCIAiCIFQnNbXm%2B6yBh4a65OXl8cILL7B7925cXFzo06cPzz33HE2aNNGU37p1KwkJCZw4cQI/Pz8efvhhHnjgAcCab7z11ls0amQ7f/fFF1/QqlUrU/bU%2BZk/sL73N2vWLI4dO8bOnTsZP348AOHh4SQlJVFYWMiBAwd45plnauR6BQUF/Pjjj7TTm0WoxvDhw4mJibE5t3mzL0uWqHVatoTBg2HjRjh71r79kdXqoriAdcbv7bdh4kQ4elRb5p//VOt7ekLnzpCZCYWFmiJLDnRXqhvZD/DIh4PU1wfrTM1rr8GTT8IPP9i3z5qlr2/Ch8RMtQ8%2BPnDvvbBpE1R5rdSG2L1x%2BjZcfz38/e/Wz1prtvjBB/X1PT2ts7wHD6rjcDhcqW4qDhv7q6/fvj28%2BSZMnapdpBpg9my1Plh96NLFWthXFYdveyjVTcVho85YMhpH4PBY0rsXwGQc3gpTdxAYCKtWwahRkJWlLRMfr2sDXl4QEgIZGdYKwdVY8p3%2Bb7grMpZeeEGtb%2BJ%2B5tZb1foV6BV5VhWPrsBEleYCF/VMuIsLeHhAUZFjRZ71%2BlDkCzbU5yLPzjjz99xzz1FcXMzmzZspKSlh2rRpLFiwgFka30sHDx5k%2BvTpLFq0iL/97W%2BkpqYyefJk2rVrx62Xxv%2BgQYP4p97vdwOcIvlr06YNHTt2JCUlhe%2B%2B%2B46ePXsC0KVLF4qKitiwYQNeXl50NXpMapJ3332Xpk2bEhERYVrHz88PPz/bR7wbN6qr5Ffl7FmFnGrXjuocPaqWNfqiA%2BuXrELOIftBvdtCdX74QVvWjP2g64Nqx4iq5ObqyKl%2BiVXn5EltWcWOF3YUFiplHY6DareFqhw7pparAR8cjoOZsaQaR%2BDwWDITAzCIg5kyUllZajmzi9AKCjRla8QHR8eSg99JDmM2c9B5GcxMDzXxLllDfR%2BtvvHrr7%2Bybds2Nm7ciM%2Bld1smTZrEtGnTmDFjBm7VMum8vDwee%2Bwx%2BvXrB0CfPn3w9/dn7969lcmfozhF8gfW2b%2BVK1fSoUOHyg%2BvUaNGdO/eneXLlxMZGYmLgy9InDt3jvfff59ly5axaNEi5XSsIAiCIAhXh9pIiLXe2/f19bWb1PkrfPfdd7i6utrUGe7cuTOFhYX88MMPNucBevfuTe/evSv/X1paypkzZ2hd5cXpI0eOMGLECLKzs7n22muZOXMm0dHRpm1ymtdJe/XqxYkTJwgPt338FRERwc8///yXS7wsXbq0ssjz7bffzr59%2B1i%2BfHllxi0IgiAIQt2hNlb7vvfeewwZMsTm57333qsRe/Py8vD29rapQXzNNdb9oc%2BdO2eov2DBAjw9PbnnnnsA69PQtm3bMn/%2BfFJTUxk2bBgTJ07kB9UrLxo4zcxfZGRk5UKNqsTGxhIbG2tzLikpSbOP3r172/ShkhMEQRAEoeGg9d6%2Br6%2Bvaf3k5GSeffZZzbYnn3zSdLWRqpSXl7NgwQI2b97MihUraNy4MWAtRzds2LBKudjYWD766CM2bdrEE088Yapvp0n%2BBEEQBEEQauOxr9Z7%2B5fDoEGDGDRIe1Faamoq%2Bfn5lJWV4erqClhnAwFaKuoqXbx4kZkzZ3Lw4EFWr15N27Ztda9/3XXXkZOTY9pep3nsKwiCIAiC4Gx06tSJ8vJysqqs4j906BDNmjXj5ptv1tSZO3cuR48e1Uz83nrrLZsdzgCOHTtmmCBWxSnq/DkrijqrlYSEWOsVRUVZKzNUp2DDp/odNG0KkZGQlqZejXnXXWr90FDYvx/CwpSrC7081cPDyH6Agi1fqa8P1oKv3brBvn3aq/uM3r0MDYXdu6FHD6UPTZuo6xUEB8OOHRAdDQcOaMuc35qu3VCBl9efpVo0ymtQ7VGCHSEhkJ4OERHKD9LLpUhX3TAOmz5XX79pU%2Bvnt3u3ehzdfrtaH6xx2LfPGkvVWPJQ/7nu8FgyGkfg8Fjyctepe4FJH9Z9rO6gWTOrcmqqelXvpXd%2BlBjc03r3M9SBsWRiHOnWL6lAp9RL2UXjvd%2BNyqS4YmCDUQdm0OvDzNSXUa2WRgYP/vTK5VS0XyU%2B%2B6zm%2BzT6inOUJ598kvz8fObPn09xcTFxcXF0796dGTNmADBu3DiGDx/OPffcw759%2B3j88cfZsmWLZt2%2BuXPnkpKSwltvvcV1113HypUreeONN/j0009pY1TJ/RLy2FcQBEEQBKfBGcvfvPTSS8yePZu%2Bffvi5ubGgAEDePLJJyvbT5w4wW%2B//QbA%2BvXrOX/%2BPLfddptNH927d2fp0qU8/fTTgPVdv7y8PDp06EBiYqLpxA8k%2BRMEQRAEQahVmjZtyqJFi5Tt27dvr/z33LlzmTt3rlK2cePG/OMf/%2BAf//jHX7ZHkj9BEARBEJwGZ5z5q2s4xYKPIUOG8Morr9icy8zMJCAggK1bt9qcX7FiBdHR0Tz44IMsWLDArq%2BUlBS7gooAx48fJzAwkEcffbRmjRcEQRAEocaojTp/DQ2nSP569epFWlqazbnU1FQ8PT3tzqelpREdHW1TTNEMa9eu5Y477iA9PZ3TZvahEgRBEARBcEKcJvnLysoit8qO7%2Bnp6QwePNhmuXNpaSl79uy57N0%2BSktLSU5OZsSIEdx666188MEHNWa7IAiCIAg1h8z8OY5TvPMXEhKCt7c3aWlpDBgwgOLiYvbv38/s2bNZv349p06d4n/%2B5384ePAghYWFREVFsWbNGtP9f/HFF7i4uBAeHs7p06d5%2B%2B23eeyxxy7LRq19AW%2B80ZcWLdRFI/39bY92NG2qf9GKWjJ6NWVCQ9VtgYG2Rw1CPNTqhvaDtQSHHh4etsfq6NkPUPEIX%2BNRfgXB7mp1Uz4Y1ewx8iEkRF/fhBEhOn%2BmmfJBbyx5etoetTCKg5mxpLNVtsNjySgG4PBYCnHTPF2JKR%2BaNVO3OXo/g2Ec9O5nqANjycQ4EgTBcZymzt/UqVPx8vJi3rx5pKenM3v2bLZu3cq4ceMYOHAgQ4cOJSEhgZSUFN5//33GjBnDvn37KqtpV1BeXk5JSYnNNm%2BPPfYY7dq1Y8aMGRQUFBAVFcXixYvp3r27afvi4%2BNJSEiwOTdpUhzTpk1xzHFBEARBECpJTq75PhWbc9RbnGLmD6yPfiuSq7S0NMLDwwGIiIggPT2doUOHkp6ebvPId/z48UyfPt2mn5SUFCZMmFD5/9OnT/P1119X1tvx8vKiX79%2BrFu37rKSP619AYcN8%2BX999U6/v6wbBk89BBkZ9u3p76aZn%2ByKl5e1irFBw5oFxcGiItT6wcGwqpVMGoUVKk8XpUoj/1KdSP7AVLf3Ke%2BPlhnam65Bb79Foo0Chk//ri%2BfkAAJCXBmDGgsfczQLT7bqW6vz8sXQrjx6t92PHWQX0bPDygY0c4elTbB6NZZH9/WL4cxo1TGhHloi40bSoOr6k/Azw9oUsXOHwYCgu1ZYziEBgIK1fC6NHqsdREPRYcHktG4wgcHktRbjqfISZ9eCVV3YGXl3WWOCNDfT9PMfhj0uCe1rufoQ6MJRPjiL171foVSJHnel3kuSE%2Bpq1pnCr5mzVrFseOHWPnzp2MHz8egPDwcJKSkigsLOTAgQM888wzl9Xv%2BvXrKSsrY%2BTIkZXnSkpKaNSoEc899xzeRo8tL6G1L%2BBPP1l/jMjOVlTTV1XIr05BgVpWVSW/KllZSrkMnac3FSjtB/VuC9UpKtKWNWM/WH9ZK2QP6DxurCA7W73Dh/IXcXWKirRllR%2BOhhEK2Yz/n70zj6u6Sv/4G5BNRFwQXCIrTUUBwVxySQtUXMONIVxTmyY3XJpMJ9J0zGVcc2kxzaXcUlDULJeY%2BTmljk2mokmmllsqoICyCej9/XHlDlfud4ELytXn/Xrd19XvOef5Ps/3nHvv4Syfo2N1rmo96GlLWVnWtSNQb0saU45QCm1JqR2B1W3pqMrygcKoxqB0ckdhMjOV81lZD3o%2Bz1AO2pJKOxIEwXpspvNXs2ZNnn32Wfbv38%2BpU6do1aoVAH5%2BfmRnZxMbG4ubmxsBAQG6bRoMBmJjYxk5ciS9evUyuz5gwAB27drFn/70p1KPRRAEQRCEkiEjf9ZjM50/MI7%2BrVu3jvr161OtWjUAKlSoQIsWLVizZg1t2rTB3l7/BuZDhw5x5coVBgwYUOT8vJdffpktW7ZI508QBEEQhEcKm5B6KeCFF17g4sWLpvV%2BBbRu3ZoLFy4UW%2BJly5YtdOjQweLByf369ePYsWOcOXPGKp8FQRAEQSg9ROrFemxq5K9NmzZmu3QLePXVV3n11VfNrn3%2B%2BecWbbRv395kY/78%2BYr3qlevnsV7CYIgCILw8HgcO2uljU2N/AmCIAiCIAjWYVMjf7ZGZpbGVvjsIOAI32c3g6yiO9umHlCXYKxVC95oAx8fb8OVK5bzzKuobCPQFb7HKP%2BgtAtQNQYN/wHmHlaPwcsLhjwHa048R1JS0fT3nFSkCjAK736PUYZDaTdmZo6KOm9uEHCY73JbQo7lGD45ru6Dpyf0DYCYXwNISSmaPtFJQXrkHk0dYT/Q3vEgx5RiuGldPcw4qFwPNWvCay1hxfGWXL1qOc8sV/U/tQNd7tWDy4%2BKu3rLsi1ptSOA6S7q9djUCb7DKA1kaYd4ZoZ1n2eAGT9q1ENbWHGqrXI9qHyeQfszbe13EsAslXrw9oZhLeGzEy1ROiVzpptyW2rqeq8OXH/kmILWtY790tgBBizHqndZuHo%2BHUaKsf68uDby7jpYvF4YRyAP5e8%2BR2xC4tciMvJnPTLyJwiCIAiC8BghI3%2BCIAiCINgMMvJnPdL5EwRBEATBZpDOn/XY3LTv4MGDiY6OtpgWFxdHs2bNyMrK4ubNm8yZM4eQkBACAgJo164dY8eO5XShM4smTZpkOtatMGfPnqVhw4ZcunSpzOIQBEEQBEF4GNhc569fv358/fXX5OTkFEnbtm0b3bt35%2B7du0RGRvLrr7%2ByfPlyjh07xubNm6lWrRoREREi4SIIgiAINoro/FmPzXX%2BQkNDsbe3Z8%2BePWbXr1y5wqFDhwgPD%2BfTTz8lIyODDz/8kHr16mFnZ0etWrWYOnUqkZGRpFjakikIgiAIgvAYYHNr/pydnenZsydbt27l5ZdfNl2Pi4ujfv36BAQEMGnSJMLDw3FyKqqbMXHixDLxKykpieTkZLNrNZ5%2BGq8qVZQLNWpk/n4ftWqp37PgYBILB5SYCAxUTmvQwPzdItlBymka/oNRgkONe6f0md7vR81/0BlDnkoMDRuav1tA7fkCFFSxUlU3bapeXlcMGdbVQ82aysWrVzd/t0Sp1EMZtiWtdgSlUA9ZKv6DbdSDWh2Arhi8vZWL64lBrR50tSPhsedxHKkrbewMBoPNif2cOnWKPn36EB8fT617PaTQ0FD69%2B/PkCFD8Pf3Z/bs2XTv3l3VzqRJk4iLi6NCBfM%2BsMFgIC8vj2%2B//ZYnnnhCl09Llixh6dKlZtdGjxzJmLFjixGZIAiCIAhqrFxZ%2BjaHDy99m%2BUZmxv5A/D19cXX15dt27YxYsQIfvrpJ/744w/TSKCdnR137tzRZatLly4sXLjQ7NrZs2fp1q1bsXyKiIggODjY7FqNnj1hzRrlQo0awfr10L8/JCYWSf749SOq9/T0hH79YMsWLIoLAyiccgcY/7petQqGDoVC%2B2DM%2BD67mbIBDf8B1oxVj6FaNejZE3bsgBs3iqYvX65aXF8MeS2VDTRsaHxIgwaBwlrQmLcPq/pQpQqEhMC330JaWtH0Dz5QLU6DBrBiBbz2mnIM%2BzOsq4cVI5XroXp16N0btm6F69ct51m1Svn28PDbklY7Avj0U%2BXbgzGGzz6DYcMsx/Bdlor/YBP1oFoHoCuGz0arxxAWBnFxyjF89pny7bXqAODf/1YuX4CdHVgzrKFV3k5LINlaBzRs5OVriHUDjo6Qp6Jr7ljByhjstH0Qyi822fkD48aPNWvWMGLECLZu3UrHjh2pWrUqAHXr1uXMmTMP1B8vLy%2B87p%2BX%2Bu03fYUTE%2BGnomr6Sqd23E9KinLeo0e1y58%2BrZJPQeXfDAX/AcXTFu7nxg3LefX4Dxox5OqI4ZdfFGPQu0Q0Lc1y3mPH9JU/fVol703r6kHpxIjCXL%2BunK9U6uEBtCWldgSlUA8ZOvyH8l0PeuoAVGNQOrmjMNevK%2BfTUw%2BqnwXhsUemfa3H5jZ8FNCzZ0%2BuXr3KkSNH2L17N%2BHh4aa00NBQvvzySzIyMoqUe%2Butt1i9evUD9FQQBEEQBKH8YLOdP3d3d0JDQ5k1axZubm60bt3alDZs2DA8PT0ZOHAgJ0%2BexGAwcPXqVaZMmcLBgwcJCQl5iJ4LgiAIglBSROrFemy28wcQHh7O8ePH6du3L3aF1h9UrFiR9evX06pVK8aMGUPTpk2JiIggPz%2BfzZs34%2BPj8xC9FgRBEAShpEjnz3psds0fQIsWLRQFmytXrszkyZOZPHmyYvnZs2dbvF6vXj0RghYEQRAE4ZHEpjt/giAIgiA8XjyOI3WljU1P%2BwqCIAiCIAjFwyZFnm2FGTPU02vWNGq7rVhhWdoheq6HuoGmTWH/fmjfXlkXYft25fKVKsFzz8GPP4KFndEAM/7dQbG4lv8A0SufVr4/QJMmsHMn9OgBJ08WTdfama0jhjmHlGPw9oZXXzXeRkma4u19ndR9qF8fPvoIRowASxJDkyapl3d3h5Yt4fBhuHXLYpZZh5U3KXl7G3XRPvtMOYbJi1WOi/H3hz17oHNnSEiwnGf9euXyYKyHFi3ghx%2BU6%2BHwS4rFddXDUpW1un5%2B8PXX0LUrnDhhOc/atcrlQTOGGd8r%2Bw86Pw%2Bf1lU24OcHX30F3bsrx6AmkgeabUmtHYHOtvQ3FX23oCA4cgSaNVOUiuGbb5TLu7tDmzZw4IDiZ4GOHZXLF%2BDgAEpar1lZ6mXt7cHNDTIzFYeYbuFuTXFNtGxUqqRtQ0umLz9fvbymTqCjtg9lxZIlpW9zzJjSt1mekWlfQRAEQRBsBpn2tR6Z9hUEQRAEQXiMsLnO3%2BDBg4mOjraYFhcXR7NmzcjKyuLmzZvMmTOHkJAQAgICaNeuHWPHjuV0oTODJk2ahK%2BvL/7%2B/vj5%2BfH888/z%2Buuv83//938PKhxBEARBEIqBSL1Yj811/vr168fXX39NTk5OkbRt27bRvXt37t69S2RkJL/%2B%2BivLly/n2LFjbN68mWrVqhEREWEm49KlSxcSEhJISEggNjaWl156iQkTJvDxxx8/yLAEQRAEQRAeCDbX%2BQsNDcXe3p49e/aYXb9y5QqHDh0iPDycTz/9lIyMDD788EPq1auHnZ0dtWrVYurUqURGRpJi4QBWOzs7ateuTWRkJAsXLmTx4sX8/vvvDygqQRAEQRD0ICN/1mNznT9nZ2d69uzJ1q1bza7HxcVRv359AgIC2Lt3L%2BHh4Tg5ORUpP3HiRNq2bat6j/bt2/PUU0%2Bxd%2B/eUvVdEARBEATrkM6f9djkbt/w8HD69OnDlStXqFXLKGGxdetW%2BvfvD8DFixd5%2BmkNiRENnn76aS5duqQ7f1JSEsnJyWbXHB1rUL26l2KZ6tXN34vQtKn6TRs0MH%2B3hJomgKur%2BbsFatZULq7pPxilXNSoV8/8/X60NA10xODtrVy8WjXzd4vUr6/uQ8FxgUrHBrory0IAULGi%2BbsF1GLQVQ/%2B/sppBfGpxalVD1bGoKse/PyU07TaEVgdg9pnAXTWg7UxWNmW1OoAdMYQFKSc1qiR%2Bbsl1GJwczN/LwvsNcY8CtJV8qlZ0FFck9KwIQhq2KzOX58%2BfejUqRMjRozgp59%2BYvDgwezfv5%2BqVasSEBDAjBkzePnll1VtTJo0idu3b7Nw4cIiaW%2B88Qa1a9dmypQpuvxZsmQJS5cuNbs2atRooqIeM/EgQRAEQShD5swpfZtvv136NsszNjnyB8aNH2vWrGHEiBFs3bqVjh07UrVqVQDq1q3LGUtiuzq5e/cuiYmJtGvXTneZiIgIgoODza7t3FmDFSuUy1SvDr17w9atcP160fTX1rZXv2mDBkZF2ddeg0K7mM2w0LE14eoKjRvDzz9DdrbFLCt%2Bek6xuJb/AK9t66F8fzCOcnzwAYwdC2fPFk2fNk29vI4YVicox1CtGrz8slEL%2B8YNy3le/c8IdR98fOBvf4OZM%2BHixaLpQ4eql69Y0TgidOKEogDtZydaKhavXh3CwiAuTrkehm3srHz/%2BvXhww9h5EjLItUA77%2BvXB6MMTRpYhTqVohh9ckWisV11cOmrsr3r1cPli6F0aMttyOA6dOVy4NmDCuOhOizygAAIABJREFUKfsPOj8PW7srG6hXDxYvhqgo5RimTlX1QastqbUj0NmWljZTNtCokVEQvH9/SEy0nOe%2BP5LNcHMzzngcO2ZUOLZEq1bK5QtQE3m2sFnQDHt74/dKdrbifGAmyiOTOopromVDZYDdxKMs8ixYj812/nr27MmcOXM4cuQIu3fvNhu9Cw0N5YsvvuD111%2Bn0n1TPW%2B99RZNmjTh1VdfVbQdExPD9evX6dRJ42SHQnh5eeHlZT7Fu3WrstJ/Ya5fV8indGrH/Zw%2BrZxX4bQFM7KzFfNZ5T9YPrXDEmfPWs6rx39QjUHppILC3Lihkk/vHxIXL1rOq3RSwf1kZSnm1RPD9esq%2BZRO7ijMmTPK%2BfTWQ1ZW2dWD0qkXhTl7VjmflTHo%2BSyAxufB2hisbEt66gA02pLSyR2FSUxUzqcnhsxM/bEWF709MpXFYHoslMZassd1PZoW8kysx2ZXFLi7uxMaGsqsWbNwc3OjdevWprRhw4bh6enJwIEDOXnyJAaDgatXrzJlyhQOHjxISIjlI44yMjLYtGkTM2fOZNKkSXhrLZARBEEQBOGBYosbPtLS0hg3bhxt2rShXbt2vPPOOxYl6wBiY2Np1KgR/v7%2BZq/jx4/fi/8uCxcuJCQkhBYtWjB8%2BHAuWpp1UsFmO39g3Phx/Phx%2Bvbti53d/86brFixIuvXr6dVq1aMGTOGpk2bEhERQX5%2BPps3b8an0ML8b775xvRgX3jhBXbu3MmiRYsYMGDAwwhJEARBEIRHjHfffZfs7Gx27txJTEwMZ8%2BeZd68eYr5W7RoYdIgLngFBAQAsG7dOnbs2MHy5cv55z//yVNPPcWoUaMozhYOm532BePDKSzYXJjKlSszefJkJk%2BerFh%2B9uzZzJ49u6zcEwRBEAShlLG1ad%2BUlBT27dvH1q1bqXZP0mDkyJGMHTuWt99%2BG8diLqDctGkTr776KvXuKQOMHz%2BeVq1acezYMQIDA3XZsOmRP0EQBEEQhPLMqVOncHBwoGHDhqZrTZo0ISsri3Pnzlksc%2BXKFYYOHUqLFi0ICQkhLi4OgJycHM6cOUPjxo1NeStVqkTdunVJ0LO2%2Bx42PfInCIIgCMLjRVmM/FnS6q1Ro0aRjZwlIS0tjUqVKpktT/Pw8AAgNTW1SP5q1arx1FNPMWHCBOrXr8/evXuZOHEiXl5ePPPMMxgMBlP5wvYs2VLCZnX%2BbAEtndLAQPj%2Be2jbFo4eLZqeuf1bdQPu7tCyJRw%2BrLwzTm3HclAQ/PgjPPec4s48dzflT1nTpvDdd9CunfJm41tff6d8fzA%2BpKAg4/0tSTu89JJ6%2BaAgY/wtWyrG4FFRWa%2BgaVPYvx/at1eOIf2bg%2Bo%2BuLlBQAAcP245hvskgIoQGAgHD0Lr1pYbAuBmb1nGpqC4WjsCyNz1f8r3r1TJ2AZ%2B/FF5R6yeeijrtrTr38r3d3ODZs3gyBFliRCtetBoS25OKroX6KyHnf9UNlCpErRoAT/8oFwPCpvVTGjUg1odgM562LJb2YC7O7RpAwcOKH8ndemiXD4oyFiHzZop7xbW88uvonOSl29n8XphNGVOUG8Lmgb0YK0NrfIVNMZ%2BtLRi7LSfY1mhpXhUEjw9i2r1jh49mjFj9Gn1xsXFMXHiRItp48ePZ9WqVfznP/8xXcvPz6dJkyasWbOG559/XtP%2BuHHjcHR05K9//Svt27dnx44dNCh0wENkZCStW7cmKipKl78y8icIgiAIwmONJa3eGjVq6C4fFhZGWFiYxbTvv/%2BejIwM7ty5g4ODA2AcDQSornqczv%2BoU6cOJ06coEqVKtjb25vKF5CWlqbbFkjnTxAEQRAEG6Ispn0tafWWFr6%2BvhgMBhITE2ly78jThIQEKleubPEo2g0bNuDh4UG3bt1M186ePYuPjw/Ozs48%2B%2ByznDx5kpYtjaLtN2/e5MKFC6bdwHqQDR%2BCIAiCINgMtqbzV61aNUJDQ1m0aBE3btzg6tWrLFu2jH79%2BlHh3vT7kCFD2LVrFwC5ubn8/e9/JyEhgby8PHbu3Mn%2B/ft55ZVXAOMU79q1azl79iwZGRnMmzcPX19f/NXOcL8Pmxv5Gzx4ME8%2B%2BSQzZswokhYXF8e0adP47rvvyM/P56OPPmLPnj0kJydTuXJlnnvuOUaNGmU2Tw5w69Yt2rVrh4%2BPDzt37nxQoQiCIAiC8Bgwffp0pk6dSkhICI6OjvTo0YPx48eb0i9evEh6ejpg7OdkZmYyduxYkpOTeeKJJ1i2bBl%2Bfn4AvPLKKyQnJzNo0CAyMzNp1apVkfWKWthc569fv35MmzaN6OhoXFxczNK2bdtG9%2B7duXv3LpGRkdSqVYvly5fzzDPPcPXqVZYvX05ERAQbN24023K9fft2mjVrxs8//8yxY8do2rTpgw5LEARBEAQd2JrOHxhPJVuwYIFienx8vOnfdnZ2jBw5kpEjR1rMa2dnR1RUlO7NHZawuWnf0NBQ7O3t2bNnj9n1K1eucOjQIcLDw/n000/JyMjgww8/pF69etjZ2VGrVi2mTp1KZGQkKSkpZmVjYmLo1q0bnTp1IiYm5kGGIwiCIAiC8ECxuZE/Z2dnevbsydatW3n55ZdN1%2BPi4qhfvz4BAQFMmjSJ8PBwnJycipS/fyv2qVOn%2BPXXX%2BnSpQt169ZlxIgRTJ48GVdX12L5ZUkjqG7dGlStqryAtGD2%2Bb5Z6P/h7q5%2B04oVzd8tERSknNaokfm7BZqqPAZN/0Fb76bgOSs9bzX/AQpGcAuN5N5PUxfFpAcTg5biug4nAlX%2BTNMVQ6VKymla/oN2PTzstlQaMWi0pUANEX6r68HazzNo1oNaHYDOGNS%2BlwrqSK2urPxOEgRbHPkrb9ikzt%2BpU6fo06cP8fHx1KpVCzCOCPbv358hQ4bg7%2B/P7Nmz6d69u6at6dOnk5KSwuLFizEYDISEhBAVFUWvXr2K5dOSJUU1gkaOHM3Ysfo0ggRBEARB0Oatt0rf5ty5pW%2BzPGNzI39g3Dbt6%2BvLtm3bGDFiBD/99BN//PGHaSTQzs6OO3fuaNq5ffs2O3bsMJ3va2dnR8%2BePdmyZUuxO3%2BWNILCw2vw5ZfKZRo0gFWrYOhQOH26aPr3Cw%2Br37RiRfDzgxMnICvLcp4RI5TLN2oE69bBgAGQmGgxSzvXHxWLN2gAn30Gw4ZZ9h/guyUKQq0FuLoa/UhMhGwLQsZ/%2BYt6%2BYYN4fPPYdAgUDjnub2L8nNs0ABWrIDXXlOOYf/S4%2Bo%2BuLrCs8/Cr7%2BWLIYGDWDNGhgyRNGJtvbKQtNa7Qjg%2B8XK9YirKzRuDD//bNl/gNdfVy4PD6YtLT6ifH9XV/D1hVOnlGN44w3l8qDZlto6qn8eddXDoh%2BUDVSsCE2awMmTyp9nrRg06kGtDkBnPfzjgLIBNzejUvSxY8pi26NHK5dv1AjWr4f%2B/RXbET%2BqxwCIyLOe8jYs8ixYj012/sC48WPNmjWMGDGCrVu30rFjR6pWrQpA3bp1OXPmjKaNb775hps3b/Lmm2%2Bajl25c%2BcOubm5XLhwgSeffFK3P5Y0gs6fN760OH1a4UQAJYX8%2B8nKUs6rpJJfmMRExXzHNGY8wei/0mkAij8A95OdbTmvHv/B%2BGOtFIPKLFoBZRqD0nEPlpxQyHtUx%2BpcleLKJ0YUJjtbOZ/eenjYbUmpDsDqtnS06CoSi1hdD1lZZVYPeuoANOpBz/dSZmaZfScJgkz7Wo/NbfgooGfPnly9epUjR46we/duwsPDTWmhoaF8%2BeWXZFj4An3rrbdYvXo1AFu2bKFv377ExcWxbds2tm3bxo4dO/D19ZWNH4IgCIIgPJLYbOfP3d2d0NBQZs2ahZubG61btzalDRs2DE9PTwYOHMjJkycxGAxcvXqVKVOmcPDgQUJCQjh//jw//PADAwYMoG7dumavfv36sXXrVl1Tx4IgCIIgPDhsTeS5PGKznT%2BA8PBwjh8/Tt%2B%2BfU3TtgAVK1Zk/fr1tGrVijFjxtC0aVMiIiLIz89n8%2BbN%2BPj4EBMTQ8OGDU1HrRSmR48epKWl8d133z3IcARBEARB0EA6f9Zjs2v%2BAFq0aMEvCov8K1euzOTJk5k8ebLF9AkTJjBhwgSLaR4eHhw/rrHIXxAEQRAEwQax6c6fIAiCIAiPF4/jSF1pY5M6f7aCniWDDg7K%2BRyw0gCAvcbMvsZ2fgPq2/k11QDQ0by0jFhZ3uoY7lpZD1p1oMOJO3fVY9BqBpptydp2BI98DFr%2B63HBwV6jnVv7WdCwofVZ0OOC5uehjL%2BTNMsHBcGRI9CsmcUdw3m52s9XU%2BolR2XHs729UfImM1O5l6IVg729Ub4oO9uyDRcV5foCNOrBYO%2BgWrw8K72MKQP53CVLSt9meUZG/gRBEARBsBlk5M96pPMnCIIgCILNIJ0/6ynV3b7BwcFs2LChNE0KgiAIgiAIpUixOn/BwcE0adIEf39/AgICaNu2LW%2B%2B%2BSbXrl3TXT4wMJBMCwr8q1evpmHDhsTGxhbHJUU2bNhAaGgoQUFBhIWFsW/fPlW//Pz88Pf3N73e0DpGSRAEQRCEB45IvVhPsUf%2BoqOjSUhI4Pjx48TGxpKSksKUKVN0l69YsaLFjtiOHTuoVq2aLhvr1q3j%2BvXrium7d%2B9m/vz5zJw5k8OHDzNw4EDGjRvHxYsXFcusXLmShIQE0%2Bvjjz/W5YsgCIIgCIItYdW0r7e3N507d%2Ba3334zXUtNTWX48OEEBgbSo0cP/vvf/5qV6dChA9u3bze7dv78eVJTU6lfvz4AOTk5dOrUiXXr1pnyzJ8/nz59%2BnDnzh1%2B%2B%2B03OnfuzLvvvsvZs2eL%2BJWTk8OECRN47rnncHR0JDw8HDc3N47qPWNVEARBEIRyiYz8WU%2BJN3wYDAYuXbpEXFwcPXr0MF3fuHEjCxYswM/Pjw8%2B%2BIBRo0axf/9%2BnJ2dAeMU61tvvUVKSgqenp6AcdQvNDSUEydOAODi4sK0adMYP3483bp149atW3zxxResX78eBwcHoqOj%2BfOf/8zatWt55ZVXaNasGUOHDuX5558HICwszMzXmzdvkpmZibe3t2I8a9eu5Z133uH69eu88MILTJ06lerVq%2Bt%2BHklJSSQnJ5tdq169BjVqeOm2IQiCIGgQFKSe3qiR%2BXtZoCbVUpCmJ48SBToqdnb6JIoeMx7HzlppUyydv%2BDgYK5du4a9vT0Gg4G8vDxat27N/PnzqV69OsHBwbRr147p06cDkJ6eTqtWrVi7di0tW7YkODiYWbNm8fnnn9OyZUsGDx4MQNeuXVmwYAEzZ86kd%2B/e9OnTB4BJkybh5OREcnIyzz77rMUTOTIyMvjyyy9Zu3YtTz/9NKtWrTJLNxgMjB07luvXr5uNJBZm1KhRBAQEMHDgQG7evMnbb7/N3bt3%2BeKLL/Q%2BGpYsWcLSpUvvszuaqKgyECQSBEEQhMeU4cNL3%2BbKlaVvszxT7JG/6OhoIiMjAeOI2ueff06vXr1MU7kFU7dgPCbNw8OjyIaQXr168fHHHzN48GB%2B/vln7O3t8fX1LXKvSZMm0a1bN9zc3Fi0aJFFfypVqkRgYCCHDx82m34GyMvLY9KkSZw5c4a1a9cqxrRs2TLTv93c3Jg6dSrdunXjwoULPPnkkxpPxEhERATBwcFm16pXr6Ep9CwizzqMWFleRJ4fvkAy2H4MIvJ8L/1hizw/95x6%2BUaNYP166N8fEhOLJOf954h6eXSIPOcW3bRoQkuguSCPGnZ2RiHnnBzLz8LJSb08PNIizzLyZz1W6fxVrlyZUaNGERMTw9dffw2AvYVGXTDlW0D79u155513%2BP3339mxYwc9e/a0aP/GjRvk5eVx8%2BZN0tLSzKZt7969S3x8PCtWrODy5csMHDiQOXPmmNJzcnIYOXIk2dnZrFu3jqpVq%2BqOq06dOoBxKldv58/LywsvL/MpXj0nfAiCIAjFwMKpHRZJTNSft7jo6X1Ys5is4HfUYJCejlAmlJrI8%2B3btwHMRt/S09NJT08vstbOycmJrl27snv3bnbv3m1xVM5gMDB16lSGDx9OUlIS06dPN43QxcTEsHz5clxcXBg6dCjdu3fH0dHRrOz48eOpUKECq1evLtL5LMzly5dZvnw577zzDk73/poq2ETi4%2BNTwqchCIIgCEJZIP1h67FqJent27dZtWoVqamphISEABAfH8%2BJEyfIzc1l%2BfLleHt74%2BfnV6Rsr1692LRpE97e3jzxxBNF0rds2UJSUhLDhg1j3LhxHDlyhG%2B%2B%2BQaAY8eO8d577xEXF0evXr3MOn5g3EBy5swZPvjgA4sdv71799K/f38AqlevTnx8PLNnzyYrK4tr164xa9YsXnrpJdUNIoIgCIIgPHhkt6/1FHvkb8aMGcycORMwTuc2btyYFStWmKZHBw4cyLx58zh69Cg%2BPj4sXrwYB4eiawsCAwNxdHS0OOWbkpLC3LlzWbhwIU5OTjg5OfHXv/6VGTNm0Lp1a9OGEiViYmK4fPkyLVu2NLseFhbGjBkzuHXrFufPnweMO4tXrFjB7Nmzad%2B%2BPQCdOnVi8uTJxX00giAIgiAI5Z5i7fYVioeeNX%2By4UOHESvLy4aPh79ZAmw/BtnwcS/9YW/40CofFARHjkCzZhbX/OXlaj9fzQ0fObfU/XNzg8zMkm/40No04uKiXh4e6Q0fAwaUvk0FMZBHFhEQEgRBEARBeIwotQ0fgiAIgiAIZc3juEavtJHOXxmiV5hdMV9OrnpBOzvj0H5envJUlZOrqgkHB/XpLKvF5TMy1NMLpkiysix%2Bou9UdNe8RZnHkJ%2Bvnl5QD3fuWKyHOxWUd5sXUBoxqOZRa0ul0I7gAcSQlaNe0NUVcnMVfxnynNw07%2B/oCHn5lmOooPPbUjWGmzfVC7q7Gz8zCjHcqeSheX%2B1eiiVwyKyspTTCj7POTnK9eCi/plWqwMA9Ezboqzn5%2BikMV95b9rYsZXlaWOAes8o%2B9CkCWzfDi9HunHypOU8Wl8pfn7w1VfQvZ8r9w6%2BMuP8d8rn1APGh1izJiQnK85fX7irrGbh5AS1asHVq8aPlCXq1lV3oSyRzp/1yLSvIAiCIAjCY0SZdP6Cg4PZsGFDWZgWBEEQBOExRqRerKdEnb/g4GCaNGmCv78/AQEBtG3bljfffLPIMW5afPfddzRs2JBp06aVxA1FcnJyeP/992nfvj3Nmzdn6NChnD592mLeS5cu0bBhQ/z9/c1eKx%2B3g/4EQRAEQXgsKPHIX3R0NAkJCRw/fpzY2FhSUlKYMmVKsWxs3ryZ7t2789VXX5lOCNHixo0bbN68mVylhQjA3Llz%2BfHHH9m4cSP79%2B%2Bndu3ajB49WtVuQkKC2Wt4WZwcLQiCIAiCVcjIn/WUyrSvt7c3nTt3NjvaLTU1leHDhxMYGEiPHj3473//a1YmNTWV%2BPh4oqKiqFq1Knv37jWlzZ07l0GDBpnl37t3L82bN8fR0ZGdO3fy0ksvsWzZMm7cuFHEn0qVKjFx4kRq165NxYoVGTJkCOfPny/2yKQgCIIgCOUL6fxZj9W7fQ0GA5cuXSIuLo4ePXqYrm/cuJEFCxbg5%2BfHBx98wKhRo9i/f7/puLW4uDh8fX156qmn6NmzJ1u2bDGV79KlC6tWrSItLY0qVaoAxs5fx44dcXd3Z82aNZw8eZKVK1fSsWNHevbsyauvvsrTTz8NwPjx4818vHLlCs7OziZblpg4cSIHDhwgPz%2Bf8PBwoqKiihwbp0ZSUhLJyclm1zw9a%2BDl5aXbRhG0VDQL0h%2Bm2qYWesRM9eR7mDwK9aDmmy34D%2BptpHAM5bktqflmC58FsP0YgoLU0xs1Mn%2B3QJOiJ5KaeOYZ83dLaB0AUK%2Be%2BXsRtH6bCramq2xRd1LZNK2juGDjlOiEj%2BDgYK5du4a9vT0Gg4G8vDxat27N/PnzqV69OsHBwbRr1850DFt6ejqtWrVi7dq1piPXevToQWRkJAMGDODixYt07tyZvXv3ms75DQkJYfTo0fTu3Zv8/HzatGnD3Llz6dChg5kvly9fZvXq1cTGxjJ8%2BHBGjhxplp6enk54eDjdunVj3LhxRWJJSkoiKiqK4cOH8%2BKLL3Lq1CnGjBlDnz59GDt2rO5nsmTJEpYuXWp2bdSo0URFjdFtQxAEQRAEdcLCSt9mXFzp2yzPlLhfHx0dTWRkJAA3b97k888/p1evXmzfvh2A%2BvXrm/J6eHjg4eFhmnY9evQov//%2BO127dgXAx8eHwMBAYmNjiYqKAoyjf/v27aN3794cPnwYOzs72rZtW8SPmjVrEhQUxKFDh7hy5YpZWlJSEq%2B99hq%2Bvr6MGWO5E%2Bbl5cXGjRtN/w8ICOAvf/kLn3zySbE6fxEREQQHB5td8/SsoXlSk9oROna3VXTNCgo7O8Pt28r6bI7qxwCV9UlMdlmZ6gY0jjG646KtzVbmMeTp0FssOA/Kks6fg5N6eR5ADGptqRTaETyAGHKy1Qu7uBj15RSM5FXQ1ipUO9ZLzyiIZgwZ1h0Lplv3suxOGlT/TGsdS4a23qLW0Wp6ULPh2KqZeuFGjWD9eujfHxITLWZ5%2BQnLGoJgHPFbtAjGjYNz5yzn0TPyt3gxREXB2bNF079aeVXdQIUK4OkJKSmKooJXDDVVi9eoYZQJVNIkrFVL3QWhfFMqg7qVK1dm1KhRxMTE8PXXXwNgb%2BFbpmDKd/PmzeTn5xMSEmJKy8vL49q1a4wePRp7e3u6du3KwIEDycnJYc%2BePXTu3JkKhb59s7Ky2LJlC6tXr8bDw4Phw4fTvXt3U/qFCxd49dVX6dChA9HR0Tg4qJ9jWJg6deqQkpKCwWDATudUmJeXV5EpXqtPTdZrwGAohZuVEXoXU5TnhRePQj3o8as8%2Bw/q7aPg%2B8ZgKL/tCPT5Vp4/C2D7MSgINxchMVEx78l07eLnzlFikecCzp7Fosiz7t5xfr5i3lwd1ZOfryzy/DApr03Llij1Gf2CXbuFN3%2Bkp6eTnp6Ot7c3mZmZ7Nq1i2nTpvH888%2Bb8mRnZ9OvXz8OHjxI27Zt8fPzw9PTkwMHDrBv3z7mzp1rsv/hhx%2ByceNGAgMDef/992ndurWZDzdu3GDYsGH06dNHc5fvwYMHOXr0KCNGjDBdO3fuHHXq1NHd8RMEQRAE4cEgnT/rKZXO3%2B3bt1m/fj2pqamEhITw%2BeefEx8fT%2B/evWnQoAHLly/H29sbPz8/YmNjcXZ2pnfv3jg5mU%2BHBQcHs2XLFtP0bpcuXVi5ciUGg8G0VjAtLY3U1FQ2bNjAMworahcsWEDTpk0VO37z588nLy%2BPSZMm4e7uzrJly6hduzbdunUjMTGRlStXitSLIAiCIAiPJCXu/M2YMYOZM2cCxuncxo0bs2LFCp588kkABg4cyLx58zh69Cg%2BPj4sXrwYBwcHYmJi6NmzZ5GOH0Dfvn0ZPXq0aZdvly5d%2BPTTTxk4cKBp2tbb29u0kUSJmJgYHBwc2LNnj9n1v//97/Tq1Yvk5GTTCKWfnx8LFy5k6dKlTJkyBXd3dwYNGsSQIUNK%2BmgEQRAEQSgjZOTPekrU%2BYuPj9eVbmn0rPDmivvp0KEDCQkJpv/7%2Bfnxyy%2B/FNu/U6dOqabPnj3b7P%2BdOnWiU6dOxb6PIAiCIAgPFun8WU85FmMSBEEQBEEQShuRcBQEQRAEwWawxZG/tLQ03nvvPQ4fPoy9vT0dOnTg3XffxcWlqIxWdHQ0cfcJD965c4ewsDBmzZrFpEmT2L59u5mKibOzc5GT1NSQzl8ZYoce2Qw7xXzZqOuS2QEuQA4uindyvashCeDgiINaHnutJqLsP0CGnboumb0dVASy7Ny4a2FzdSU0BLEAcMBBJZ8B/TI/lriNs2q6HeAE5OJk8Uk4l4MY1NpSqbQj0GxLBnv9J%2BZYIsOgrA9nb7jXjgyu3FUIohJ65DEccVTMp%2BfrUv3zcMveQzHN3h7cgEx7d5R%2B29ytbkt6Jns0YkD5M23PvRhwU4lBqx7U6gCjlqMa9vbg6IZjrmW9xHrPqH8vN3kCtmPU8lOSdDl7TkUJwiMIOML2S83gnE5ZmfupbrTx1ZVmcKGojfTK6jHY24M7cMutpmJHqW6KBQFBkwEnwIda%2BRchX0nrRen4EcES7777Lrm5uezcuZO8vDzGjh3LvHnziI6OLpJ3xowZzJgxw/T//Px8evXqRZcuXUzXRowYoahfrAeZ9hUEQRAEwWawtbN9U1JS2LdvH%2BPHj6datWp4e3szcuRIYmJiyNOh2bhmzRpq165d5IQzayjVzl9wcDAbNmwoTZOCIAiCIAgmbK3zd%2BrUKRwcHGjYsKHpWpMmTcjKyuKc0jEw97h58yYff/wxb731ltn1Q4cO0atXL4KCgujXrx8nLKqBK1Oszl9wcDBNmjTB39%2BfgIAA2rZty5tvvmk6tk1P%2BcDAQDIzix4PtHr1aho2bEhsbGxxXFJkw4YNhIaGEhQURFhYGPv27VP1y8/PD39/f9PrjTfeKBU/BEEQBEEo3yQlJXHy5EmzV1JSUqnYTktLo1KlSmYHR3h4GJeApKamqpb94osvaNGiBc8%2B%2B6zpmo%2BPD3Xr1uWTTz7h3//%2BN82bN2fYsGGatgpT7JG/6OhoEhISOH78OLGxsaSkpDBlyhTd5StWrGixI7Zjxw6qVatWXHdMXL9%2BnXXr1gGwe/du5s%2Bfz8yZMzl8%2BDADBw5k3LhxXLx4UbH8ypUrSUhIML0%2B/vjjEvsiCIIgCELZUBYjf5s2baJPnz5mr02bNun2KS4ujoYNG1p8Xb58GUMJjs68c%2BcO69atY/DgwWbXR40axcyZM/H29qZSpUq89dZbODk5qQ5y3Y9V077e3t507tzZ7Ci31NRUhg8fTmBgID169Ciy%2B6RDhw5s377d7Nr58%2BdJTU2lfv36AOTk5NCpUydTZw6Mp3L06dOHO/ediH327FneffddMz9ycnKYMGECzz33HI6OjoST7YQcAAAgAElEQVSHh%2BPm5sbRo0etCVcQBEEQhEeQiIgIYmNjzV4RERG6y4eFhfHLL79YfPn7%2B5ORkWHWf0lLSwOgevXqijZ/%2BOEHcnNzad68ueq9HRwcqFWrVrFGKkvc%2BTMYDFy8eJG4uDh69Ohhur5x40ZGjBjBoUOHeOGFFxg1apTpNA0wTrH%2B%2BOOPpKSkmK7t2LGD0NBQ0/9dXFyYNm0aixcvJjU1lQsXLvDFF1/w/vvvm7Y2Hzp0iL/85S%2B88soruLu7s2vXLtOumbCwMPr372%2Byd/PmTTIzM/H29laMZ%2B3atXTs2JGgoCCioqK4fv16SR%2BNIAiCIAhlRFmM/Hl5edGkSROzl5eXV6n46%2Bvri8FgIDEx0XQtISGBypUr8/TTTyuW%2B/bbb3n%2B%2BeepUOF/SgMGg4FZs2aZ2crNzeXChQv4%2BPjo9qnYUi8Fx7oZDAby8vJo3bo1AwYMMKW/%2BOKLpl7qG2%2B8wapVqzh27JjpbN7KlSvTrl07du3aZRrK/Oqrr1iwYIHZgsU2bdrw0ksvsXDhQpKTkxk0aBC%2Bvr4ADB06lHPnzjF48GDmz59PpUqVFP01GAxER0fTtGlTkw/34%2BvrS0BAAP/4xz%2B4efMmb7/9NmPHjuWLL77Q/VySkpJITk42u1bD09OqxmOnoiZQOF0r38PEXuPPi8IxaOV9WDwK9aDmmy34D%2BrtwxbaEaj7VpBWnv2HchCDlnENJ5o0US9ecGS8wtHxRjyClNMaNTJ/LwkaNqx8BEYsHLFqwtHR/L2cYWs6f9WqVSM0NJRFixYxZ84ccnNzWbZsGf369TN17IYMGUJERATdunUzlTt16hT%2B/v5mtuzs7Lh06RLTpk1j0aJFVKpUiQ8%2B%2BABHR0c6duyo26did/6io6OJjIwEjCNqn3/%2BOb169TJN5RZM3YJxQaOHh0eRDSG9evXi448/ZvDgwfz888/Y29ubOnaFmTRpEt26dcPNzY1FixaZrv/xxx80bNiQwMBA1Y5fXl4ekyZN4syZM6xdu1Yx37Jly0z/dnNzY%2BrUqXTr1o0LFy6YzirWYtOmTSxdutTs2uhRoxgTFaVdWOFX14L2o0WcVWXodHx4rf2Aq/QaKlbUZ8JVUYZOp76dg3I%2BPX0atY6P2ndkYZQf48OPQU9bsrodgWpbsjYGPW1JuR1BacSgC5Ug3JSlCk2ox2B9W9JFmcZg5XeS3vpRcOK%2BVUeKFPrJscARbQPr1%2Bu7UQlsqKun/g/VunLXMUpUs6bOOwlaTJ8%2BnalTpxISEoKjoyM9evRg/PjxpvSLFy%2BSnm4uLJmcnIynp2cRW%2B%2B//z5z5syhT58%2BZGRkEBAQwJo1a6io9wcXK0WeK1euzKhRo4iJieHrr78GwN7CnxrO9/2qtG/fnnfeeYfff/%2BdHTt20LNnT4v2b9y4QV5eHjdv3iQtLc00bbtp0yY2btzIuHHjqFOnDsOHDyckJMTs3jk5OYwcOZLs7GzWrVtH1apVdcdVp04dwDiap7fzFxERQXBwsNm1Gp6eoLXI085OMU/ObfWfSzs74w/27dvKt3Fx0NAQcnQENZ2hChpNRMV/gKxs7RhcXSE727KZis46RG0dHOCOikCyvfoPoUYIqo%2BnoHzBY7Rkx8nh4cdQaOWFxbJWtyPQbEuGCuo/2loxZGerl1VrRwAVHa2MQeuzUOCIShCZWcqfB3v7/8WgNLLh5mJlW9IzJFfWMThZ%2BZ2UqyQ6rM%2BJlyPVe6/PPGPs%2BI0bB0oqHNsvNVM20KiRsdPWvz8UmporFho2bv2feufT3t7Y8cu0rHMNgHua8gZIHB2NHb%2BrV5XrohhTjKWNrY38Abi7u7NgwQLF9Pj4%2BCLXdu/ebTFvlSpVmDVrllX%2BlNoJHwXr%2Bgpv/khPTyc9Pb3IWjsnJye6du3K7t272b17t8VROYPBwNSpUxk%2BfDhJSUlMnz7dNEJXpUoV3njjDYYNG8ZXX33F0qVLmTdvHq%2B//jp9%2B/bFYDAwfvx4KlSowOrVq4t0Pgtz%2BfJlli9fzjvvvIPTvSGes2eNyufFmT/38vIqOsVbgt09JSluMFh9qzJD60Na8FtkMJTfD/SjUA96/CrP/oN6%2B7CFdgT6fHsQumPW8NBj0GtYwYmTJ/UVP3dOJa%2BekzsSE%2BGnEp7woWHDykdgRKsTDcaOn558gs1h1cqM27dvs2rVKlJTUwkJCQGMvdcTJ06Qm5vL8uXL8fb2xs/Pr0jZXr16sWnTJry9vXniiSeKpG/ZsoWkpCSGDRvGuHHjOHLkCN98841ZHicnJ3r37k1cXBzvvfcex44dA4wbSM6cOcMHH3xgseO3d%2B9e04aQ6tWrEx8fz%2BzZs8nKyuLatWvMmjWLl156SXWDiCAIgiAIDx5bE3kuj5R4wwcYp3MbN27MihUrTNOjAwcOZN68eRw9ehQfHx8WL15sdvhwAYGBgTg6Olqc8k1JSWHu3LksXLgQJycnnJyc%2BOtf/8qMGTNo3bq1SRyxMK1bt6Z169YAxMTEcPny5SIbPMLCwpgxYwa3bt3i/PnzgHFn8YoVK5g9ezbt27cHoFOnTkyePLm4j0YQBEEQhDLmceyslTZ2hpIoDwr60PNoVdbXZOdor5dzcTGec650K9cKD3fNX0amegz29saF/FlZlj/QlVwf/no5rVkPOzvjppDcXMt2nCs8/BhyctTLWt2OoMzX/Fk4GMiEVjsCqOT88Nf83cpQXy%2BnuU6r4sNf82d1DC5WfiepNWYdTtQLVN8u0aSJcVPIyy8rT/uePafyvRYUBEeOQLNmJZ/21bCRnqb%2B22JvD%2B7ucOuWcj14pJxVNuDkZFzTd/Gi8hdgvXqqPpQlLVqUvs0ffih9m%2BWZUlvzJwiCIAiCUNbIyJ/1lHNFKUEQBEEQBKE0kZE/QRAEwXawUuE4P1%2B9eMGM%2BZ072nkfFqUi8mzDyMif9UjnTxAEQRAEm0E6f9bziP5dIAiCIAiCIFiiTDp/wcHBbNiwoSxMC4IgCILwGCM6f9ZTos5fcHAwTZo0wd/fn4CAANq2bcubb75Z5AxfLb777jsaNmzItGnTSuKGIjk5Obz//vu0b9%2Be5s2bM3ToUE6fPm0x76VLl2jYsCH%2B/v5mr5UrV5aqT4IgCIIgCOWBEo/8RUdHk5CQwPHjx4mNjSUlJYUpU6YUy8bmzZvp3r07X331lel4uJLy66%2B/ms4Xnjt3Lj/%2B%2BCMbN25k//791K5dm9GjR6uWT0hIMHsNHz7cKn8EQRAEQSh9ZOTPekpl2tfb25vOnTubneubmprK8OHDCQwMpEePHvz3v/81K5Oamkp8fDxRUVFUrVqVvXv3mtLmzp3LoEGDzPLv3buX5s2bk3uf4OSBAwd47bXXGDRoEDn3xD8rVarExIkTqV27NhUrVmTIkCGcP3%2B%2B2COTgiAIgiCUL6TzZz1W7/Y1GAxcunSJuLg4evToYbq%2BceNGFixYgJ%2BfHx988AGjRo1i//79prN24%2BLi8PX15amnnqJnz55s2bLFVL5Lly6sWrWKtLQ0qlSpAhg7fx07dsTJyYnc3Fx27drFZ599RmZmJkOHDmXJkiW4uroCMH78eDMfr1y5grOzs8mWJSZOnMiBAwfIz88nPDycqKgoHB3VTyQoTFJSEsnJyWbXanh64uXlpdvG/dipH45hStfK9zDRkhooHEN5lSV4FOpBzTdb8B/U24cttCNQ981W5DkeegxWfqlYOGrejIKDK1QPsKgepJzWqJH5e0nQsFEqUi9OTsppBb99xfgNFGyLEh3vFhwczLVr17C3t8dgMJCXl0fr1q2ZP38%2B1atXJzg4mHbt2jF9%2BnQA0tPTadWqFWvXrjWdt9ujRw8iIyMZMGAAFy9epHPnzuzdu5cnnngCgJCQEEaPHk3v3r3Jz8%2BnTZs2zJ07F39/f8LCwvDy8mL48OGEhoZaPDu4gPT0dMLDw%2BnWrRvjxo0rkp6UlERUVBTDhw/nxRdf5NSpU4wZM4Y%2BffowduxY3c9kyZIlLF261Oza6FGjGBMVpduGIAiCIAjqNGxY%2BjZ/%2BaX0bZZnSjzyFx0dTWRkJAA3b97k888/p1evXmzfvh2A%2BvXrm/J6eHjg4eFhmnY9evQov//%2BO127dgXAx8eHwMBAYmNjibrXWerSpQv79u2jd%2B/eHD58GDs7O9q2bUtKSgqpqal07twZf39/1Y5fUlISr732Gr6%2BvowZM8ZiHi8vLzZu3Gj6f0BAAH/5y1/45JNPitX5i4iIIDg42OxaDU9P7fN9Vc7RzLmtfbavszPcvq18GxeHh3u2b1a2dgyurpCdbdlMReeHfy6u2uMpKF/wGC3ZcXJ4%2BDGoLaktlXYEZX62b3a2elm1dgRQ0fHhn%2B2bmaV%2BLm5BDErTUG4uD/9sX6tjcLLyO0lLeVnjsOru/VxVi9erB4sXQ1QUnFU4/varK82UDTRqBOvXQ//%2BkJio7msJbWT%2B%2B4hqcV31cOOisgFHR6hZE65eVa4LHx9VH4TyTamIPFeuXJlRo0YRExNj2nRhb%2BFLpmDKd/PmzeTn5xMSEmJKy8vL49q1a4wePRp7e3u6du3KwIEDycnJYc%2BePXTu3JkKFSpQs2ZNdu7cyerVqwkLC6NDhw4MGzYMf39/s3tduHCBV199lQ4dOhAdHa3aSbyfOnXqkJKSgsFgwE7nXJiXl1fRKd7iD6qWqLjBYPWtygyttRQFzcRgKL/rLh6FetDjV3n2H9Tbhy20I9DnW3lfg/TQY7DyS%2BXECX23OXtWJe%2BFn7QNJCbCTzrylcCG3merWg/3rZ%2B3SF6evnwPmPL8%2BbAVSn1lRsGu3cKbP9LT00lPT8fb25vMzEx27drFtGnT2LZtm%2Bm1ZcsWkpKSOHjwIAB%2Bfn54enpy4MAB9u3bR7du3Uz2nnrqKd577z3i4%2BNp0KABI0aMYNCgQaZNJTdu3GDYsGH06dOHqVOnqnb8Dh48yEcffWR27dy5c9SpU0d3x08QBEEQhAeDbPiwnlLp/N2%2BfZtVq1aRmppqGs2Lj4/nxIkT5Obmsnz5cry9vfHz82PXrl04OzvTu3dv6tata3o1atSI4OBgtmzZYrLbpUsXVq5cicFgMK0VLEyVKlUYMWIE8fHx9O7dm6NHjwKwYMECmjZtqijvMn/%2BfGbPng2Au7s7y5YtIy4ujry8PBISEli5cqVpSlsQBEEQBOFRosTTvjNmzGDmzJmAcTq3cePGrFixgieffBKAgQMHMm/ePI4ePYqPjw%2BLFy/GwcGBmJgYevbsiZOFnUZ9%2B/Zl9OjRpl2%2BXbp04dNPP2XgwIGqo3dOTk706dPH9P%2BYmBgcHBzYs2ePWb6///3v9OrVi%2BTkZNMIpZ%2BfHwsXLmTp0qVMmTIFd3d3Bg0axJAhQ0r6aARBEARBKCMex5G60qZEnb/4%2BHhd6ZaEkgtvrrifDh06kJCQYPq/n58fv5RgC86pU6dU0wtG/Qro1KkTnTp1KvZ9BEEQBEEQbI1S2fAhCIIgCILwIJCRP%2BuRzp8gCIIgCDaDdP6sp0Qiz4I%2BtI4rtrMziqzn5pZMYkNPeecKGrpgGvpy2bnKay015LQAcK1gvT6cteVv31XWl9PzDPXIu6k9Rod86xtCnr2zqokyfoQ4VtDRQDX04fLy1XfPa/mgJVGn0ZRxuGtdW8xD%2B7SDxyEGK6U/scu3UudPj1ah2oP84w/t%2B2to3KVXVta4s7cHd3e4dUu5k6LnhA43N8jMtGzDvbKGEkVQEBw5As2aKcrN3MlX/0xrtkX96mmlTllIDF5UkT18FJGRP0EQBEEQbAYZ%2BbOecn6KpCAIgiAIglCa2FznLy4ujmbNmpmOiivMwIEDmTBhwkPwShAEQRCEB4GIPFuPzXX%2BwsLCaNq0qUljsIBt27Zx%2BvRp/va3vz0kzwRBEARBKGuk82c9Ntf5A3jvvff45z//yffffw/ArVu3mDt3Lm%2B99Raenp5kZ2fz3nvv0aFDBwIDAxkyZAhnC53Qffz4cV555RWaN29O27ZtmT59Ovn3Dgs/cOAAzZs357PPPiMoKIjjx48/lBgFQRAEQRDKApvc8FG3bl1GjBjB9OnT2bFjBwsXLuSpp56iX79%2BAMyZM4dff/2VzZs3U7lyZRYuXEhUVBRfffUVBoOBsWPH0rdvX9avX8%2BVK1eIiIigfv369O/fH4Dc3FwuX77MoUOHLJ5EYomkpCSSk5PNrnl41MDLy0uxTMHRwSU9Qtja8sW5x8O6f2nw0GPQMm4rD1IQHgUcNXY8F2xnVtnWrLZbtyBNT54S2wgKUjfQqJH5%2ByPG4zhSV9rYrNRLXl4evXv3pkGDBnz77bfExsZSr1498vPzadGiBcuWLaNNmzaA8ezh5557jo0bN%2BLn50dGRgbOzs443vsSGDt2LG5ubsycOZMDBw4wdOhQvv76a5555hnd/ixZsoSlS5eaXRs1ajRRUWNKL2hBEARBeMypXr30bV6/Xvo2yzM2OfIH4OjoyLRp0%2Bjfvz8jRoygXr16AKSkpJCVlcXrr7%2BOXaGRFIPBwJUrV/Dz8%2BPAgQN8%2BOGHnD9/nvz8fPLz8%2BnevbuZ/Tp16hTLn4iICIKDg82ueXjUIDdXuYyd3f8krUqq86dV3snBOp2/nDx1nT9nZ6OeodL9XRwevs5frkFd50/rGerRs1LV%2Bbuj0gh0OpFnpz4CLTp/tqGR9yjEYPM6f/fN0BShQgXw9ISUFLi3HOh%2BbrnVVHVPTaOvII8a9vbg6grZ2ZZtuL3QTN1Ao0awfj307w%2BJiRaz3PnhiKqJ8qzzJ1iPzXb%2BAJ577jkAmjX73wfB2dkohrtlyxYaWRjy/vXXXxk/fjx/%2B9vf6Nu3Ly4uLhZ3CDsUs2V7eXkVmeJV6xQVxmAoWeevtMpr2X6Y9y8NHnoMeg2rOSEzwoJQOuj9Kyk/XzGvnmnH0thIoGhDQbi5CImJ%2BvPaEDLtaz02ueFDjapVq%2BLu7k7ifX/tXLp0CYCTJ0/i6urKgAEDcHFxwWAwcOrUqYfhqiAIgiAIwgPnkev8gXEK9sMPP%2BTcuXPk5eWxcuVK/vSnP5GTk8MTTzxBVlYWiYmJpKenM2fOHFxcXEhKSnrYbguCIAiCoIFIvViPTU/7KjFmzBgyMjKIjIwkLy%2BPxo0b8%2Bmnn%2BLi4kLz5s155ZVXGDBgABUrVmTUqFEEBwczcuRI3nzzTfr27fuw3RcEQRAEQYHHsbNW2tjsbl9b4PZt9XQ7O3Bygtzckm/40CrvXMG6DR/ZueobPlxcICdH%2Bf6uFR7%2Bho/bd9U3fGg9Q60F7qCx4SPf%2BoaQZ%2B%2BsakI2fNjGZolHIQab3/Dxxx/a969ZE65eVfQjvbKPqnvu7nDrlnUbPtQ2jbhX1lgEHBQER45As2aKa/7u5Kt/psvzhg9399K3eetW6dsszzySI3%2BCIAiCIDyayMif9TySa/4EQRAEQRAEy8i0b1mi59GqzJFoTZNBKUzXac3RaKFR/s5d7RhUp0ztrZ9utLb8oxCDtVOupTHta215ieExiUHj/gYdukdqJi5cUC/r5AS1asGVKyjqtNbNP2s5ocCAjw9cvKhsQAsNG3eeqqdpQnPatoLKc9Qxbfww9b1cXUvfZnZ26dssz8i0ryAIgiAINoNM%2B1qPTPveY9CgQcybN%2B9huyEIgiAIglCmlKvOX3BwME2aNMHf39/0Cg4OZtasWWRmZj4wP9LS0ti8efMDu58gCIIgCPqwVZ2/hIQEOnXqxJ/%2B9CfNvGvXriU0NJRmzZoRGRnJiRMnTGm3b99mypQptG/fnlatWhEVFUVqamqxfClXnT%2BA6OhoEhISSEhI4Pjx43zyySd8//33zJkz54H5cOjQIen8CYIgCIJQKmzfvp0xY8ZQt25dzbzx8fEsWbKEf/zjHxw4cICXXnqJN954g6ysLAAWLlzIyZMn2bRpE7t378ZgMDB58uRi%2BVPuOn%2BFsbOz49lnn%2BXPf/4ze/fuBeDy5cu88cYbtGrVihYtWjBx4kQyMjIAyM7O5u2336Z169YEBQXxyiuvmHrLS5YsKdLbbtu2LbGxsWbXvv76ayZMmMDx48fx9/fn4sWLDyBSQRAEQRD0YIsjf7dv32bTpk00bdpUM%2B%2BmTZvo06cPTZs2xcXFhddeew2Af/7zn%2BTn57NlyxZGjhxJrVq1qFKlCuPGjeNf//oX165d0%2B1Pue78FZB3b%2BuYwWAwBfyvf/2Lb775hmvXrplGBdesWUNKSgp79%2B7lP//5Dy%2B88ALvvvtuse7VtWtXRowYQUBAAAkJCfj4KIt5CoIgCILwYLHFzl94eDje3t668p48eZLGjRub/m9vb4%2Bvry8JCQlcuHCBW7du0aRJE1N6vXr1cHFx4eTJk7r9Kde7fe/evcsvv/zCp59%2BSs%2BePUlISODXX39lw4YNuLq64urqypgxYxg%2BfDjTp0/n5s2bODo64uLiQoUKFRg5ciQjR458IL4mJSWRnJxsdq2GpydeXl4P5P6CIAiCNk5O6ukFJ5ionmRir2LE0dH8vSSUhg0tgoKU0xo1Mn9/DLD4G16jxkP5DU9LS8PDw8PsmoeHB6mpqaSlpQFQuXJls/TKlSsXa91fuRv5mzFjhtmGj0GDBtGtWzcmTpzIxYsXuXPnDq1atTKlDx06lLy8PFJTU%2Bnfvz%2B//fYbHTp0YNKkSXz77bcPzO%2BCYdrCr01ffmkUnFJ4JSUns2TJEpKSky2mOzqi%2BkpNTWLJkiWkpiYp5rHm/lovPeUdHFB9Xb9ujOH69SSL6aXhg8Sg3pasbUcSg8TwIL%2BTtMJITjb6kJycZDG9Vi31l8FgLG8wJCnmwcdH8ZVkb2%2BMwd5eNZ81Nqz9TnJwwKjjp/BKWrTIeP9Fi5TzPUQMhtJ/WfwN37RJt09xcXE0bNjQ4uv%2B5WX6YlTXUbRWorncdf4Kb/j45JNPyMvLIywsjAoVKuDs7EzFihVN6QWvn3/%2BmWrVqvHEE0%2Bwa9cu5s6dS6VKlZgyZQpjx45VvNcdNQXMYhIREUFsbKzZKyIiQrVMcnIyS5cuLfLXhl5svXx58EFikGdQXnyQGOQZlBcfSiMGW6Mkv%2BGFCQsL45dffrH46tOnT7F8qVq1qmmEr4C0tDSqVatGtWrVTP8vTHp6OtWrV9d9j3I97duuXTtCQkJ49913Wbt2LU8%2B%2BSRZWVlcvHjRtBYvIyODvLw8qlatSmZmJo6OjrRp04Y2bdowdOhQgoODSU1NxdnZmexCEt63bt0q8vCswcvLS6Z4BUEQBMEGKU%2B/4X5%2Bfpw8eZLevXsDxoGqn3/%2BmX79%2BuHj44OHhwcnT56kTp06AJw%2BfZrc3Fz8/Px036Pcjfzdz9/%2B9jcSExPZtGkTDRo0ICgoiPfff58bN25w8%2BZNpk6dysSJEwGIiopizpw5ZGRkcPfuXX766SeqVKmCh4cHdevW5bfffuP06dPk5OSwaNEi3NzcLN7T2dmZ5ORk0tLSyC3p8TyCIAiCIAg66NKlC//9738BiIyMZNu2bRw9epTs7Gw%2B%2BugjnJycePHFF3FwcOBPf/oTH3/8MVeuXCE1NZUFCxbQqVMnPD09dd%2Bv3Hf%2BPD09mTBhAnPnzuXatWvMnz8fg8FASEgInTp14s6dO8yePRuAv//975w/f5727dvTokULvvjiC5YtW4a9vT0hISGEhobyyiuv0LlzZ/z8/Khdu7bFe3bs2BGDwcCLL75oJqwoCIIgCIJQXEJDQ/H39%2Bejjz4yScn5%2B/tz%2BfJlAH777TeTjl/79u2ZMGEC48aNo2XLlhw4cIDly5fj4uICGAe6mjZtStj/t3feYVEd79u/EUUjdiOaGI3G5CsqUoI0KSooYgElNgQFSxKUFBPUiFGxBcUee4vRmIgFFgQLqGAsVBVUbEkUEQWULoh0mPcPXs6Ple1nl6LP57q4dM%2Bce%2BaZZQ97nzkzz4wbBxsbG2hqasLHx0e%2BgBjRYGRkZLBt27axjIyMd1LfGGKgPtB70FhioD7Qe9BYYlBGH4jGjRpjPJeMEARBEARBEE2GRv/YlyAIgiAIglAeZP4IgiAIgiDeIcj8EQRBEARBvEOQ%2BSMIgiAIgniHIPNHEARBEATxDkHmjyAIgiAI4h2CzB9BEARBEMQ7BJk/giAIgiCIdwgyfwRBEARBEO8QZP4IgiDeQpKSkho6BIVhjOHKlSsNHUaTgfagJ%2BSFtncjAFRvKi0QCLBgwYKGDkVhCgsLcerUKUydOlXlbTHGcPfuXaSmpkJdXR2ffPIJPv30U6XUXVBQgHbt2imlLkm8DX1QFfVxPRQWFiIyMlLo/TczM4OGhobCdRYVFeHMmTMICAhAYmIiHjx4IPK89PR0mer78MMPJZY/ffoUFy5c4PrQu3dv2NraokuXLnLHDgDPnj2DQCBAUFAQ8vPzcevWLYXqyMzMRI8ePaClpaVQHHxoiPYNDQ0RExPD67OTmpqKjz76qM7xsrIy3L9/H/r6%2BnxCJBoZZP7qiZMnT8p03vjx48WWMcZw8uRJhIWFITU1Fc2aNcMnn3wCe3t7DB8%2BXO6YiouLcfbsWQgEAiQkJEBPTw/Hjx8Xe/7169dlqtfIyEhi%2BbVr10T2oV%2B/fnLFX0NsbCwEAgHOnz%2BPDh064PLly2LPtba2hpqamtQ6IyIixJbFxcVhyZIlSE1NRbt27VBRUYGioiL07dsXPj4%2B0NHRUagfMTEx8Pf3R0REBG7fvq2y%2BBu6D43xWgBkvx60tbVl%2Bh2IM14AEBISglWrVoExhp49e6KiogIpKSlo164dVq9ejWHDhskV%2B40bNyAQCBAWFgZNTU04ODhgwoQJ6NOnj8jzpfWBMQY1NTWJfdi3bx%2B2bt2KXr16oXfv3qioqMC///6L3NxceHl5yXwTVlpairCwMAQEBCA%2BPh7a2tqYMGEC7O3tpd5AeHh4YNeuXQCA3NxczJs3j/s7paamBmtra6xbtw5t2rQRqT948CBmzpwJAKisrMSuXbsQGBiIrKwsdO/eHc7OznBzc1NZ%2B8qIoXXCJ7oAACAASURBVKaOtLQ0TJ8%2BHR988AGaN28uVN6smfSHfHp6eiKv2fz8fAwdOhQ3b96UWgfRdCDzV09YWFgIvc7JyUHnzp3rnBcZGSlSX1VVhTlz5uDWrVsYM2YMevfujcrKSty/fx%2BhoaGwtbXFpk2bZPpSSkhIgEAgwNmzZ1FSUoIpU6Zg2rRpUkd9tLW1hV6rqanhzY%2BPtC8Mb29vBAYGYvDgwUJ9uHnzJmbPni3zSMuLFy8QGBiIwMBApKWlYejQoXBycoKlpaXEP3THjh3j/s8Yg4%2BPD5YuXVrnPCcnJ5H6pKQkTJgwAdOnT8eMGTO432FKSgq2b9%2BOixcvwt/fX%2ByX7pukp6cjMDAQQUFByMrKwrBhwzBhwgRYWVmpJP7G0IfGdC0A8l8PV69e5f7PGIOHhwd2795d5zxLS0uR%2Blu3bsHNzQ2LFy/GpEmToK6uDqB61G7v3r34448/cPjwYejq6kqMOysrC0FBQRAIBMjMzMTw4cNx7tw5nD59Gj179pSoffz4sVAfxo8fj%2BDg4DrnffLJJyL1V65cgaenJ7Zs2SLUT8YYAgICsHbtWmzdulXsewAAiYmJCAgIwNmzZ9G%2BfXvY29vj0KFDOHXqFHr06CEx/hpqG5bvv/8e%2Bfn58Pb2xkcffYRHjx7B19cXPXv2hI%2BPj1T95s2bERISAnd3d3Tv3h1JSUn4/fff4erqiq%2B%2B%2Bkol7SsjBqD6hrusrAxlZWUiyyX9Tfb390dAQADu3Lkj8jOXmZkJxhj%2B/vtvsXUQTRBGNAgDBw6U6/y//vqL2dnZsaysrDpljx49YiNGjGCHDx8Wq8/Ozmb79u1jdnZ2zMDAgHl5ebGoqCimr6/Pnj59KlMMpaWl3E9JSQkbOHCg0LGaH3GEhIQwc3Nz9t9//9Upi4qKYmZmZiwkJESsvqysjJ09e5bNmjWL9e/fn02bNo2dOHGC6enpydyHN9HV1ZXrfC8vL%2Bbr6yu2fM2aNezHH3%2BUWEdpaSk7c%2BYMmzFjBuvfvz%2BbOnUq09HRYQ8ePJArFsbkj5%2BxxteH%2Br4WGFPO9VCDvL%2BDefPmsb1794ot37NnD3N3d5dYh7u7O9PV1WWzZs1iQUFB7PXr14wxplD8jMnfB3d3d3b06FGx5ceOHWPTp08XWz527FhmamrKli1bxq5du8Ydlzf%2B2p8dAwMD9uLFC6HyFy9eMCMjI5n0ZmZmLDExUag8MTGRWVpaqqx9ZcTAGGPR0dESfyTx8uVLFhoayvr378%2B2b99e52ffvn3s8ePHEusgmh5k/hoIef/YTpkyhV26dEls%2BZUrV5iDg4PY8gEDBjB3d3d26tQpVlRUxB1X9MuCMfn74Obmxs6cOSO2/OzZs2zy5Mliy01MTJijoyPbs2cPS01N5Y7XZx%2BGDRvGkpKSxJa/ePGCmZqaii1ftWoVMzY2Zra2tmz79u1c3PX1pc1Y0%2B8D32uBMeVeD/LGb2FhIbGNvLw8qYZBW1ubzZs3r84Xe339DszMzNjz58/FlhcWFrLPP/9cYnuzZs1i/v7%2B7NWrV9xxeeOvHffw4cOFfpeMMVZUVMQGDRokk97c3JxVVFQIlZeXlzM9PT2Vta%2BMGKSxYMECmc4LDQ1VuA2i6dFc%2Btgg0Rh49OiRxMdAZmZmSElJEVuuo6ODGzduoF27dujYsSPMzc1VEaZEHjx4IHE%2BoI2NDX7%2B%2BWex5S1btkRxcTFKSkpQXl6uihClkpOTg48//lhsedeuXfH69Wux5UeOHMGYMWMwb948qY/mVEVT7wPfawFo2OuhoKBA5MT6Gjp06IDS0lKJdYSGhsLf3x8LFy6Euro67O3t4eDgIPOjbr4UFhaiW7duYss1NTVRUVEhtjwqKgohISHw8/Pj5jiOGzdO7jgqKytx48YNMMbQt29f/Pnnn/j6668BAOXl5di0aZPUx%2Bc1mJub49KlS7CxseGOhYaGolevXvXSvqIxANVTIU6cOIG7d%2B8KPfrNzMzE/fv3xeo2b94s9FrSuZ6enlKiJ5oSZP6aCOXl5ejYsaPY8ubNm9eZf1ebY8eOISkpCQEBAdwXxtixY1FVVaWKcEVSXFwscRWghoaGxHguXbqEK1euQCAQYOzYsejXr59CXxh8qZmjJQ5JX8C//fYbAgICuAUu48aNw6hRo5QdolSach/4XgtAw18PfE1ar169sHDhQnh6euLixYsQCARwdHREVVUVgoOD4ezsjE6dOikp2rrwjb9NmzZwdnaGs7MzHjx4gICAACxatAjFxcXYu3cvpk2bVmeOsSi0tLTw008/iYzLx8cHFy9exIEDB8TqS0tLuYVmjDE8e/aMM1579uzBzp07sWXLFpW1r4wYato6f/48DA0NceHCBdjZ2eHBgwdo1aoVtyBFFLIu4qivmwqi/qAFHw2EuJVVfM6Xtc7y8nJEREQgICAA0dHR6NOnDyZOnAgHBweJX6qKtifP%2BbLWmZuby012f/z4MSwsLODk5IRhw4ZJNDZvrt5cvXo1vL2965iFKVOmiNTr6OiIPP/NOqXl3crLy0NwcDAEAgGSk5NRVVWFlStXwtHRsc5KPWXG3xj68CYN%2BTkC5L8e3hwtOXDgAGbPnl3nPHEjJQMGDBB5fm1%2B//13uXO3ZWRkcGlSnj9/jmHDhmH79u0iz50/f77Q69DQUJEGftOmTSL1/fv3l2r4w8LCcO/ePRmjr04pEhoaCoFAgOvXr6Nfv34IDAyUWf8m6enp6Ny5M1q2bCn2nLS0NKHXGhoa3A1qTEwM2rVrhwEDBqisfWXFYGFhAX9/f3zwwQfQ1dVFYmIiGGNYv349evfujcmTJyvUB%2BLthcxfPfHmCsfs7Gy8//77dc4Tt8JRW1tb5Pm1ycnJkbiqSxTPnz%2BHQCDgUgvcuXNH7LlTpkwRugO8ffs29PT06pxXe0Vqbfr16yfy/NokJiZKfPQgivj4eAQEBCAsLAzvvfceoqOjxZ5rbW0ttT41NTWxqVJk0QPAxYsXZToPqF796e/vj9DQULRq1QoODg7w8vJSuH1J8ctaB6C6PjTWawGQ7XqYPn261HrU1NRw%2BPBhkWWy6AHgzz//lOk8UcTExCAgIECseVu8eLFM9axdu1YlemmkpKQgMDAQP/74o0L6dw0jIyMuxYyBgQHi4uKgoaGB/Px8ODg4SEx/VYO0FEySUi8RTQ8yf/VEUFCQTOc5OjqqRC8Nxhiio6Mlzn3asWOHTHV9%2B%2B23KtEnJyejd%2B/eYnWFhYU4e/Zsk73LrUnQKxAIxBroxo4sfWjs1wIg2/VA8OPhw4fIzs6GmZmZ0PHDhw/D2tpa4rxIWXFxcUFKSorYGwlprFu3DpmZmWJNtKrblzWGqVOnwsrKCl999RUmTZqEyZMnY%2BrUqfj333/h4uKCGzduSG3nzZuyyspKvHz5Em3atMGHH34oMhUQ0XQh8/eOcO7cOYwcOZJ7XZMjryYT/dSpU6Umx5VmvqTBV6%2BtrY2PPvoIFhYWsLKygqmpKVq3bi1XHTW5AC0tLeWaiN1Y9OJ4/PgxysrK0LdvX4Xn5/Ct4/HjxygtLZU5CXJDc/bsWfTp0wd9%2B/YFUD1atmXLFhQXF8PGxgbz5s1rtP1QRqJpSebLxsYG3bt3l1g3H/3Dhw8xZcoUODs718ntuXDhQsTFxcHf3x9du3aVGIM0wsPD8erVK4VvBDZv3oysrCyFRzD5ti9rDImJifjhhx9w%2BvRpREZGwtPTE61bt0ZRURGcnJxE5gKVhVevXmHr1q3Q0dGhkb%2B3DDJ/9QRf88VXX3sO1KFDh7Bjxw44OTlxiUQDAwOxdOlSfPHFF2Lr4Gu%2B%2BOr/%2BecfxMbGIjo6GtevX0dFRQUMDAw4MyXLBPG1a9ciJiYGDx8%2BRPv27WFubg5LS0tYWFhIfZTYGPRVVVX4448/kJycjFGjRsHIyAhz5szhRhb%2B97//Yf/%2B/RK/NPnWIU3ft29f7Nu3T2IMfI0XX72/vz/Wrl2LHTt2YPDgwcjNzYWNjQ2MjY1hamoKPz8/ODs7czsv1Iav8VKGceObaPrhw4eYPHkyXFxcFDJffPU//PADOnXqBG9vb5Hl3t7eqKqqwi%2B//CKynJDMo0ePcO/ePXTv3h2DBg3iVVdJSQns7Oxw6dIl5QRHNArI/NUTfM0XX33NJGAAGDJkCNasWSP0SCsqKgrLly9HeHi42D7wNV/KMG81VFRU4ObNm4iJiUFMTAzu3r2LDh06wNLSEmvWrJGqz83NRVRUFGJiYhAbG4v09HT069ePi0XaFnUNpd%2B4cSNOnjwJQ0ND3LhxA/b29khLS8PixYvBGMPmzZuhrq6O9evXi22bbx189XyMlzL0AODg4IAffviBm//4559/Yu/evbh8%2BTLU1dVx8%2BZNeHt749SpU3W0fI0XX70o5F00w9d88dVbWloiICBArDl88eIFpk6dKtOuEqmpqbh9%2Bza6du0q0uh4e3tj1apVEuvIyspC%2B/btRe6NGxISAgcHB5W2zzeGGu7fv4/09HRuIKCsrIzXfr9AtdF3cnJCfHw8r3qIRkY95BIkmHAWdysrKxYZGSlUHhkZyWxsbFSmr51I1MTEhJWXlwuVy5tItLy8nF27do1t3bqVOTk5MR0dHWZhYcEWL15cL/raPHr0iB08eJCNGDGCaWtry61njLEnT56wQ4cOKVxHfemHDx/O7aIRHx/P%2BvXrx9LT07nynJwcNnjwYIlt8a2Dr97e3p5FRERwrw8fPiyU3DYhIYGNHTtWZXrGqq%2BH2sl03d3d2dKlS7nXFRUVMl8PiiTaVqZekTosLCzq7EZRm%2BfPn7OhQ4eqTC/LeyvLOeHh4UxHR4eZmJgwHR0dNm3aNJaTkyN0jqT35r///mO2trZMW1ub6enpsW3btrGqqiqZ9XzbV0YMjDGWlJTExowZw3R0dNiAAQMYY4ylpqYyc3NzmXfdmTx5MpsyZYrQj4ODA9PR0WHz58%2BXqQ6i6UB5/uqJ2o95SktLYWJiIlRuYmKC7OxslelrM2jQINy6dUvoLvXatWsSk7a%2BSfPmzWFkZAQjIyOMGTMGV69ehZ%2BfH4KCgmQaeeOjz8rKQnR0NDfqV1hYiEGDBsHJyanO/CNJlJeXIyEhAdHR0YiNjcW9e/fQu3dvTJs2rdHqs7OzuRFSPT09NGvWDB988AFX3qlTJxQWFkpsl28dfPUpKSkYMmQI9zoqKkooRY%2Buri6ePXumMj3wfzkl1dXVwRjDzZs3hRKMV1VVSdwjuqnz6tUriY/lu3Xrhry8PJXp33//fTx58kRs8uL79%2B/LlKdwx44dWL58OSZOnIiCggIsXboUrq6uOHLkCNq3bw8AElMa%2Bfr6wsjICDt27EB6ejrWrFmD5ORkob2hJen5tq%2BMGIDq1EyWlpYQCATcU4Pu3btj5syZ8PHxkWnluKiRZg0NDfTq1Uso6TTxdkDmrwHga74U0ZeWlnIXcGFhIQoKCrhUFEePHsX69esl7q5RG77mS1G9j48PYmJikJaWBl1dXZiYmGDKlCnQ1dWVmrS4hgcPHiA6OhrR0dGIj49Hly5dYGZmBjc3N5iamkr9wmlofe0kxOrq6jL3W5l18NXzNV7KMG69evXC9evXMXjwYERERKCwsFBotWNiYqKQoX3b4Gu%2B%2BOpHjBiBNWvWYNeuXXVyQr5%2B/RpLly4VmuMsjpSUFG4xRbt27bBt2zbMnz8fHh4eOHToEFq0aCFxfuWdO3ewc%2BdOtGrVCp999hn09fXh6uoKHx8fbpGEJD3f9pURA1Cdamnv3r3Q0NAQOtfNzU3klAJRiMqykJ%2Bfz5lY4u2CzF89wdd88dW/mXOsTZs23P87duyIjRs3Sr2742u%2B%2BOpPnjyJyspKjB49GiYmJjA1NYWWlpZUXW0cHR2hqakJR0dHLF%2B%2BXO7tyRpazxjDkydPuJGAN1/XHFNlHXz1fI2XMozbtGnT8P3338PQ0BDXr1/HuHHj0LlzZ06/bNkyjB49WmIdDcmbiaYrKirqHAPEJ5rma7746j08PODk5IQRI0Zg4sSJ6N27N6qqqvDw4UP4%2B/ujc%2BfO%2BOabb8Tqa9DS0sKdO3egr6/PHVu3bh2%2B/vprfPfdd9i6datE/XvvvYf8/Hy0atUKANC%2BfXvs378fTk5O6Ny5M%2BbOnSvxs8y3fWXEUKN59eoV9xmu4dmzZzLfnN27dw/Lli3jEmvPmzcP586dQ8eOHbFz5058/vnnMtVDNA1owUc9ce3aNaHXbdq0Qf/%2B/QFUZ8Jv0aKFRPPFVy%2BKsrIy5ObmQktLS6ZHXEZGRqisrMSoUaMUMl989VVVVbh79y43cnbr1i189NFHMDMzg5mZGUxMTNC2bVuJdZw/f54bdczMzMTnn38OU1NTmJmZYcCAAVLvsBtaX7NSVNRlW3NcTU1N4kpRvnXw1QcHB2P16tWc8bKzs%2BMe9ScmJsLLywujR48Wm%2B%2BRr76GsLAwxMTEoHfv3nB2duYmxm/evBmZmZn45ZdfRO5UwneHD756oDpRtLjfQQ2SEk2/evUKTk5OKCoqEmu%2Bjh49KnSTqEx9SUkJKisrsW/fPoSHh%2BPZs2dQU1PDxx9/DFtbW8yePRvvvfee2L7VcPToUWzZsgWenp5wcnLijpeWluLHH3/Eo0ePkJ6eLna3FB8fHyQkJGDRokUwNjbmjj99%2BhSzZ8%2BGnp4ezp07Jzb5Pd/2lREDAKxYsQJJSUnw8PCAu7s7AgIC8M8//2Dnzp0YPHgwli9fLlZbw9SpU2FpaQkPDw%2BEh4djxYoVOHHiBBISEuDn5wc/Pz%2BpdRBNBzJ/DYi85ouPPi0tDYcOHcKSJUuQm5sLb29vXLx4EYwxNG/eHOPGjcOSJUsk/sHla76UYd5qU1xcjPj4eMTGxuL69ev477//0KdPHwQEBMikT09P54xYXFwcysvLuRWjLi4ujVL/5lZQosjKyhIaiVB2HcqIQVHjpSw9UL1K8%2BrVq1BXV8eQIUNkzinH13jx1QPVCXlrVoZbWFigXbt2MsVeA1/zxVdvaGiIsWPHYuLEiRg4cKBcsb/J%2BfPnUVJSInI1bEhICAIDA3Ho0CGR2tLSUmzYsAFt27bFvHnzhMry8vKwadMmBAYGStx16Ny5cygtLVWo/ZoY1q9fj3bt2ikcQ0lJCXx9fREcHIzi4mIAQNu2bTFlyhR89913UreYA6p/J3FxcWjevDkWL16Mtm3b4ueffwZjDMbGxtwOIsTbAZm/eoKv%2BeKrnzVrFvr06YMlS5bg%2B%2B%2B/R0ZGBr777jt0794dqamp2LVrF3r37i3TYo0a%2BJovvnqg%2BrFGdHQ0rl27hhs3buDly5dypbyo4fXr1xAIBPjzzz%2BRmpoq99ZgDa2vjbxpP1RRhzS9osZLWfrr16/j66%2B/hpaWFiorK5GXl4dDhw7JZET4Gi%2B%2BeqA6NU1NyqTi4mIMHDiQy58pS/JwvuaLrz44OBjBwcGIjY3FZ599hkmTJsHBwUGh9%2BJdZv78%2BViyZAk3v7KyshLZ2dlo2bIlOnToIFddNdMoNDQ0MGTIEGzYsAFmZmZ4/fo1rKysKNXLWwaZv3qCr/niqzcwMEBkZCQ0NTVhYmKCkJAQoS/MnJwc2Nrayn2B8zVf8uoLCgoQGxuLqKgoREdHIzU1FT169OC%2BTE1MTGR6XMQYQ2JiIqKiohAVFYXbt2%2BjdevWMDU1haWlJSZNmtSo9ZKondOxoeqQpOdjvJShB6rn/NnY2HC5AA8cOICrV69KHKGpga/x4quvTWVlJW7fvs0tnrp16xbatGnDJQ8XtysDX/OlLPP2/PlzBAcH4%2BTJk3j%2B/DmGDx%2BOSZMmwdTUVK56apg1axaeP3%2BOEydOyPUUoYY9e/YgPT0dy5cvl3munJ%2BfH548eVJnznVQUBBu376NFStWSK0jLCwMJSUldX5fCQkJuHXrFmbNmiVSN23aNDx8%2BBA//fQTJkyYIFO84vDy8kJOTg6aN2%2BO5ORkhIaGoqKiAuvWrUNKSgr279/Pq36ikaH87DGEKPT19VlhYSFjjDFjY%2BM6ObKys7PZ559/rjK9ubk5e/LkCWOMsdGjR7OsrCyh8pSUFGZsbCy1H/n5%2BezcuXPM29ubDR8%2BnGlra7MRI0awVatWsb///psVFRWpTD9x4kTWv39/pq%2Bvz9zd3dlff/3FUlJSpMZcGz8/P/btt98yIyMjpq2tzb744gu2ZcsWduPGDaG8b41VLwsNkTdOHr2Liwv7/fffude//fYbc3Nzk7luvnrGGBs0aBArKSnhXr9%2B/Vqmz39tKioqWHx8PNuxYwdzcXFhAwYMYCYmJszT05MFBQWpXC%2BKoqIi9tdff8mcbzI9PZ3t3r2bjRw5kunq6jJPT08WExMjc3t89bVJSEhgy5YtY8bGxszGxobt3r1bLn1sbCwbOnQoc3d3Z3v37pW7/eTkZGZoaMgcHBxYcHCwzLrs7GxmaGjIMjIyuGNVVVVs5MiRMr8X//33HzMzMxP6TDLGmKurq9TPQlBQEDM3N2fTpk1jjx8/ljnuNykuLma7d%2B9m69evZ6mpqYyx6uti1qxZ7Pnz5wrXSzROyPzVE3zNF1/9rl272OjRo9mFCxeYv78/%2B/LLL1lcXBy7f/8%2BEwgEnAGTBF/zxVfv6%2BvLoqOjWWlpKXfs5cuX7OjRo%2BzgwYPs6dOnUuswMzNjCxcuZMHBwXWSscpCQ%2BtlobGbP77GSxnGTVR8fPssr/FSlv758%2BdMIBCw%2BfPnM3Nzc2ZoaMjc3d3ZwYMH5Wqfr/niq69dz6RJk%2BR%2BD2v6nJCQwKysrOS%2BmVqxYgXz8fFhZ86cYY6OjnJply1bxjZs2MC9vnDhAhs3bpxcdXz55ZfsyJEj3Os7d%2B4wCwuLOgn5RfHq1Su2cuVKpq%2Bvz7Zt28auXr0q9CMvubm5cmuIpgWleqknXFxc4OHhgR9//BEzZ87E4sWL8dVXX6Ft27Z48OAB9uzZg7Fjx6pMP3fuXLRr1w6%2Bvr5ITU0F8H/bTLVp0wYTJ06UuLoQqM4v6OnpCUNDQ26CfX5%2BPo4dO4aSkhLY2NigR48eKtPPnDkT3t7eWLFiBezt7eHs7Izx48ejRYsWAIDt27fjwIEDEhcafPHFF2jWrBkePXqER48eiT1P3HvR0Prjx4%2BL1dRQWVkpsZxvHXz1ZWVlQhPQW7dujZKSEql1KkuvTF68eMEtYIqNjUVJSQkGDRoEZ2dnlerDw8M53YsXL6Cvrw8zMzNMnz4dOjo6CuV/NDAwgIGBARwdHbF27Vps3boVc%2BbMqRd9RkYGTp48iaCgIGRkZMDW1hY//fSTzG0nJSUhISEBmzdvRuvWrfHhhx/izJkzMm2JBlQvrAgJCcHp06fRtWtXbNq0CdeuXRNafSsJNzc3ODs7w8PDA61bt8aBAwcwY8YMmeMHqv%2B%2BLV%2B%2BHFOnToWamhoOHjwIFxcXqQuXgOq/4V5eXsjPz8fOnTuFyqSt/q/h9evXWLduHUJCQlBRUYG7d%2B/i5cuXWLRoEdauXStT0m2i6UDmr57ga76UYd5cXFzg4uKCjIwMZGRkgDGG999/H926dZPpy4Kv%2BeKrX79%2BPUpKSuDq6oqQkBAkJCTAyckJHh4eAICDBw/i119/lThvS5b5iJLSrTS0fu/evVL10tLn8K1DGTE0NJWVlThx4oTQiltRx6ZMmVJHy9d4KcO4ffvtt1y%2BSFdXV7nzRb4JX/OliL6srAznz59HUFAQYmNjoa2tDTc3N9jb24tNESOOP/74A5MnT0br1q0BALNnz8bOnTtlNn/Hjh3D0KFDufyQbm5u%2BP3332U2f3369IGBgQFOnDgBXV1dpKWlSbwZF8XgwYPRunVrnD9/HgMGDMClS5dkStECADExMVi5ciVatGgBPz8/hXLyrVq1CpmZmfjtt9%2B4OYYtWrRAmzZt8Msvv4jMI0k0XWjBRwOgqPniq6%2BsrEROTg73xVxaWorLly%2BjRYsWMDAwkLo6bMGCBcjOzsaIESMQEhICTU1NDBo0SMh8Xb58Waz54qu3sLBAUFAQunTpgmfPnsHW1hbXr1/nvijKyspgYWFRJyci0bjQ0dGBt7e3kMlavXp1nWOijJcy9ABgbW0tNU41NTVERETUOa6trc3LePHVA9U7aERFRSEmJgY3b96ElpaWUMokWVZ6ijJfEydOlNl88dEvW7YMYWFhUFNTg729PSZNmsRtGSgvubm5GDlyJM6ePYsuXboAqF5QZWdnh1WrVtXZClNUP6ytrbF//37069cPQHUmgmHDhuH48eP4%2BOOPZYojLi4OixYtgra2NgwMDODu7i53X06ePIkjR45AT08PlZWVUs1fVlYWfHx8cOnSJcyZMwdffvmlTCOFojAxMUFoaCg6deoktFq/oKAAI0eORExMjEL1Eo0TMn/1CF/zxUefmJiIOXPmIC8vD4MGDcKvv/4KZ2dnZGZmAqjeMmv//v0SVxvyNV989fr6%2Brh16xb3euDAgXUSnyojzQmhWvgYL2Xo%2BcLXeCnDuNWmrKwM8fHxiImJQWxsLB48eIDPPvsMpqamYkff%2BJovvno3NzdMnDgRI0eO5KaAKIqfnx8eP37MbYVWQ2BgIBITE6Wutg0ICMDp06fr3HRu2bIFL1%2B%2BxMqVK2WOZebMmdxqY0XS1pSXl8Pa2hr5%2Bfk4ffq01BsDQ0ND6OvrK7Rb0JuYmpriypUr0NDQEPo7mpeXBxsbGyQkJPCqn2hckPmrJ/iaL7766dOnY8CAAXB0dMShQ4eQmpqKfv36YdGiRVBTU8O2bdsQHx8vcQNwvuaLr/7NMlHnkvkj6hNFjJcy9W/y%2BPFjXLlyBUeOHJGYL5Kv%2BVKmeVMG7P/vKiOKV69eSUz7kpeXxz3erE1ZWRny8vJkyiHJp/0aysvL0aJFC%2BTm5qK8vFymdkNCQmR%2BtC2NuXPnonv37liwYAFMTExw%2B/ZtpKWlwcfHB1VVVdizZ49S2iEaB2T%2B6gm%2B5ouv3tjYGJGRkdDQ0EBuyk7DHAAACitJREFUbi7Mzc0RHR2Njh07AqgeRbSwsJCYxZ2v%2BeKrf/Nxn6hHfatXr5a4lRJBqApZjZcy9Xl5eYiJieHyXr548QKffvoplzfQzMxM0e40KSZMmIA1a9agb9%2B%2BQsfPnz%2BP1atXc/OjxWFkZIThw4djzJgxGDx4sNw7Lolr/9y5c/jll1%2Bktq%2BMGPiSlpYGDw8PJCUloaKiApqamigqKoK%2Bvj42b94sdb9somlBCz7qiX///RcHDhyAhoYGFi5cCHNzc2zbto2bqzd37lyhzemVrVdXV0dJSQk0NDTQqVMnfPzxx5zxA6rndUjjzQnx4ibNq0qvpaUldPf55uuaYwRRH4gzXsOHD4eVlZVK9Rs3bkR0dDT%2B%2BecfaGpqwszMDB4eHrCyspJ7t5O3gcGDB8PJyQlubm7w8PBAfn4%2BVq5ciYSEBCxYsECqfs2aNQgPD8f8%2BfPRrFkzjBgxAmPGjIGxsbHU/bYltX/z5k3Mnz9fpj7wjYEv3bt3R3BwMO7cuYNnz56hZcuW6NmzJz777DPuCRPx9kAjf/WEmZkZzp07x80DsbOzQ1hYGFeelZWF0aNHix1546v/6aef8Pr1ayxbtgzdunUTKvvnn3%2Bwfv16aGlpwdfXV2wfZJlrBQAXL15UiZ4gGgOijJelpaXMxouvHqgeaarZ1UZfX1%2Bh1C5vG0%2BfPoWvry%2BSkpKQn5%2BPsWPHYt68eXLt9FFZWYm4uDhcuHAB4eHhYIxh1KhRWLJkSb20zzcGRSgqKsK6desQHh4OAHBwcMDChQu5kccTJ05gw4YNtLfvWwaZv3qCr/niq8/Pz8fPP/%2BMUaNG1UlBYGNjgz59%2BmDDhg1o3749j14SxNsPX%2BNFxk015OfnY/PmzQgPD0d5eTm%2B/PJLzJo1S6HVr2VlZYiKisKBAwcQHx8v0yN4ZbavaAyK4Ovri6ioKHz11VcoKyvDb7/9hrFjx8LBwQFLlizBv//%2BC09PTzg5OamkfaJhIPNXT/A1X6owb/n5%2BQgNDUVOTg4cHBwkJlgmCIJorPj5%2BWHr1q2wtrbm9qhdvnw5srOz4e3tLdPcx4KCAly8eBERERGIjIxEly5dMHLkSNjZ2WHAgAEqb59vDIpiY2ODffv2oU%2BfPgCABw8ewNXVFRUVFbC2tsbPP/%2BMzp07q6RtouEg89eA8DVf8ugzMzPh7e2N5ORkkQmWX758KXV3DIIgiMaIra0tVq5cWcdk%2Bfv7Y%2BPGjYiLi5Ood3V1RUJCArp16wY7OzuMGjVKLrPFt31lxKAoby6yY4xh4MCB2Lt3L8zNzVXePtEwkPmrJ/iaL776%2BfPnIycnR%2BEEywRBEI2V0tJSoS3/apOTkyN15Grjxo2ws7ODjo5OnbKCggKpOfv4tq%2BMGBSFUma9m5D5qyf4mi%2B%2BetodgyCIt42TJ0/KdN748ePlrjsmJgb%2B/v6IiIgQa4RU2b6sMfCFzN%2B7CaV6qSfi4uI482VlZQVbW1ts27aNK3dxccHu3btVpi8sLOS2PurRoweaN28ulNRUQ0MDpaWlfLpIEARRr3h5eaFz587cfDVRYxlqamoym6/09HQEBgYiKCgIWVlZGDZsGLZv315v7SsSA1/47HNNNF3I/NUTfM0XX/2bf5TqO4EoQRCEsvHy8sLp06eRlpYGOzs72Nvby71HcFlZGcLDw%2BHv749r165BT08PmZmZ8Pf3l1qXMtrnGwNfxOVLrX1MTU2NzN9bBpm/eoKv%2BeKr55tgmSAIorExY8YMzJgxA0%2BfPsWpU6fg6ekJdXV12NvbY%2BzYsfjwww8l6levXo3Tp0%2BjQ4cOsLe3x6pVq9CjRw8YGBhAU1NT5e0rIwa%2BUF7VdxMyf/UE7Y5BEAShGnr27IlvvvkG33zzDe7fv4/Tp0/D1dUVXbt2hYODg9hRqyNHjmDMmDGYN28eevbsWe/tKzMGgpAHWvBRT9DuGARBEPXD06dPERYWhuPHj6NFixZCuyHVJjIyEgEBAfj777/Rr18/jBs3DqNGjcKwYcMQEhKicO5TWdtXZQwEIQkyfwRBEESTJzc3F2fPnkVwcDBSU1MxatQojBs3Dnp6elK1eXl5CA4OhkAgQHJyMqqqqrBy5Uo4OjrKvEMHn/aVFQNByAqZP4IgCKJJUlxcjPDwcISEhODGjRuwtLSEg4MDhgwZwuVAlZdbt27B398foaGhaNWqFRwcHODl5VVv7csbA0EoApk/giAIoklSsyjCysoK1tbWYre3NDIykrvuoqIinDlzBgKBAMeOHav39mWNgSAUgcwfQRAE0SSRZS60mpoaIiIipJ5XVlaGxMREZGRkoGXLlujatSt0dHSgpqZWL%2B0rGgNBKAKZP4IgCOKd5saNG/jmm29QUFCA9u3bgzGGgoICdOvWDdu2bcPAgQPfiRiIdwcyfwRBEESTh8%2Bomb29PSwsLDB37lxuD938/Hzs27cPkZGRCA4OVmn7yoqBIGSFzB9BEATRpJE0arZ161bo6upK1BsYGCAuLg4aGhpCx8vLy2FsbIybN2%2BqtH1lxEAQ8kB7fBEEQRBNmpUrV%2BKLL75AXFwcYmNjuX9Hjx6NZcuWSdUbGhri3r17dY4/fPgQ%2Bvr6Km9fGTEQhDzQyB9BEATRpFFk1Oz48ePc/3Nzc3H8%2BHEMHToUn376KdTU1JCcnIyLFy9i%2BvTpmDlzptLbV3YMBCEPlDmSIAiCaNLUjJoZGBgIHZc0arZ3716h182aNcOVK1dw5coVoeN//fWXVOOlSPvKjoEg5IFG/giCIIgmh6pGzV6%2BfInQ0FCUlpbCxsZG7PZqqhy1kzUGglAUMn8EQRBEk0PW/c4l5dnLysrCsmXLkJycDHt7ezg7O2P8%2BPHQ0NAAYwwvX77EgQMHRI7eKaN9vjEQhKKQ%2BSMIgiDeGuQZNZs/fz5ycnIwYsQIhISEQFNTE4MGDYKHhwcA4ODBg7h8%2BTIOHTqkkvZVFQNBSIPMH0EQBNEk4TtqZmFhgaCgIHTp0gXPnj2Dra0trl%2B/jjZt2gCozt1nYWGBa9euqaR9ZcRAEIpAqV4IgiCIJomvry9KSkrg6uqKq1evYsGCBXByckJ4eDgiIiLw7bff4tdffxWrLywsRJcuXQAAPXr0QPPmzTnTBQAaGhooLS1VWfvKiIEgFIFW%2BxIEQRBNkri4OG7UzMrKCra2tti2bRtX7uLigt27d4vVv/ngq1kz%2BcZD%2BLavjBgIQhHI/BEEQRBNEr6jZpWVlThx4gRnwN58XXNMVe0rIwaCUAQyfwRBEESThO%2BomZaWFvbs2SP2dc0xVbWvjBgIQhHI/BEEQRBNEr6jZhcvXmzQ9pURA0EoAq32JQiCIJoksubaU5XBauj2CUJRyPwRBEEQBEG8Q9CyIoIgCIIgiHcIMn8EQRAEQRDvEGT%2BCIIgCIIg3iHI/BEEQRAEQbxDkPkjCIIgCIJ4hyDzRxAEQRAE8Q5B5o8gCIIgCOIdgswfQRAEQRDEO8T/A/U/bEyJsOvDAAAAAElFTkSuQmCC" class="center-img"> | |
<img src="%2BnaQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde1xU1fr48c9wNcULKGBRVl6AREgMBQI6SSZK3lNRDCXL8gRqfqlMfxytND1qHks0O%2BoRjTAt4SSW5K1OqeCF9CRaqHlHC5RLiinX%2Bf2BzGFk9p7RAYR43q8Xr6m911r7eWbvgeWevdbSaLVaLUIIIYQQokmwuNsBCCGEEEKI%2BiOdPyGEEEKIJkQ6f0IIIYQQTYh0/oQQQgghmhDp/AkhhBBCNCHS%2BRNCCCGEaEKk8yeEEEII0YRI508IIYQQogmRzp8QQgghRBMinT8hhBBCiCbE6m4HIISof4cPHyY5OZlDhw6RnZ3N9evXsbW1xcnJiW7duhEaGkpwcDAajeZuhyqEEKKWaWRtXyGaDq1Wy7vvvktCQgIArVu3xtXVFTs7O4qKivj5558pKioCoHfv3ixZsgQbG5u7GbIQQohaJp0/IZqQxMRE3nnnHZo1a8bbb7/NwIEDsbS01O2/ceMG69evZ/78%2BVRUVPDSSy8RExNzFyMWQghR2%2BSZPyGakE8//RSAsWPHMmTIEL2OH0CzZs2IjIxkwoQJAHzyySfcuHGj3uMUQghRd6TzJ0QTcu7cOQDc3NxUy0VGRrJq1Sq2b99Os2bNAHjzzTdxc3Nj/vz5XLt2jXnz5hEcHIynpyd%2Bfn5ER0dz/PhxxTbT09OJjo4mMDCQbt264efnR2RkJJs3b1asU1hYyOLFixkyZAje3t54eHjw%2BOOPM3HiRPbt22ewTnBwMG5ubnz//fds376d0NBQPD09%2BeGHHwCIi4vDzc2NN998k5KSEuLi4ggJCcHLy4u//OUvzJ49mz/%2B%2BAOAEydOMHnyZAICAvD09GTgwIGkpKQYPO7169dZuXIlI0eOxMfHh65du%2BLr68vzzz/P9u3bDdaJiIjAzc2NTz/9lGvXrrF48WJdLD179mTChAkcOXJE8f0RQog7IZ0/IZoQBwcHAP773/8aLRcUFES7du1q7Lt27RqRkZF8%2Bumn2Nvb07NnT8rLy9m%2BfTsjRoww2FlZvHgxkZGRbN%2B%2BHTs7O3x9fXFwcCA9PZ3XXnuNV199lfLycr06ly5dYtiwYXz00UecOnWKrl274ufnh42NDd9%2B%2By3jxo0jKSlJMYdTp04xdepUrK2t8fPz03Viq3v99ddZvXo1Li4udOnShdzcXD755BOmTZvG8ePHGT16NFlZWbi7u%2BPo6Mjx48d5/fXX%2Bc9//qPXzvXr1wkPD%2Be9997j6NGjdOrUCX9/f1q3bk1aWhrR0dHExcUpxlpSUkJkZCRr167l3nvvxcPDg/Lycr7//nsiIiJ0nXYhhKgVWiFEkzFt2jStq6ur1s3NTTt//nxtTk7Obdft0aOHdsCAAXp1r1y5oh0%2BfLjW1dVVO3z4cL1627Zt07q6ump79uyp3bdvn96%2B/fv3ax9//HGtq6urNj4%2BXm/fnDlztK6urtqQkBDt5cuXddvLysq07777rtbV1VX72GOPaYuKivTq9e7dW%2Bvq6qoNDg7WLl%2B%2BvEYeS5Ys0bq6umoDAwO1gwYN0l66dEm3b/v27br3p1%2B/ftq4uDhtRUWFVqvVasvLy7VRUVFaV1dX7QsvvKDXZnx8vNbV1VXr5%2BenPX36tMF9jzzyiPbcuXN6%2B5577jmtq6ur9sknn9SGh4dr8/LydPtyc3O1AQEBWldXV%2B3cuXNr5CGEEHdK7vwJ0YS8%2Buqr3HvvvWi1Wv71r3/x5JNP8txzz/H%2B%2B%2B%2BTlpbG9evXjbZRVFTEW2%2B9hZOTk25by5YtefPNN4HKaWTOnDmj27d8%2BXIApk2bRq9evfTa6tmzJ2%2B88QYAa9eu1dvn5OTEM888Q3R0NG3bttVtt7S0ZOrUqVhYWHD16lXFu5hVA1aU5Obm8vbbb%2Bvd3ezTpw%2BOjo5otVqsrKyIiorSTXdjYWFBWFgYAD/99JNeWy1atGDgwIFMnDiRhx56SG/fuHHjcHR0pLy8nPT0dIOxXLp0iX/84x%2B6O7MAjo6ODBw4EIAff/xRMQ8hhLhdMs%2BfEE1I%2B/bt%2Bfzzz1m4cCFffvkl5eXlHDhwgAMHDrB8%2BXKsra3x9fVl0KBBPPPMM1hZ1fwV4eTkxGOPPVZju7e3Ny1atODatWv897//5aGHHiInJ4ejR48C8PTTTxuMqU%2BfPmg0Gi5evMjp06d5%2BOGHAXSDTgy55557aNu2LZcuXeLSpUsGy/j5%2BWFhofzvW0dHR7p3715ju4uLC5cuXaJ379415jl0cXEB4Pfff9fbPmLECEaMGGHwOBqNhvvvv1811l69euHs7Fxje4cOHQAoKChQzEMIIW6XdP6EaGIcHR1ZsGABb7zxBtu3byc9PZ2MjAzy8vIoLS1l9%2B7d7N69m5UrV/Lhhx/qOiBVXF1dDbZrYWGBi4sLx48fJzs7G0BvAEjVnUFDrKysKC0t5cyZM7rOH1Q%2BC/fdd99x5MgRcnNzuXLlCtqbs1NdvXoVqLzDZ4ihzlR1999/v8HtVfMaVnX0DO0rKyursa%2BiooI9e/Zw6NAhcnNzKSws1MV2%2BvRp1VgfeOABg9ttbW0BKC0tVUtFCCFui3T%2BhGii2rVrx%2BjRoxk9ejRQOUBi3759bNq0iUOHDnHixAleeuklNm/ejLW1ta5e69atFdts2bIlUDkoBPTvkO3cudNoTFUdOoCsrCyioqJ0HcnbpRYnoJfTneyv7uLFi0RFRdX4OthUMpG2EKI%2BSedPCAFAx44d6dixI6NHj2bt2rXMnTuX06dPs2XLFgYPHqwrp/ZVatWdraoyVV%2BbWltbk5mZafJycTdu3OCvf/0rFy9e5KGHHuKVV17B398fe3t7XacsODiYCxcuKLZRn0vTTZ48mZ9%2B%2Bol27doxadIknnjiCdq1a6fr1EVERLB///56i0cIIdRI508IUcO4ceP45JNPOHfuHCdOnNDbV7X8myFV%2B6ruALZp0wao/NqyoKBAb0CDmu%2B//56LFy%2Bi0WhYsWIFDz74YI0yDWXy6aNHj5KZmQnAe%2B%2B9h7%2B/f40yDSVWIYQAmedPiCZj%2B/btzJw5kxUrVphUvupr06rnzqr88ssvBsuXl5fr7sRVPcNW/fnAWzuRaqpGC3fo0MFgx%2B/cuXPk5eWZ3F5dOnv2LIBuPsFbXbt2TXXyayGEqG/S%2BROiicjMzGTDhg2sWLGCixcvqpbNyckhKysLoMaI2PPnz/Pzzz/XqPPDDz/oVsbw9vYGKgeXeHh4APDZZ58ZPNbp06cZPHiwbkoY%2BN%2Bdw%2BLiYoN1li1bpvvvWyeHrm92dnZA5VfehgZm/Otf/9Ld%2BTM0UEQIIeqbdP6EaCKef/55HB0duXr1KuPGjTO4PJpWq2Xv3r28%2BOKLlJaW0r17dwICAvTKtGzZktjYWL07b4WFhfz9738HKqdYue%2B%2B%2B3T7Jk6cCMCXX37JmjVrdKN1ofKu2eTJk8nKyuLXX3/VbXd3dwfgt99%2BY8eOHbrt169fZ86cOWRmZuo6mKdOnbrj96Q2uLq6YmlpSXl5OevWrdNtLysr45///CcbNmygd%2B/ewP9G/QohxN0kz/wJ0UTY29uzevVqJk2axJkzZxg7diyOjo507NiR5s2bU1hYSHZ2tm4uuscee4ylS5fWGOARHBzM%2BfPneeqpp/D09MTa2poff/yRoqIi7OzsmDlzpl75vn378tJLL7FixQrmzZvHxx9/TMeOHSkoKODnn3%2BmvLycrl278tprr%2BnqeHt7ExgYyO7du5k0aRKPPvootra2HDlyBCsrK%2BLj4/nqq684dOgQH3/8MceOHeOvf/0rPXv2rPs38hbt27dn%2BPDhbNiwgXnz5pGSkkKbNm34%2BeefuXbtGkuXLiU7O5tvv/2WrVu3EhERQXh4OP3796/3WIUQAqTzJ0ST4urqyubNm/nqq6/45ptvyMrK4vDhw5SUlNCsWTOcnZ3x9/cnNDSUJ5980uCIWQsLC1avXs2HH37Itm3buHjxIi1atCAkJISpU6fqzdNXJSYmhscff5xPPvmE//73v6Snp2Nra0u3bt0IDQ0lPDy8xnQn77//Pu%2B99x47d%2B7kyJEjODk5ERISwsSJE%2BnQoQPt27fnp59%2B4uDBg5w4caJeR/feKjY2ltatW/Pll19y/Phx2rZti6%2BvLy%2B//DKPPPIIN27cYN%2B%2BfXz//fecOHFC7%2B6nEELUN41WfgsJIUzw5ptv8u9//5uhQ4fqvuIVQgjR%2BMgzf0IIIYQQTYh0/oQQQgghmhDp/AkhhBBCNCF3vfMXHByMh4cHnp6eeHl5ERAQQExMDDk5OUDlFBJvvPEGfn5%2B%2BPj4MGbMGA4fPqzXxvLlywkMDKR79%2B5ERkbq1gLdt28fbm5ueHp66v2kpqYCkJycXGMaiyoBAQEkJyfXYeZCCCGE%2BLPYtWsXjz/%2BOFOnTlUtV1FRweLFi3nqqafo2bMnL7zwAufPn9ftLyws5NVXX%2BXxxx8nMDCQ//f//l%2BtrxJ01zt/UDlSLjMzk8OHD5OcnMzly5d100XMmDGDq1evkpqayp49e%2BjWrRsvv/yybjLVxMREUlJS%2BPjjj9m9ezedO3dmzZo1urZdXFzIzMzU%2B5EpFoS4fX//%2B985duyYDPYQQohbrFy5kjlz5hhckehWiYmJbN68mRUrVvDtt9/y0EMPERUVpZsF4G9/%2BxvXr1/nyy%2B/JCkpiZMnT/Lee%2B/VarwNovNXnbOzM3379tVNhtqvXz/%2B9re/YW9vj62tLUOHDiU/P5/8/HwAVq9ezdSpU%2BnYsSN2dnbExsYSGxt7N1MQQgghRBNia2vLxo0bTer8bdiwgcjISDp16oSdnR1Tp07l5MmT/Pjjj1y%2BfJkdO3YwdepUHBwccHZ25pVXXiEpKcngCkJ3qkHN86fVasnOzmbTpk0MGDAAgEGDBun25%2Bfns2bNGnx8fHByciInJ4fs7Gx%2B//13QkNDycvLw9fXl7feeku3gPy1a9eIiooiIyMDGxsbxo8fT2RkZK3PCZabm6ubHLeKo6MjTk5OtXocIYQQQtQuc/%2BGjx071qRyN27c4JdffqFr1666bXZ2djz44INkZmZy9epVLC0tcXNz0%2B338PDgjz/%2B4NSpU3rbzdEgOn9z5sxh7ty5aLVaSktL8ff3Z8yYMXplQkJCOHPmDD179uT9999Ho9Hw22%2B/AfD1118THx%2BPVqtl8uTJxMbG8uGHH2JnZ4erqyvjxo1j8eLF7N%2B/nylTptCyZUuGDx8OwOXLl/H09KwRU0lJyW3lsGHDBpYuXaq3LfqVV5g0ZcpttSOEEEIIFXUwofuGJUtq/g2PjmbSpEm1epzff/8drVZL69at9ba3bt2agoIC2rRpg52dnd4NqqqyBQUFtRZHg%2Bj8xcbGMnr0aACuXLlCQkICQ4YMISUlBXt7ewC2bt1Kfn4%2By5cvZ8yYMWzatEn3/fiLL76Is7MzAJMmTWLChAkUFxfj4eFBQkKC7jiBgYGMGjWK5ORkXeevXbt27Nmzp0ZMSgNBlISFhREcHKy3zXHgQFi7VrmSuzusWwfh4ZCVVWP32ikHVY/p4AADB8LmzXDzW/AaPvjgjg8PwEF6mNVAYox6Dvb2EBoKW7aAoet68WLV6ri5QWIijBkDx44ZLpOhfUy5AXf3/zWgkMPqqB9UY2jbFgYPhk2boNpytzoffaRaHTc3SEiAiAjlHPaX1d15MHYOoJbOQ4V5Oah9Hsz9LJgSgupnwZQGMD%2BHuDj1EIydB9VzAHc9B1OuowMHlOtX0WjAnOULjNXXYKRxcwMw0saNYvXOj0YDtrZQXKwcRjNbM3O4iyvq1AWDf8MdHevseGrra9TH2hsNovNXXatWrYiKiiIpKYnU1FTCw8N1%2BxwcHJg2bRobN27ku%2B%2B%2Bo1u3bro6VVxcXNBqteTl5ektLl99/9atW2s9bicnp5q3h01dxD0rCw4dqrE5N9e06vn5ymUNNGvq4ataMKsBU3MoKDBc1pT4ofIPhWJZrXk53Bx4blRenuGytZJDWd2fB6VzALWUQ0Xd52DuZ0E9BLMbqLccFM%2BDKecA7noOqteRMLlfqdWa3wdtkCxqf7iCwb/hdaBNmzZYWFhQWFiot72wsJC2bdvi4OBAUVER5eXlWFpa6vYBtG3bttbiaHADPqrLz88nODiYn376SbfNwsICrVaLlZUV7du3x87Ojp9//lm3/8KFC1hbW%2BPk5ERqairr1q3Ta/PUqVM88MAD9ZaDEEIIIQRUDgzp0qULR48e1W27cuUK586dw8vLi0ceeQStVktWtTvvmZmZtGrVyuC66XeqwXX%2BiouLiY%2BPp6CggEGDBtGxY0cWLFhAbm4uxcXFLFmyBBsbG3r06IGVlRXDhw/no48%2B4uzZs%2BTl5bFs2TIGDhyIlZUV1tbWzJ8/n927d1NaWsqePXtISkrSfcUshBBCiEbGwqL2f%2BpQTk4O/fr1083lN3r0aD7%2B%2BGNOnjxJUVER7733Ho888gienp44ODgQEhLC%2B%2B%2B/T35%2BPr/99hvLli1j%2BPDhWFnV3pe1DeJr36oBH1DZK%2B7atSurVq2iQ4cOLFy4kHnz5hEaGopWq8Xd3Z0VK1boRvPGxMRQUlLCiBEjKC0tJSQkRDfVS58%2BfZgxYwazZ8/m119/pV27dsyYMYO%2BffvetVyFEEII8edSNXC0rKwMgB07dgCVd%2B1KS0s5ffq0biDpqFGjuHTpEhEREVy7dg1fX1%2B9wSbvvPMOs2bN4qmnnsLa2poBAwYYnTj6dt31zt8333yjut/e3p4FCxYo7rexsWHWrFnMmjXL4P6wsDDCwsIM7hs2bBjDhg0zuM/QIBAhhBBC3GV1fKfuTmRmZiruu//%2B%2BzlWbQSTRqNh8uTJTJ482WD5li1b8o9//KPWY6zurnf%2BhBBCCCFM1gA7f42NRlsfY4qbqIUL1fc7OcG4cZWzwRgaGff6G0aG0nt7w8GD0KOH8tC4999Xru/oWDmlw7p1cMvkllUWlijPU2gsfoDX5zkoHx/Aywv%2B8x948km4Zc1mABTu6OqYkMPiCvUcxoypnF5CKYepC%2B5Vj8HTE7Ztg759wdC//t58U71%2BfZyHd1oqH//RR2H3bggMhB9/NFxmzhzl%2BlA/Ocxqrnz87t0hLQ0efxz%2B%2B1/DZebNU64PRnNQix9MzOFDlQe2PTzgyy9hwACo9jC4nldfVY2hXnIw9zzMn69c39ERRo2C9esVryMiI5XrQ2XHoEULuHYNKirUy95h/asof57MPbwpbdjYqNfXaCrLlJQoj/Y11n%2Bytga1BSWsrdXr16l77qn9Nq9fr/02GzC58yeEEEKIxkPu/JlNOn9CCCGEaDyk82c2eQeFEEIIIZqQu37nLzg4mJycHCwsLNBoNLRs2RI/Pz/eeOMNnJ2dKSwsZO7cuXz//feUlZXh5ubGtGnT8PLy0rWxfPlyEhMTKSoqonv37syZM4f777%2Bfffv2MXbsWGxueUBiwYIF9O/fn%2BTkZKZPn67bb21tTZcuXRg0aBCjRo3Sza4thBBCiAZC7vyZrUG8g7GxsWRmZnL48GGSk5O5fPkyM2fOBGDGjBlcvXqV1NRU9uzZQ7du3Xj55ZcpvfkkamJiIikpKXz88cfs3r2bzp07s2bNGl3bLi4uZGZm6v30799ft79du3a67Tt27GDixIkkJCQwceJEysvL6/V9EEIIIYSoa3f9zt%2BtnJ2d6du3L2vXrgWgX79%2B%2BPj4YG9vD8DQoUNZs2YN%2Bfn5ODs7s3r1aqZNm0bHjh0BdBM83wkHBwd69%2B5Nt27dCA0N5YsvvuDZZ581PykhhBBC1A6582e2BtX502q1ZGdns2nTJgYMGADAoEGDdPvz8/NZs2YNPj4%2BODk5kZOTQ3Z2Nr///juhoaHk5eXh6%2BvLW2%2B9pVsB5Nq1a0RFRZGRkYGNjQ3jx48nMjISjUZ5GhVHR0eeeeYZvv76a5M7f7m5uVy6ZWoCS0tH2rZVXij6Zoi61xq8vdUP6u6u/2qIo6Pyvpsdat2rAU4qQ/2Nxg%2BVU7mo6dJF//VWavGDaTmoTGZkQvXKqVzUdO6s/3qr2sjB3PPw6KPK%2B1xd9V8NaQg5dO%2BuvK8eclCLH0zMwcNDeV%2BnTvqvhjSEHOryPJjygTT2h79q/512EEyor9ayuYc3pQ2VP196%2B42Va7Sk82e2uz7PX/Vn/rRaLaWlpfj7%2B7No0SLatm2rKxcSEsKZM2fo2bMnixcvxtHRkR9//JGRI0cSGBjI3Llz0Wq1TJ48mXbt2vHhhx9y9OhR/v73vzNp0iS6d%2B/O/v37mTJlCtOnT2f48OEkJyezaNEig6t5rF27lvXr15OammpSHnFxcXrLswBERUUzefIk894gIYQQQvxPtb5BrcnLq/02G7AGcecvNjaW0aNHA3DlyhUSEhIYMmQIKSkpuq97t27dSn5%2BPsuXL2fMmDFs2rSJqn7riy%2B%2BiLOzMwCTJk1iwoQJFBcX4%2BHhQUJCgu44gYGBjBo1iuTkZIYPH64aU3l5%2BW0N%2BAgLCyM4OFhv29atjtz89togBwcYOBA2b4b8/Jr7x33QQ/2g7u6Vk7mGh0NWluEyr72mXN/eHvr3h9RUKCgwWGRtabhidWPxA4yLf1L5%2BFB5x2/lSpgwAU6cqLn/pZfU65uQQ6JWOQd7ewgNhS1bFKszZq2RtaA7d4YPP4RXXoFffqm539iktPVxHlYGKh/f1RVWr4bx4%2BH4ccNlXnlFuT7UTw7/fFz5%2BK6usGZN5XutlEN0tHJ9MJqDWvxgYg6fD1BuoFMn%2BOADmDIFTp40XCZcPYZ6ycHc86CwpBVQGX9ICGzdqvyBHDhQuT5U3hW6557KSXvvdJJnI/Wv0aLODm9KG8YmWNZo/jdJs9LtHWN3BRv0JM9y589sDaLzV12rVq2IiooiKSmJ1NRUwqv9snNwcGDatGls3LiR7777jm7duunqVHFxcUGr1ZKXl8d9991Xo30XFxe2bt1qNI6ffvpJ9xyhKZycnHBy0v%2BKd8sW5Vnyq8vPVyintGrHrbKylMsqzZJfXUGBYrncEuPVFeMHw6t2GHLihOGypsQP6jmY8Au4oEAlB5U1G/X88ovhsrWRg7nnQWnljuqOH1cu1xByUFoxorrjx5XLmZmDKfGDkRyUVu6o7uRJ5XINIYf6OA8q15HJPaqKijvvfRmpb0qr5h5erQ1Tv6/Tau%2B88yf%2B3Bp09zk/P5/g4GB%2B%2Bukn3baqr4etrKxo3749dnZ2/Pzzz7r9Fy5cwNraGicnJ1JTU1m3bp1em6dOneKBBx5QPe7JkydJTU3VPXcohBBCiAbCwqL2f5qYBpdxcXEx8fHxFBQUMGjQIDp27MiCBQvIzc2luLiYJUuWYGNjQ48ePbCysmL48OF89NFHnD17lry8PJYtW8bAgQOxsrLC2tqa%2BfPns3v3bkpLS9mzZw9JSUm6r5hvVVpayq5du5g4cSJ9%2BvShb18jX/cJIYQQon5J589sDeJr3zlz5jB37lwAbG1t6dq1K6tWraJDhw4sXLiQefPmERoailarxd3dnRUrVuhG88bExFBSUsKIESMoLS0lJCREN91Lnz59mDFjBrNnz%2BbXX3%2BlXbt2zJgxQ69Td/nyZTxvjubUaDQ8%2BOCDjBkzhoiIiHp%2BF4QQQggh6t5d7/x98803qvvt7e1ZsGCB4n4bGxtmzZrFrFmzDO4PCwsjLCzM4L5hw4YxbNgw04MVQgghxN3VBO/U1TZ5B4UQQgghmpC7Ps/fn5mx0VTe3nDwIPToYXiwrvb9D9QbcHSsnPph3TrlkXGvvnrnAQCWFsqXh7c3ZGSAj4/yYOPyD5Ya3lHF0RHCwmDDBsM5TDIyT6IJOVhbqeewfz/06qWcQ%2BncheoxODnBuHGwdq3hIZIzZqjXNyEIywrlORfMPg/GzgHUynnQoH4ejFRX/zyY%2B1kwIQi1%2BE2oDoB2SZxyA46OMGoUrF%2BvnIPaNCkmBFErOdTleTAhgPIy43%2ByLC3BnNU5jdW3xEjj5gZQG20Yqa%2B1UJ/KTKNRH1V8V0cLGxm0eUfOn6/9Nhuwu/61rxBCCCGEyeRrX7PJOyiEEEII0YTInT8hhBBCNB5y589sd/0dDA4OxsPDA09PT7y8vAgICCAmJoacnBwACgsLeeONN/Dz88PHx4cxY8Zw%2BJaVIJYvX05gYCDdu3cnMjKS7OxsAPbt24ebmxuenp56P4bW6x01ahQeHh5cMnUGfSGEEEKIRuiud/6gcm3fzMxMDh8%2BTHJyMpcvX2bmzJkAzJgxg6tXr5KamsqePXvo1q0bL7/8MqU3Fx1MTEwkJSWFjz/%2BmN27d9O5c2fWrFmja9vFxYXMzEy9n/79%2B%2Bsd/5dffuHEiRMEBATw73//u97yFkIIIcRtkkmezdbgMnZ2dqZv376cPn0agH79%2BvG3v/0Ne3t7bG1tGTp0KPn5%2BeTfXHV89erVTJ06lY4dO2JnZ0dsbKxukmdTbdy4kd69ezNgwACSk5NrPSchhBBC1BLp/JmtQWWs1Wo5f/48mzZt0q2rO2jQIO677z6gcq3fNWvW4OPjg5OTEzk5OWRnZ/P7778TGhqKr68vkydP1nUMAa5du0ZUVBS%2Bvr4EBQURHx9P9dltSkpK2LRpE4MGDaJPnz7k5OSQkZFRv4kLIYQQQtSTBjHgo2p5N61WS2lpKf7%2B/owZM0avTEhICGfOnKFnz568//77aDQafvvtNwC%2B/vprXadu8uTJxMbG8uGHH2JnZ4erqyvjxo1j8eLF7N%2B/nylTptCyZUuGDx8OVK4wYmlpSUBAAJaWlvTt25ekpCR8fHxuK4fc3Nwazws%2B/LAjbdo4KdZxd9d/rcHRUf2g9vb6r4Z4eyvvMxoAeKv888DNTf/VIHNzUIsfTMtB5So3KQcn5XMIwM2lBnWvNQIwkoMJQXhXmFVd/TyYex2BaefBvOp3PQcjtSUHqJffSUI0xTt1te2uT/IcHBzMhAkTGD16NABXrlwhISGB9evXk5KSgn21XyL5%2BfksX76c7777jk2bNhaCz7gAACAASURBVHHs2DHCwsJYs2YN/v7%2BAOzatYsJEybw448/YmtrW%2BN4Cxcu5NChQ6xbtw6AF154gc6dOzN9%2BnQA0tLSiIqKYvfu3bRo0cLkPOLi4li6VH8i3VdeiWbKFCOT4wohhBDCdKr/0r1Dx47VfpsNWIO481ddq1atiIqKIikpidTUVMLDw3X7HBwcmDZtGhs3buS7776jW7duujpVXFxc0Gq15OXl6b4urs7FxYWtW7cCcPHiRdLS0ti/fz%2BfffaZrswff/zBli1bGDFihMlxh4WFERwcrLdt4EBH1q5VruPuXjkRfng4ZGXV3H/wtXXqB7W3h/79ITUVCgoMl3nvvTsPAPCxOKhY3c0NEhNhzBjlz03G6xuUjw%2BVOfTtC9u2Gc5h/nz1%2Bibk0MtKPYeEBIiIUM5hf5TKSYTKO34DB8LmzVDtkQOdZcvU65sQhE/FftXqZp0HY%2BcAauU89ED5PJhQXf3zYO5nwYQg1OI3oToAB99Yr9yAvT2EhMDWrco5qKxzbkoQtZJDXZ4HEwIoP6CeA8gKH6bUb9QrfMidP7M1uM5fdfn5%2BQQHB7N06VK6du0KgIWFBVqtFisrK9q3b4%2BdnR0///wzHh4eAFy4cAFra2ucnJxITU2loKBArwN56tQpHri5NExycjKdOnVi2S1/nFevXk1SUtJtdf6cnJxwuuXrwZtjVozKylJYycjUaWcKCpTLKq3RZFIAcMiEz9ixYyqHMTcHU%2BIH9RxMuMpVczC0ZJsh%2BfmGy5qag0oQh1S%2B9jWhumnnwdzrCNTPg3nV73oOJtaWHKBOfycJIZ0/8zW4d7C4uJj4%2BHgKCgoYNGgQHTt2ZMGCBeTm5lJcXMySJUuwsbGhR48eWFlZMXz4cD766CPOnj1LXl4ey5YtY%2BDAgVhZWWFtbc38%2BfPZvXs3paWl7Nmzh6SkJEaPHk1FRQXJyck8%2B%2ByzPPjgg3o/zz33HIcOHeLkyZN3%2B%2B0QQgghhKhVDeLOX9WADwBbW1u6du3KqlWr6NChAwsXLmTevHmEhoai1Wpxd3dnxYoVONx8uD4mJoaSkhJGjBhBaWkpISEhuqle%2BvTpw4wZM5g9eza//vor7dq1Y8aMGfTt25fdu3eTm5vL4MGDa8TTpUsXvLy8SEpK4o033qi/N0IIIYQQ6uTOn9nueufvm2%2B%2BUd1vb2/PApXnXGxsbJg1axazZs0yuD8sLIywsLAa2wMDAzly5Ihiu59//rlqXEIIIYQQjdFd7/wJIYQQQphM7vyZTTp/QgghhGg8pPNnNun81SEtxsbCewMHOUgPDI3DW1iiPgWjUymMA9aWhpNbYrjMmxZTlI9uARlUTueiNKq3vEIlh4rK%2BDMqekCF4ZF5i0uN5FAGY4DEsjByS2vuf80iWrW%2BSTmUq/yiKPcGfmB/%2BWNQbjiHeWXqQ22dy2E8sLp8HDllNffP5HXV%2Bt7AfqAX%2BxVHY9bleTB2DqB2zoNWLQcjnwVQ/zyY%2B1kA4zmoxw8m5XBDJYfimzkUjyL3huEyb1qozxtaLznU4Xkw5ToqM/Hvvrn9A/X6JjReGx0UhTaKrqmfRwsLaN4c/ii2pELh15ddC2NT/GrQoFbmbs71IswlnT8hhBBCNB5y589s8g4KIYQQQjQhcudPCCGEEI2H3PkzW6N5B4ODg/Hw8MDT0xMvLy8CAgKIiYkhJyeH%2BfPnM3z4cL3y5eXl9OzZkzlz5uhtz8rKws3NjZMnTxIXF8fIkSNrHKu4uBg3Nzf27dtXpzkJIYQQ4jZZWNT%2BTxPTqDKOjY0lMzOTw4cPk5yczOXLl5k5cyZBQUEcPXqUwsJCXdkjR45QVlZGWlqaXhvp6em4uLjQqVOn%2Bg5fCCGEEOKua1Sdv%2BqcnZ3p27cvp0%2BfxsfHh2bNmrF3717d/rS0NPr378%2BFCxfIycnR2x4YGHg3QhZCCCGEueTOn9ka5TN/Wq2W7OxsNm3axIABA7CxsaFXr16kpaXRr18/oLKT9%2Byzz3L%2B/HnS09MZMmQIpaWlZGRksHDhwlqPKTc3l0u3LGTu%2BPDDOLVpo1zJ3V3/9RZOTurHvLnCne7VEG9v5X1ubvqvBlWoNGAkfjCeg729/uut1OIHE3PQmpeDs7N6DG3b6r/eqlZyKKu782DsHEAt5VCH15K5nwUwIQe1%2BEFyoJ5%2BJwmjfRWN5n%2BvTbBfI0yg0Wq1xib7aRCCg4PJycnBwsICrVZLaWkp/v7%2BLFq0iLZt2/LJJ58QHx/Pzp07uX79Or169WLHjh1s3LiRs2fPsmDBAg4cOMDzzz/P3r17sbOzIy4ujmXLlmFtbV3jeCUlJXz88cf4%2BvqaFF9cXBxLly7V2xb9yitMmqI%2Bt5gQQgghbkNAQO23uWeP2U1cuHCBt99%2Bmx9//JHmzZsTGhpKTEwMFrf0wMePH8%2BBAwf0tpWVlREVFUV0dDQREREcPHhQr97DDz9MSkqK2TFWaVR3/mJjYxk9ejQAV65cISEhgSFDhpCSkkJQUBCzZ8/m7NmznDt3DhcXF5ydnfH392f9%2BvVA5d1Ab29v7OzsdG16eXnx2Wef6R2nuLgYLy%2Bv24otLCyM4OBgvW2OAwfC2rXKldzdYd06CA%2BHrKwau9dOOah6TAcHGDgQNm%2BG/HzDZeLilOu7uUFiIowZA8eOGS6TUdFDuQEj8QMkxqjnYG8PoaGwZQsUFNTcv3ixanXTctA%2BptyAu/v/GlDIYXXUD6oxtG0LgwfDpk2Ql1dz/0cfqVbHzQ0SEiAiQjmH/WV1dx6MnQOopfNg5rWk9nkw97MAxnNQjR8kB%2Brnd9ItfzMN0mjAnNsaxuqrT35cCwEYaeOP6%2BoTLGs0cM89cP26chjN7zEzB81dnOS5gd7OnDRpEh4eHuzYsYO8vDxefvll2rVrx/PPP69XbvXq1Xr/f%2BXKFUJDQ3n66ad122bPns2wYcPqLNZG1fmrrlWrVkRFRZGUlERqairh4eF06NCBtLQ0srOz8ff3Byo7d0VFRZw8eZL09PQaHbTa4uTkhNOt34ecPm1a5awsOFRzNv3cXNOq5%2BcrlzXQbA3HjqmUU1gxQo9C/GB6DgUFhsuaEj8YyUFrXg7VHhlVlZdnuGyt5FBW9%2BdB6RxALeVQD9eSuZ8FUMnBlPhBcqCOfycJxVU7qlT1jbRa42VF7cjMzCQrK4v4%2BHhatmxJy5YtiYyMZO3atTU6f7d6//33efrpp3Grx%2BcdGm3nr7ri4mIAgoKCOHDgANnZ2bz44osAWFlZ4ePjw65duzhy5AizZs26m6EKIYQQwhx1cOfP4HP7jo41b%2BooOHr0KC4uLrRu3Vq3zcPDg9OnT1NUVKT3jWN1Z8%2Be5YsvvmDHjh1627ds2cKqVav49ddfefTRR3nnnXfo0KHDbWalrGHeOzVBcXEx8fHxFBQU8NRTTwGVnb%2BMjAyOHTum96yen58fiYmJtGnTBneVB5mFEEII0cDVwWjfDRs2MGzYML2fDRs2mBxSYWEhrVq10ttW1REsUHqeBlixYgXPPvssDtVGSXXq1IkuXbqwbt06du7ciYODAy%2B%2B%2BCIlJQoLZt%2BBRnXnb86cOcydOxcAW1tbunbtyqpVq3S9YV9fXwoKCujSpYte79vf358FCxYwdOhQNHfzOQUhhBBCNDgGn9t3dLytNm53/GxhYSGbNm0iNTVVb/tbb72l9//vvPMOvr6%2B/PDDD7pH2szVaDp/33zzjdEyzZs3JzMzs8b2rl27cszA08OTJk1i0qRJNbbb2toaLC%2BEEEKIu6wOvvY1%2BNz%2BbXBwcNBbaAIqO3cajUbvrl51O3fu5OGHH%2BaBBx5QbdvOzo7WrVvrzVlsrkb7ta8QQgghREPQrVs3fv31V/KrDXPPzMykc%2BfOtGjRwmCdnTt3EnDLtDVFRUW89dZbeh29/Px88vPzjXYSb0ejmeevMTI2PYaTU%2BWUBomJhkfGTZ2tMlMqgJcX/Oc/8OSTcPiw4TLvvKNc39ERwsJgwwa45UHXKotLoxWrG4sfYOr/Gfma3dsbDh6EHj0MD%2B8zNreFCTl8UK6cg6Nj5awW69YpVmfK/PvUY/D0hK1bISQEDNx5ZsYM9fr1cR7UriVzryOonxzeam14B8Cjj8L338MTT8CPPxou8%2B67yvXBaA5q8YOJOSx5WLkBDw/48ksYMACOHjVcJiZGNYZ6yeEdldnAvbzgu%2B/gL39RvpZuPrpjULt2MGIEfP45XL5suMyoUcr1ASwtoVUruHIFysvVy95h/QKU3wNzD29KG/YVBuaUurWBNm2gsFAxiPI2CrPSV2tCLX5LS/UQ6lS1KVFqzfbtZjcxcuRIunTpwvTp08nJyeGll15i/PjxjBkzhn79%2BjFnzhx8fHx05Xv37s0LL7zAc889p9fO0KFDuf/%2B%2B5k9ezYajYaZM2dy5swZ/v3vf9eYM/BOyZ0/IYQQQjQeDXR5tyVLlpCbm0tAQABjx45lyJAhhIeHA3D69Gn%2B%2BOMPvfKXLl2iXbt2NdpZtmwZWq2WkJAQnnzySUpLS1mxYkWtdfygET3zJ4QQQgjRULVv356VK1ca3GdoHMGRI0cMlr3vvvtqrBhW26TzJ4QQQojGo4Gu8NGYNJp3MDg4GA8PDzw9PfHy8iIgIICYmBhycnKYP38%2Bw4cP1ytfXl5Oz549mTNnjt72rKws3NzcOHnyJHFxcbi7u%2BPp6Um3bt3o2bMnY8eOrdX184QQQgghGpJG0/mDyrV9MzMzOXz4MMnJyVy%2BfJmZM2cSFBTE0aNH9YZZHzlyhLKyMtLS0vTaSE9Px8XFhU6dOgGVy79lZmZy5MgRvvzyS0aOHMmCBQv429/%2BVq%2B5CSGEEMIEDfSZv8ak0Wbs7OxM3759OX36ND4%2BPjRr1oy9e/fq9qelpdG/f38uXLigN2Q6LS2NwMBAxTYHDBjA6tWrSU5O1mtPCCGEEA2AdP7M1iif%2BdNqtWRnZ7Np0yYGDBiAjY0NvXr1Ii0tjX79%2BgGVnbxnn32W8%2BfPk56ezpAhQygtLSUjI4OFCxeqtu/q6srjjz/O119/jZ%2Bfn0kxGVoX0NLSkbZtlSeNtLfXf63By0v9oF266L8aojZDudEAwKnMrOqVU7moqVpuT2nZPWMzrJsQhKPKdAUm5eDpqR5D5876rzUCMD8Hs8%2BD2rVk7nVkYhBm5/Doo8r7XF31Xw0xMwe1%2BE2oXsnDQ3nfzW8jdK%2BGNIQczL2WDIxu1GnTRv/VEGNzjFT9Ib/TP%2Bgm1FeLwNzDm9SGxsh7UPUe3dX5WERD1mjm%2BQsODiYnJwcLCwu0Wi2lpaX4%2B/uzaNEi2rZtyyeffEJ8fDw7d%2B7k%2BvXr9OrVix07drBx40bOnj3LggULOHDgAM8//zx79%2B7Fzs6OuLg4du3axWeffVbjeHPnzuXUqVOsWrXKpPji4uJqjM6Jiopm8uSaK4gIIYQQ4g4NHlz7bW7aVPttNmCN6s5fbGwso0ePBuDKlSskJCQwZMgQUlJSCAoKYvbs2Zw9e5Zz587h4uKCs7Mz/v7%2BrF%2B/Hqi8G%2Bjt7Y2dnZ3RY5WXl2N5G/9qMrQu4M6djiQmKtext4fQUNiyBQyt%2Bzxm5ZPqB%2B3SBVauhAkT4MQJw2X%2B%2Blf1APr2hW3bDAcAJJaFqVZXix9gzKIeyseHyjt%2B69ZVzrSclVVz/7Rp6vVNyGFduXoO/ftDaqpyDuFrQ9Rj6NwZli2DqCj45Zea%2B8ePV69fH%2BdB7Voy9zqqCqKuc/jnE8rHd3WFVavgxRfh%2BHHDZaKilOtXBaGSg1r8VdWN5vDpAOUGOnWCDz6AKVPg5EnDZSIiVGOolxxW/EW5gS5d/ncelK6laJWJptu0qZzAd/v2ygmKDQkx8nm0sAA7OygqgooK9bJ3WP8Krers8Ka00apC4b2pYmkJLVvC1avKkzy3VLm7SgOf5FmYrVF1/qpr1aoVUVFRJCUlkZqaSnh4OB06dCAtLY3s7Gzd4sdeXl4UFRVx8uRJ0tPTa3TQlPz00090797d5HgMrQu4bZvyLPnVFRQolFOaIf9WJ04ol1VatuLWABTK5ZaaVl0xT0OrdhiSlWW4rCnxVwWhUPaSCbPsq1Q3vGqHIb/8YrhsLeRg9nkw5Voy9zqqCqKuclBauaO648eVy5mZgynxV1VXzEFp5Y7qTp5ULtcQcjD3WlJauaO6wkLlcqYum1FRcedLbBipb0qr5h5etY0KExsuLzc/iIaoCT6jV9v%2BFO9gcXExAEFBQRw4cIADBw7oOn9WVlb4%2BPiwa9cujhw5QlBQkNH20tLSOHjwIM8880ydxi2EEEKI2yQDPszWaDMuLi4mPj6egoICnnrqKaCy85eRkcGxY8fw9fXVlfXz8yMxMZE2bdrgrjSw4GabqampxMTEMH78eLp161bneQghhBBC1KdG9bXvnDlzmHtzUXBbW1u6du3KqlWr6NChAwC%2Bvr4UFBTQpUsXWrf%2B3yLw/v7%2BLFiwgKFDh6LRaPTaPHz4MJ43R3NaWlrSpUsXpk2bxpAhQ%2BopKyGEEEKYrAneqattjabz98033xgt07x5czINPHPVtWtXg%2BvqTZo0iUmTZDSuEEIIIZqORtP5E0IIIYSQO3/mazTz/DVGxobCe3tDRgb4%2BBge6Fr%2Bjw/UG3B0rJwiZd065VGAr76qHsDBg9Cjh%2BKoXEsL5cvDWPwA5R8sNbyjiqMjhIXBhg2GczB2Z9aEHKyt1HPYvx969VLOoXSu%2BqTgODnBuHGwdq3hIZIzZqjXNyEIywrlYZpmnwdj5wBg8mTl%2BlVB/PADPPaYcg4a5XkvTMpB7fNgymdh6lTl%2BlVBqOSgFn9VdcnBzBxMuI7KS43Pn2JsmhJz61saG%2B9rbgDG2igzMlu3RgM2NlBSAkp/4m1sjLeh1j245RGqenVzyrda9emntd9mAybdZyGEEEKIJkS%2B9hVCCCFE4yFf%2B5pN3kEhhBBCiCak0XT%2BgoOD8fDwwNPTEy8vLwICAoiJiSEnJ4f58%2BczfPhwvfLl5eX07NmTOXPm6G3PysrCzc2Nk9WWT6qoqOAvf/kLvr6%2BlJSU1Es%2BQgghhLgDMsmz2RpVxrGxsWRmZnL48GGSk5O5fPkyM2fOJCgoiKNHj1JYbS3II0eOUFZWRlpaml4b6enpuLi40KlTJ922Xbt2cc8993DvvfeyY8eOestHCCGEELdJOn9ma7QZOzs707dvX06fPo2Pjw/NmjVj7969uv1paWn079%2BfCxcukJOTo7c9MDBQr62NGzcSEhJCSEgISUlJ9ZaDEEIIIUR9a5QDPrRaLdnZ2WzatIkBAwZgY2NDr169SEtLo1%2B/fkBlJ%2B/ZZ5/l/PnzpKenM2TIEEpLS8nIyGDhwv9N3ZGXl8e3337Lq6%2B%2Biq2tLXFxcVy8eJH77rvvtmLKzc3l0i1TGzz8sCNt2jgp1nFz03%2BtwdFR/aD29vqvhnh7K%2B%2BrWupOZck7b5V/HhiNH8zPQS1%2BMC0HlavcpByclM8hAA4O%2Bq81AjCSgwlBeKvMbmH2eTD3OgLTzoPKzBCNIQe1%2BEFyAOrld5LA%2BDQrVfvv5nQsdakJ3qmrbY1mnr/g4GBycnKwsLBAq9VSWlqKv78/ixYtom3btnzyySfEx8ezc%2BdOrl%2B/Tq9evdixYwcbN27k7NmzLFiwgAMHDvD888%2Bzd%2B9e7OzsAPjXv/7Fli1bdHf8nnvuOfz8/IiOjr6t%2BOLi4li6VH8utVdeiWbKFFlBRAghhKg1zz9f%2B23Gx9d%2Bmw1Yo7rzFxsby%2BibkzteuXKFhIQEhgwZQkpKCkFBQcyePZuzZ89y7tw5XFxccHZ2xt/fn/Xr1wOVdwO9vb11HT%2Bo/Mp3dLUJIwcPHszy5cuJioqqsQ6wmrCwMIKDg/W2DR7sSEKCch03N0hMhDFjwMDqc2T83zr1g9rbQ//%2BkJoKBQWGy7z3nnJ9d/fKyVjDwyEry2ARH4uDitWNxQ%2BQ8foG5eNDZQ59%2B8K2bYZzmD9fvb4JOfSyUs8hIQEiIpRz2B%2B1Vj0GBwcYOBA2b4b8/Jr7ly1Tr29CED4V%2B1Wrm3UejJ0DgAULlOtD5XmoCkLpWtL8oFjdpBzUPg%2BmfBYWLVKuD0ZzUIsfJAfA/BxMuI7K96vnAE1gkmdjbWs0YG0NpaXKEzVbWxtvo6FO8ix3/szWqDp/1bVq1YqoqCiSkpJITU0lPDycDh06kJaWRnZ2Nv7%2B/gB4eXlRVFTEyZMnSU9P1%2BugZWRkcOrUKRYtWsTixYuBypG/N27cYO/evbo2TOHk5ITTLV8Pnj5tWt1jxxQms1eaIf9WBQXKZZWm6a8uK0ux3CETPmOK8YP5OZgSP6jnYMJVrpqDoVU7DMnPN1zW1BxUgjhkfFED88%2BDudcRqJ8HE/5WNOQcTIkfJAegTn8nCdQ7ZbeWaxxf7t0e6fyZ7U/xDhYXFwMQFBTEgQMHOHDggK7jZmVlhY%2BPD7t27eLIkSMEBQXp6iUlJREYGEhKSgpffPEFX3zxBSkpKfTu3ZuNGzfelVyEEEIIIepSo%2B38FRcXEx8fT0FBAU899RRQ2fnLyMjg2LFj%2BPr66sr6%2BfmRmJhImzZtcL/5IHFRURFff/01YWFhPPjgg3o/o0aNYvv27Vy5cuWu5CaEEEIIBTLVi9kaVcZz5szB09MTT09PAgIC%2BPbbb1m1ahUdOnQAwNfXl4KCAjp16kTr1q119fz9/Tl37hyBgYG65/i%2B%2BuorbG1t6d27d43jBAUF0bp1azZv3lw/iQkhhBBC1JNG88zfN998Y7RM8%2BbNyczMrLG9a9euHLvl6eWwsDDCwsIMtmNpacmuXbvuLFAhhBBC1J0meKeutjWazp8QQgghhHT%2BzCfvoBBCCCFEEyJ3/upQudZI31rrDfxAhvYx0Nac1mBxhfr8Hk5aGAMkasPJVSj6htUUxfreVrCfynnwlKZDKS9XycFI/AAflKvn4FgO4cC68jAuGZi66jUr9cm2TcmhtExlfosyb%2BAg%2B8t6QJnhHOaVqU%2BV4FwO44HV5ePIKau5fyavq9b35mYO7EdpcgvVa8nM82DsHAC8ZmnkPFjezMHyBw5ZGi5Tjsq8YhaV70KGRS%2BwMJzDorJSxepO5RABJJSHk2vgHAC8aan8WQDjOah%2BFsCk86D2mTbp82xuDmrnAO76eTDlOiox8ZaFuTeH1Oub0Hht3J1SaON6ha1qNY0GmgE3KmwUZ3ppZuTQGkCL8u/Ou7p2iNz5M5u8g0IIIYQQTYjc%2BRNCCCFE4yF3/swmnT8hhBBCNB7S%2BTNbo34HIyIiWLhwIf7%2B/iQmJurt27ZtG25ubhw9elRv%2B7x58xg5ciQAwcHBfPrppzXa/fTTT2us0yuEEEII8WfQqDt/ABqNhoCAANLS0vS279mzh%2BbNm9fYnpaWprfEmxBCCCEaEVnhw2x/ioyDgoLYt28f5eX/G6qYnp7O0KFDSU9P123Ly8vjxIkT0vkTQgghGivp/JntT/HMX1BQEEVFRRw%2BfBhvb28uXrxITk4OY8eOZfDgwZSUlGBjY0NaWhqtW7fGy8ur1mPIzc3l0qVLetscH34YpzZtlCvdXGdY93oLJyf1Y9rb678a4u2tvM/NTf/VoHKVBozED%2BDoqNI2xnNQix9MzKHMvBycndVjaNtW//VWtZJDHZ4Hc68jMDEHzLsY1T4PDg76rwaPbm4OaucATDoPajnUz3kw/0TW5Xkw7ToSGiPzrFTtN1ZONF0arVZpFqCGLyIigkcffZTXXnuNYcOGERwcTHR0NJ9//jlbtmwhPj6ePn36MHv2bPz9/Zk%2BfTo3btxg8eLFQOUzfzk5OVjc0uuvqKjA2dnZpCXlqsTFxbF06VK9bdGvvMKkKerzcgkhhBDiNkybVvttzp9f%2B202YH%2BKO39Qefdvz549REdHk56ejr%2B/PwD%2B/v66/9%2B7dy%2BTJk3SqxcbG8vo0aP1tn366aesXLnyto4fFhZWY5CI46BB8PHHypXc3SExEcaMgaysGrsT/%2B8H1WPa20NoKGzZAgUFhst88IFyfTc3SEiAiAi4Zeljnf3ljyk3YCR%2BgHUxxnPo3x9SUw3n8P77qtVNy6Gsh3ID7u6wbh2EhyvmsDr6oGoMbdvC4MGwaRPk5dXc/9FHqtXv%2Bnkwdg6gls4DvcxqIGHSfsXqDg7wzDPw1VeQn2%2B4TFyc8uFNCUH1HIBJ50HtM23u5xlMyEHtHJjSAHV7Hky5jvbtU65fRaNBcXJjUxirr8FI4%2BYGYKSNG8Xqt/Q0GrC1heJi5TBs1eeJNv4eyF3FRu1P1flbtWoVRUVF7Nu3j8jISAD8/PxYs2YNZ86c4eLFiwQGBtbJ8Z2cnHC69fuQ06dNq5yVBYdqzqafm2ta9YIC5bIGmq3h2DGVcuUmNKAQP8At34QrKigwXNaU%2BMFIDgord%2BhRySEnx7QY8vIMl62VHOrhPCidA6ilHBTXLzGtAVM%2BD/n55n0WVEMw5RyA6nkwJQdzP8%2Bg9jaafyLr4zyoX0fC1H6lVmt%2BH7RBaoLP6NW2P8072L17d%2B655x6SkpIoKSnBw8MDqOz8/fzzz/znP//B3d29ZgdNCCGEEI2HDPgw258mYysrKx5//HESEhLo1asXlpaVC0O2bduWhx56iMTERBnlK4QQQog6ceHCBV566SV8fX3p3bs3CxcupMLAet5xcXE88sgjeHp66v1cvnwZgOLiYmbOnMkTTzyBr68vkydPpkDpWZA79Kfp/EHlV7/nz5/Hz89Pb7ufnx/nzp2Tzp8QQgjR2DXQO3%2BTJk3C2dmZHTt2EB8fz44dO1i7dq3BsoMHDyYzM1Pvp127dgAsXryYo0ePsmHDBrZu3YpWq2X69Om1EmOVRv3MX0JCgt7/jxgxghEjRtQoFxsbS2xsbI3tSqN5R48eXWMQiBBCCCGEIZmZmWRlZREfH0/Lli1p2bIlkZGRrF27lueff97kdsrKyti4cSPz58/n3nvvBeDVV1/lmWeeIScnB2djc4%2BZqFF3/oQQVFuohAAAIABJREFUQgjRxNTBM3oG5%2Bp1dDR5nMDRo0dxcXGhdevWum0eHh6cPn2aoqIi7Ozs9MofO3aMUaNGcfz4ce69916mT59OYGAg586d4%2BrVq7pxCwCdOnWiWbNmHD16VDp/jcG8d2t%2B11%2BdszOMB1ZH/WBwlOj0BfeqH8DTE8ZsY8zavpCZabDI1Ln/p1zfyQkYx/6otYpD8%2BaVKedgLH6A6fPvUz4%2BVOYQvpXwtSEGc5gyd6p6fZNyUB7upssh%2BqByDjOMzGng7Q3jDzJ%2BaQ%2BDQxSnz52rXt/ZGRjP/omrFYcWz8PM8/B3lWvJ0xPCtxG%2BRvk6mjLnVeX6VUEQyf5X1ijnUFGqWn08sHrifuUc3jOSQ8Q2IhKUc4hR%2ByyA0WtJ7bMAJp6Hj1RmL%2B7aFcb8mzEbh8JPPxksMnXui6oxGM9B%2BRyAiedhkcpn2tMTIrYS8YnhzzNAjNpn2oTPMzeiletD5RwkzZqhKb5xZ0NdTah/nXuMVedGseaOR9oaa%2BMem/KaG2uwpJm1cjktlncWXENQB52/DRs21JyrNzq6xvRwSgoLC2nVqpXetqqOYEFBgV7nr3379jzwwAPExMTg5OTEhg0bmDhxIikpKRQWFgLUaKtVq1a1%2BtyfdP6EEEII0aQZnKvX2BJVtzB1zYxbH1GLjIzkq6%2B%2BIiUlhSeeeOK22rpT0vkTQgghRONRB3f%2BDM7VexscHBx0d%2B2qFBYWotFocFBb7/AmFxcXcnNzdWULCwtp0aKFbv/vv/9OW6U1RO/An2q0rxBCCCFEfevWrRu//vor%2BdWWtsnMzKRz5856nTiADz/8kPT0dL1tJ0%2Be5IEHHuCBBx6gdevWHD16VLfv%2BPHjlJSU0K1bt1qLt1F3/iIiIli4cCH%2B/v4kJibq7du2bRtubm56byDAvHnzGDlyJFC5tq%2BHh4dujp3evXvz5ptv8ssvv9RbDkIIIYS4DQ1wqpeuXbvi6enJokWLKCoq4uTJk8THx%2BtmDunXrx8ZGRlA5V29t99%2Bm1OnTlFcXMzq1as5d%2B4cQ4cOxdLSkpEjR/LRRx/x66%2B/UlBQwD/%2B8Q%2Befvpp3VQwtaFRd/4ANBoNAQEBpKWl6W3fs2cPzZs3r7E9LS1Nb76/2NhYMjMzOXjwIKtWrcLe3p5nn322Rq9cCCGEEA1AA%2Bz8ASxZsoTc3FwCAgIYO3YsQ4YMITw8HIDTp0/zxx9/ABATE8MTTzxBZGQkPXv25Msvv2TNmjW0b98egMmTJ/Poo48yePBgnnrqKVq0aMG7775bKzFW%2BVM88xcUFMTs2bMpLy/XreyRnp7O0KFDSU9PZ8KECQDk5eVx4sQJZs%2BeXaMNa2trOnXqxLRp07C0tCQ2NpZt27bp2hNCCCGEUNK%2BfXtWrlxpcN%2BxY8d0/21ra8uMGTOYMWOGwbI2NjbMmjWLWbNm1Umc8Cfq/BUVFXH48GG8vb25ePEiOTk5jB07lsGDB1NSUoKNjQ1paWm0bt0aLy8v1fYiIyNZuXIlR48eNVq2iqE5gqytHXFwUH6AtOrZTcVnOD091Q/aubP%2BqyFqD7BWPYSq8jCqs8qMAkbjB/NzMPYAbn3k4O2tHoO7u/5rjQCMzMtkQhBqLZh9Hky5jozlYMp5UJkppV5yMPNaUruOwMQcunZV3texo/6rIQ0hh7o8DyZcR2iMTL1Utd9YOTPqq7Vs7uFrq40/tSa4Fm9t02jrejxxHYqIiODRRx/ltddeY9iwYQQHBxMdHc3nn3/Oli1biI%2BPp0%2BfPsyePRt/f3%2BmT5/OjRs3WLx4MVD5zN%2BECRMMrubRs2dP3n77bUJDQ02KJS4ursYcQVFR0UyebNocQUIIIYQwwfz5td/mtGm132YD9qe48weVd//27NlDdHQ06enp%2BPv7A%2BDv76/7/71795o8YWNZWRkWt/GvC0NzBKWmOrJ6tXKdtm1h8GDYtAny8mruH7%2B%2Br/pBO3eGDz%2BEV14BpUEqY8Yo13dwgIEDYfNmqDZCqbrV5eMUqxuLH2D8hhDl40NlDsuWQVSU4RxuPi%2BhqD5yWNpDPQZ3d1i3rjLWrKya%2B6ONTEprQhCrGW9OdfVryZTryJTzMGgQpKQon4eKSMXq9ZKD2mcBjF5LatcRmJjD5qHKDXTsCIsWQUwMnDpluMyQIaox1EsOap9pY59nUL%2BWTPg8ExamXB8qb5fZ2kJx8Z1P8myk/g2a1dnhTWlDbfJmHUtLKFeZ5NlC/ZEmjUY9/rt6V1Lu/JntT9X5W7VqFUVFRezbt4/IyEgA/Pz8WLNmDWfOnOHixYsEBgYabevs2bP88ccfdFT7%2BuUWhuYISklRXOxAT16eQjmFGfJr%2BOUX5bJKs%2BRXl5%2BvWC6nzHh1xfjB/Bz%2BP3vvHldVlf//Pw%2BI5jWBwJqmptQER1EhU0StCUtLJdM0vISSjWXey/v8LKfyo5W3CurTZXIkfpDmJcnS0cxpmITyghfGCSvHPtnYQAlOeQsOnO8fR4gDe629dR%2BEA%2B/n4%2BHj1F7rvdb7xVr78Gbtvd7Liv9QsxoMTu0wJC/PuK6VSWDihJUWbI%2BDbh5Z1VBYqNagPyADqGENNueSlXkEJhoUJ3d48K9/qevFxFhzoiY1XI5x0NzPliMql%2BvSoy8Teyut2u3eW23USyT4s029%2BQl269aNpk2bsmHDBoqLiyvOxYuOjubzzz/n448/Jjw83FISx6SkJDp06ECHDh1q2m1BEARBEITLSr1Z%2BWvUqBExMTGkpqbSo0ePil26wcHB3HDDDaSlpTFggP4RZH5%2BPqtWreKjjz4iJSXlcrgtCIIgCMLFICt/tqlXP8G%2Bffty/PhxoqOjPa5HR0fzzTffeOT3K2fRokVERETQuXNn7rnnHvLz81m3bp3lXb6CIAiCIAi%2BhE%2Bv/KWmpnr8f9XDkstZsGABCxYsqHZ9586dNeabIAiCIAg1gKz82cangz9BEARBEBoYEvzZxqfz/NV1AgL05ZGRsHs39OhhvEm0ZNmL%2BgZCQtxpE9LToUqC6Qpmzbp0B4AASuyYU7Iy2bignJAQd%2BqGtWuNNTz2mN7%2Bcmh4eonehzZtYPx4WLXKeIukIou7hxM5ORAVpdbQSH2bWtKwIkndf0gIjBwJa9ao59Hjj6vtLTphexx094Pde8GCEzr/LZgDogGw/Z3kKtZrAPM0JXbtHWb7fe06YNbG%2BfPmtldc4a6nauMKdboa0/7Ly2uLJM332aViMQ1cfUFW/gRBEARB8B1k5c828hMUBEEQBEFoQMjKnyAIgiAIvoOs/NnG53%2BCCQkJLF26lF69epGWluZRtn37dsLCwjh8%2BLDH9SVLlnD//fd7XPvkk08ICwvjqaeeqnGfBUEQBEG4RPz8vP%2BvgVEvFDscDnr37k1WVpbH9V27dtGsWbNq17Oysqrl/Fu3bh2DBg3igw8%2B4Oeff65xnwVBEARBEGqDehH8gTvB82effUZppYOss7OzGTp0KNnZ2RXXTp48yZdffukR/BUVFbFz506mTZtGYGAgH3744WX1XRAEQRAEi8jKn23qzTt/ffv25fTp0xw6dIjIyEhOnDhBfn4%2BY8eOZciQIRQXF9O4cWOysrK48sorPU7wyMjIoGPHjtxwww3ExcWxfv16Bg8efFH9FxQU8H2V1AY33hhC69bqs4TDwjw/qxESou80MNDz04jISHWZqQOgsbZibl%2BDzn%2BLTtjW0KaN3ofgYM/Pag6YaAgP9/w0akJzp9oeB7vzyKITNTqXLoMGE2vRAJflO0nAPM1KeXltpmMR6jQ%2Bn%2BcvISGBrl27MmvWLIYNG0ZsbCxTpkxh3bp1bNmyhT//%2Bc/ccccdPPPMM/Tq1Yv58%2Bdz/vx5Vq5cWdHG4MGDGTVqFGPGjOH48eP079%2BfDz/8kF//%2BteW/UhKSiI52TOn3aRJU5g%2BvWHlDhIEQRCEGuXNN73f5kMPeb/NOky9WfkD9%2Brfrl27mDJlCtnZ2fTq1QuAXr16Vfz/p59%2BytRKyRwPHDjA119/zd133w3AddddR7du3di4cSPTpk2z3Hd8fDyxsbEe14YODaHKHhQPwsIgNRUSEuDIkerlu2ek6zsNDIS774atW6GoyLjOCy9cugNAD3bbMWf3zLXq/sGtoX9/2L7dWMPy5Xr7y6Fh4iq9D8HBMGQIZGTAyZPVy5NNEl2Hh7uT4o4eDXl5hlV6NMpRmlvS8Pgadf%2BBgTBgAGzbpp5HK1ao7S06YXscdPeD3XvBghM6/y2YA6IBsP2d5PpMrwEaQJJns/fSHQ5o0sRdT9VGkyaX3n95eW3RAB/Tept6F/z96U9/4vTp03z22WckJiYCEB0dzerVq/n66685ceIEffr0qbBZt24dTqeTfv36VVwrKSkhPz%2BfKVOm4GdxkoWGhhIa6vmI99gxa34fOaJIZq/KkF%2BVoiJ1XVWafksOgAVrnbl9DVb8N3HCtgajUzuMOHnSuK5VDXl5ag0W7lTb42B3Hpk4cVnmUg1qsGgtGqBGv5MErAeWLpf9IFSol9Sr4K9bt240bdqUDRs2UFxcTKdOnQB38Dd37lw%2B/vhjwsPDK4K0M2fOsGXLFp566imio6Mr2jl37hzDhw8nOzub3r1714oWQRAEQRAMkJU/29Sr4K9Ro0bExMSQmppKjx498Pf3ByA4OJgbbriBtLQ0BgwYUFF/y5YtNGnShKFDh9K4cWOPtmJjY1m/fr0Ef4IgCIIg1CvqXfjct29fjh8/7rGSB%2B7Vv2%2B%2B%2BcYjxcuGDRuIi4urFvgB3HfffezYsYNTp07VuM%2BCIAiCIFhEUr3YxudX/lJTUz3%2Bf8SIEYwYMaJavQULFrBgwQKPa2vWqF%2BCv%2B2228jNzfWOk4IgCIIgeIcGGKx5G/kJCoIgCIIgNCB8fuVPEARBEIQGhKz82UaCvxqkxGmSB8kZCeSw2xkFzuppDZYW67foh5bAOCClZDQFxcZ15pVNV9pHlsFeoHvZbvaXGdcpLdNoMPEfYGWJiQYnjAHSnPEUlFQvn1U2RWtvSYNL80VRGgnsY3fpzVBqrGEJioYv0AYYD6xiPEZJYZ5sNF9rH9kIduPO5adK6aKdSxbGYblmLoWWQAKQWjJSOY9mOfXJyiOdkANEOXez32lcx4U9Dbr7we69AOZzSXsvgGjg8nwnKaZXg%2BJnv6bacocDGgPFfleo0/yZ5SoU6jUS/AmCIAiC4DvIyp9tJPgTBEEQBMF3kODPNj79E4yNjeXtt9%2Budv3bb78lLCyMzp07ExERQdeuXenXrx9Lly7F6XSa2r/99tvVjmoTBEEQBEGoD9Trlb%2BMjAzatWuHy%2BUiLy%2BPCRMmEBQUxEMN7ABnQRAEQag3yMqfbep18FeOw%2BGgY8eOREVFcczqgbuCIAiCINQ9JPizTYP4CTqdTnJyctizZw933313bbsjCIIgCIJQa9Trlb8hQ4bgcDgoKyujtLSUsWPH0qNHD486ixYtYvHixR7XysrKaNOmzUX1VVBQwPfff%2B9xLeTGGwlt3VptFB7u%2BVmF0FB9n0FBnp9GREaqy8LCPD8NKdM0YOI/mGsIDPT8rIrOf7CowWVPg9lUCA72/KyKVzQ4a24c7M4jiy4AdVuD6Tjo7gUQDVym7yQBh0nGnvJys3o%2Bi6z82cbhcqmyANV9YmNjmTBhAqNGjfK4/u2339KvXz%2B2bNlS8c7fiRMnWLJkCefOnePNN9/U2r/99tu88cYb7Ny507IvSUlJJCcne1ybMmkSU6fr83IJgiAIgnARZGR4v80hQ7zfZh2mXq/8leNwOLj22muZP38%2BsbGxHD16lHbt2nm1j/j4%2BGo7hEPi4iAlRW0UHg7p6TB6NOTlVStOmZ6j7TMoCOLiYPNmKCw0rpOUpLYPC4O0NBgzBo4cMa6ztyxK3YCJ/wBpM/UaAgNh4EDYsgWKiqqXr1ypNbemwXWzuoHw8F8aUGhYNXmf1ofgYPf3RkYGnDxZvfzVV7XmhIVBaiokJKg17HbaG4fUx9TjEBQEgwbBBx%2Bo55HZOFhwgRzsadDdD3bvBTCfS9p7AUQDl%2Bc7ac8etX05DgfK5MZWMLN3mCVItuuASRvFJfolPYcDAgKgpETtRuMAmxpqc1lRVv5s0yCCv6qcP3/e622GhoYSWvV5iNXNJXl5sL96Nv2CAmvmhYXqugbNVuPIEU29MgsNKPwH6xqKiozrWvEfTDS47GnINzq2w4CTJ43rekWD4rQFD2yOg915ZOIC4BsalONg5V4A0UANfycJluNKl8t%2BDFonkeDPNg3mJ1hYWMiKFSvo0KED4foXkwRBEARBEOotPr/yZ7RhI%2BXCo9byDR8ALVq0oHfv3rz%2B%2Buv4%2B/tfdj8FQRAEQfACsvJnG58O/nQbMo6oXhixYD9q1Khqm0AEQRAEQRDqAz4d/AmCIAiC0MCQlT/bSPAnCIIgCILvIMGfbXw6z19dxyw9RmioO6VBWprxzrjHnmypb6BrV/jkE%2BjTBw4eNK6zZInaPiQE4uNh7VqokqC6nJUlU5TmZv4DPPaMJtsrQJcu8PHH8LvfwaFD1cufflpvb0HDi6VqDSEh7qwW6elKc6Y/e43eh4gI2L4d%2BveH3Nzq5X/4g94%2BJARGjoQ1a5ROLC%2BeqjQPDXWniUlNVY/DzFmatAyRkZCTA1FR6i2WL72ktgdLGlY69RpM59L/10zdf7dukJUFMTFw4IBxneefV9uD6VzS3QtgUcMLv1E30LmzO9/OoEHwj38Y15k1S%2BuD2Tjo5hFYnEt/1HwvWflO0o3DVVfBiBGwbh388INxndGj1fbgDgxatoSffoKyMn3dS7T/L1fWWPdW2riylYVf2yapWkqc%2BlQt5alidOW1xocfer/NO%2B%2B03cS///1vnnrqKQ4ePEizZs0YOHAgM2fOxM8gWH377bdZvXo1BQUFXH/99UydOpU77rgDgHnz5vHee%2B957E9o0qQJe/fute1jObLyJwiCIAiC71BHV/6mTp1Kp06d2LFjBydPnuSRRx7hqquu4sEHH/Sot23bNpYvX85rr71Gly5d2LRpEzNmzGDr1q1cd911ADz66KNMnar/Y80OdfMnKAiCIAiC4CPk5uaSl5fHrFmzaNmyJTfccAOJiYmsXbu2Wt3z58/z%2BOOPc/PNNxMQEMCIESNo3rw5B1RPLWoAWfkTBEEQBMF3qIGVv4KCAr6v8qpESEhI9cMbFBw%2BfJhrr72WK6/85ZWATp06cezYMU6fPk2LFi0qrg%2BpcpTcjz/%2ByJkzZ2hT6SD5Tz/9lI8%2B%2Boj/%2B7//o127dvzxj3%2Bkc%2BfOlyLNEJ8O/szO9g0ICMDhcODn58dVV13FXXfdxWOPPUajRo0q7PPz8yuex1911VX07NmT3//%2B97Rv3/6y6xEEQRAEwYQaCP7Wrl1LcnKyx7UpU6ZYfvR66tQpWrVq5XGtPBAsKiryCP4q43K5WLBgAV27dqVHjx4AXHfddfj5%2BTF9%2BnSaN29OcnIy48ePZ9u2bQQGBl6sNEN8OvgzIyMjg3bt2uFyucjLy2PChAkEBQXx0EMPVdRZsGABo0aNoqSkhG%2B%2B%2BYb169dz33338eqrr9KrV69a9F4QBEEQhMtBfHw8sbGxHtdCQkIuqo2L3T9bUlLCvHnz%2BOqrr3jrrbcqrk%2BePNmj3uzZs3n//ffZsWMHI0aMuKg%2BVNTr4K8ch8NBx44diYqK4pjivN2AgADatWvH3Llz8ff3Z8GCBWzfvl1OAxEEQRCEukQNrPyFhoZafsRrRFBQEKdOnfK4durUKRwOB0FB1bNenD9/nkmTJnHu3DnS0tK0K3r%2B/v5cc801FFg5WNsiDSL4czqdHDp0iD179rBs2TLT%2BomJibzxxhscPnyYLl26WOrD6H0Bf/8QgoPVk6l8rJVj3rWrvtMOHTw/jdD95WLqAIQ6bZm7U7nouOkmz8%2BqmP3lZcGJkFJb5u5ULjrKXxFQvSrgBQ2hmpQL5d8rBt8vvxAZqS4rP%2Btad%2Ba1NzTYHYdu3dRldu8FC07o7gUL5m507%2By0a%2Bf5aYRdDZp5BBbnku57yco4XHWVuqx1a89PI8x%2B8ZeXX2qAYMFe17Ld7r3VhnB56dy5M9999x2FhYUVwV5ubi7t27enefPmHnVdLlfFK2irV6%2BmSZMmHmXPPvssQ4cOJfzCd3JxcTHffPNNxU5gb%2BDTef6svvNXVlZGaWkpY8eOZfbs2QRcSFCksge45ZZbeOqppxg4cKAlX5KSkqq9LzB58hSmTau5rdqCIAiC0ODYtcv7bfbubbuJ%2B%2B%2B/n5tuuon58%2BeTn5/Pww8/zPjx4xkzZgx33XUXixYtonv37rz33nskJSXx3nvv0bRp02rtTJ48mcLCQl544QVatGjBiy%2B%2ByJYtW9i%2BfTvNmmnynV4E9Xrlr/I7fydOnGDJkiVMnDiRN99809TW6XQaJmZUYfS%2BwEcfhZCWprYJDISBA2HLFigqql4%2B5n/76Dvt0AFWrYLx4%2BGLL4zr6F5WDQx0Jybevt3YASDNGa811/kPMOaN36n7B/eK3xtvwIQJ8OWX1csffVRvb0FDeqlew913w9atag2jV/fX%2B9C%2BPbzyCkyaBF99Vb18/Hi9fWAgDBgA27YpnUgtGak0Dwpy5wX%2B4AMoLDSuk7AySt1/eLg7y/Xo0ZCXZ1xnzhy1PVjSkFaq1mBpLr0co%2B6/QwdYvRoSE9X3wvTpavtyJzRzSXcvlJubakgfpG6gXTt3Mu1p0%2BDoUeM6CQlaH8zGQTePwOJcek3zvWTlO0k3Dq1bu5PtfvghVHmEVsFdd6ntwb1c1rw5nDlz6UmeTex/Qp3o2m73Vtpo2aKBJ3muo0uiL730Ek888QS9e/emRYsWjBw5ktEXkpIfO3aMs2fPArBhwwb%2B/e9/V2zwKGfIkCEsWrSI//mf/%2BG5555j2LBhnD59mi5dupCSkuK1wA/qefBXjsPh4Nprr2X%2B/PnExsZy9OhR2mkerfzf//0fZ8%2BepW3btpb7MHpfYPt2dZb8yhQVKeqpMuRX5Ysv1HVVx1ZUdUBRr8DkMVG5uVKn0akdRnz5pXFdK/6XO6Go%2B73mcaMFc%2BNTO4z46ivjul7QUFBsbl5YqBkH1ckdlcnLU9fzhgaTx6bl5koNVnJgffGFup5NDVbuhXJzpQbVyR2VOXpUXc%2BuBgvzCEzmkpXvJd13kurkjsqcOqWuZzWiKiu79OjLxN5Kq3a791YbwuXj6quv5o033jAsO3LkSMV/p6SkaNtp3bo1S3Snc3mBBhH8VeX8%2BfPa8qSkJDp06EAH3XsrgiAIgiBcfuroyp8v0WCCv8LCQlasWEGHDh0qXqKsSn5%2BPqtWreKjjz4yjcwFQRAEQRB8EZ8P/hYtWsTixYs9rpUHbkOGDMHhcL/X0KJFC3r37s3rr7/ukb6l3N7lctG8eXN69erFunXrJMmzIAiCINRFZOXPNj4d/O3cuVNZVvn5%2BqXYC4IgCIJQB5HgzzbyExQEQRAEQWhA%2BHSev7qO2eEgkZGwdy907268ybJ0xYv6BkJC3Ok50tPVuwBnzNA7kJMDUVHKXZ7%2BfurpYeY/QOmLycYF5YSEQHw8rF1rrGHaNL19ZCTs2wc336x0IsBfvV0uMhJ274YePdQaShY9p/ehTRt3ipHVqyE/v3r5ggV6ewtOOJzqraYWhhHXS0nq/kNCYORIWLNGPY%2BsjENNzyXd/WDlXnjsMbV9uROaueTv0G%2B7FA3Y12Dhfi4tMd/%2B6u8PpRZ2%2BV%2BqvT8mjdt1wKQNl5/5yVMmmV5s2zv0mWJqFivZCy4WXSL8eois/AmCIAiCIDQgfPqdP0EQBEEQGhjyzp9tJPgTBEEQBMF3kODPNj7/E4yNjeXtt9%2Budv3bb78lLCyMzp07ExERQdeuXenXrx9Lly7F6ax%2B1MAnn3xCWFgYTz311OVwWxAEQRAEoVbw%2BeDPjIyMDHJzczlw4ADJyclkZGQYJnBet24dgwYN4oMPPuDnn3%2BuBU8FQRAEQTDFz8/7/xoYDUaxw%2BGgY8eOREVFcezYMY%2ByoqIidu7cybRp0wgMDOTDDz%2BsJS8FQRAEQRBqlgbzzp/T6eTQoUPs2bOHZcuWeZRlZGTQsWNHbrjhBuLi4li/fj2DBw%2B%2BqPYLCgr4vkpqgxtvDKF161ClTViY52c1QkL0nQYGen4aodu%2BXn7MneK4O4BIzZ8Hpv6DfQ1m2%2B%2BtaNBkRbCkoU0bvQ9BQZ6f1Rww0WDBicjqbypUYOFHoB8Hu/PIohM1Opcug4ZIk9QWooHL8p0kCA1xpc7b%2BHyev9jYWCZMmMCoUaM8rn/77bf069ePgIAAHA4HZWVllJaWMnbsWGbPnk1AQEBF3cGDBzNq1CjGjBnD8ePH6d%2B/Px9%2B%2BCG//vWvLfuRlJREcrJnTrtJk6YwffpUewIFQRAEQfgFCyd4XTTav3jqH/V%2B5S8jI4N27drhcrk4ceIES5YsYeLEibz55psAHDhwgK%2B//pq7774bgOuuu45u3bqxceNGppkltq1EfHw8sbGxHteGDAkhNVVtExYGaWkwZozxXN77eLq%2B08BAuPtu2LoVioqM61RZ5fQgPNydjHX0aMjLM6zS3S9HaW7mP8De2WvV/YNbQ//%2BsH27sYbnn9fbh4f/4oRCQw//fUrzsDBITYWEBLWG3ZNW630ICoJ77oH33oPCwurlr7yit7fgRJRzt9LcwjCSM2eNuv/AQBgwALZtU88jK%2BNQ03NJdz9YuReWL1fbg%2Blc6u5QzyMQDYB9DRbu59Ldeg0gSZ6hnid5FmxT74O/chwOB9deey3z588nNjaWo0eP0q5dO9atW4fT6aRfv34VdUtKSsjPz2fKlCn4WVxeDg0NJTTU8xFvlVcLlRw5okhYrsqQX5WiInVdK5nQ8/KU9fZbkK/0H%2BxrsJrJXafB/HtSr8Ho1A4jCguN61rVoHFiv%2BaxbzmaH4G1cbA7j0ycuCxzqQY17Lf4y040UKPfSYIgj33t02CCv6qcP3%2BeM2fOsGXLFp566ikWb0ozAAAgAElEQVSio6Mrys6dO8fw4cPJzs6md%2B/eteilIAiCIAiCd2lQwV9hYSErVqygQ4cOhIeHs3HjRpo0acLQoUNp3LixR93Y2FjWr18vwZ8gCIIg1CVk5c829SL4W7RoEYsXL/a4Vp7Lb8iQITguvJzQokULevfuzeuvv46/vz8bNmwgLi6uWuAHcN999zFlyhROnTpF69ata16EIAiCIAjmSPBnG58P/nbu3KksO2KyI2jNGvVL8Lfddhu5ubmX7JcgCIIgCEJdxOeDP0EQBEEQGhCy8mcbCf4EQRAEQfAdJPizjQR/NUhpmUlehbJIIIe9ZVFQVj2twdJifZKm0BIYB6SUjKag2LjOHKYr7d29QxQ5qJIquHQaTPwHWFliosEJY4A0ZzwFJdXLZzmmaO0jHbAXd/4yVRqLUgKMC9wtALvZTQ9Q/BSWlBk4Vok2ZTAeWFWWSH5Z9fInmau1d3sAPditHgd0c8k9DjlEodKw0qkeh9DSC2NQOpICRUqZWX76ZOWRfhfGwS9HmdJFez9YmEu6%2B8HKvTDPob4XwHwu2b2fAZabjEMCkFo6Wj0OLhMNrgv3tGsf%2Bw26crnsa6jJcbByPzst/t63Gx/o7S007o0ARdFGseJnW47DAY0bQ0mJOldfk8ZmSQAdONDVkUR/vowEf4IgCIIg%2BA6y8mcb%2BQkKgiAIgiA0IHw2%2BIuNjaVTp05EREQQERHBzTffzOjRo9m9%2B5djsDIyMhg%2BfDjdu3cnIiKCuLg41q1bV1G%2BceNGZR6/3r17s3HjxhrXIQiCIAjCReDn5/1/DQyffuy7YMECRo0aBbhP5Xj77bd5%2BOGH2bx5M4cPH%2Bbpp5/mhRdeoGfPnjgcDjIzM5k1axZNmzZl8ODBtey9IAiCIAgXTQMM1rxNvfkJNm3alPHjxxMaGkpmZiZZWVlERUXRt29fGjduTEBAAP369SMpKYn27dvXtruCIAiCIAi1Qr0J/sopLS3F39%2Bftm3bsnfvXnbs2EFZ2S9bMPv06UN4eHgteigIgiAIwiUjj31t49OPfStz5swZ1qxZQ2FhIbfddhvBwcEcOXKEqVOn0qpVKyIjI4mJiWHQoEEEBwdX2P3www9ERERUa6/YbC99FQoKCvj%2B%2B%2B89roXceCOhuqPhyoNQRTAaGqrvMyjI89OIyMhL7r68BVsNmGkIDPT8rNa7pnuAsDDPT0P8NI1YaKBNG70P5dOp0rTywCsanDU3DmZjAF7SUFZzGuzeC2BBg85/qBMazF2o2xoszSMBh0mWlfJys3pCw8XhcqmyANVtYmNjyc/Px%2B9CxH7FFVfQsWNHZs6cSdeuXSvqff/99%2BzatYs9e/bw8ccfc/bsWV5%2B%2BWViYmLYuHEjy5cvZ9euXdXa7927NzNnzmTYsGGW/ElKSiI5Odnj2pRJk5g6XZ%2BXSxAEQRCEi%2BDkSe%2B3qfrrvZ7i0yt/lTd8qAgJCeHee%2B/l3nvvpaSkhMmTJ7NixQpiYmK86kt8fDyxsbGefcfFQUqK2ig8HNLTYfRoyMurVpwyPUfbZ1AQxMXB5s1QWGhc58UXL7l7gAuJgy%2B9gbSZeg2BgTBwIGzZAkVF1ctXrtSaExYGaWkwZgyojnLe69dD30BqKiQkKBtYNXG34fVygoNhyBDIyDD%2BTnr1Va25FRfY7ay5cTAbA/DSOJTZ06C7H6zcC0lJ6u7BXIPWf7CkIfUxvYZBg%2BCDD9QazMbBzAXt/WylAWp2HKzMoz171PblOBzq5MZWMLPXJz/2ggMmbRSX6Jf0HA4ICNAneW4cYFNDbS4rNsDHtN7Gp4M/FS6XixUrVnDnnXfSpUuXiusBAQFER0ezYcMGr/cZGhpKaNXnIceOWTPOy4P91bPpFxRYMy8sVNc1aNZq9%2BUt2GrAqoaiIuO6VvwH9y8KZV0/C41oGsjPt%2BbDyZPGdb2iwVnz46AaA/CSBsWJER7Y1GD3XgCNBiv%2BQ53QoHbBNzRo55FgOa50uezHoEL9pF6Gzw6Hg4KCAubMmcPevXspLi7G6XSyf/9%2B0tPT6devX227KAiCIAjCpSAbPmxTL1f%2BAJ555hlee%2B01nnzySb777jtKS0u5/vrrGTlyJA8%2B%2BGBtuycIgiAIglAr%2BGzwt3PnTm1548aNmTp1KlOnqg%2BkHzZsmHJDh9EmEEEQBEEQapkGuFLnbXw2%2BBMEQRAEoQEiwZ9t5CcoCIIgCILQgPDZPH%2B%2BwNKl%2BvLQUBg3zp0Nxmhn3OyFzfQNdOsGWVkQEwMHDhjXWbJEbR8S4k7pkJ4OVRJUl7O0WJ2n0Mx/gNmLrlT3D9C1K2Rmwq23wsGD1cufflpvb0HDcqdeQ0KCO9WKSsPMZdfofYiIgO3boX9/yM2tXj5vnt7%2BcoyDbi7ZnUdweTTM0aSWiIyEnByIilJvE33hBbU9mGrQ%2BQ8WNaz8lbqBiAjYtg0GDDCeRwBz52p9MNPw3Hm9hjZtIDERVq9W73Kf%2B2QTdQPdusFnn0HPnuq5tGyZ2j4kBEaOhDVrlPOIBx5Q2wP4%2B0OrVvDjj1Baqq97ifb/9VNnRPfzg5Yt4aefoNLhUh6orlt1IbC1hV/bJqlaSpz6VC3lqWJ05bXGuXPeb7NpU%2B%2B3WYeRlT9BEARBEIQGhLzzJwiCIAiC7yDv/NlGgj9BEARBEHwHCf5s47M/wdjYWDp16kRERAQRERHcfPPNjB49mt27fzmKKyMjg%2BHDh9O9e3ciIiKIi4tj3bp1FeUbN24kLCysoo2oqCji4%2BNJS0uj9FLeFREEQRAEoUHy73//m4cffpiePXty%2B%2B23s3TpUsoUL3i%2B9dZbDBgwgKioKEaNGsU//vGPirKff/6ZJ598kltvvZWePXsybdo0ilRnb14iPhv8gfts39zcXHJzc/nkk0%2B44447ePjhhzl%2B/Dh/%2BctfePrpp5k%2BfTpZWVnk5OQwY8YMFi9ezPvvv1/RxlVXXVXRxo4dO5g4cSKpqalMnDhRAkBBEARBqGvU0RM%2Bpk6dSps2bdixYwd//vOf2bFjBykpKdXq7dy5k6SkJJ5//nmysrK4/fbbmThxImfPngVg5cqVHD58mLVr17Jt2zZcLhfz58/3io/l%2BHTwV5mmTZsyfvx4QkNDyczMJCsri6ioKPr27Uvjxo0JCAigX79%2BJCUl0b59e8M2goKCuP3220lNTeXAgQNs2rTpMqsQBEEQBMHXyM3NJS8vj1mzZtGyZUtuuOEGEhMTWbt2bbW6a9euZdiwYXTt2pUrrriC3//%2B9wD89a9/xel0sn79eiZNmsQ111xD69atmTFjBh9//DH5Vg%2Bat0C9e%2BevtLQUf39/2rZty%2BbNm9mxYwexsbH4XYjs%2B/TpY9pGSEgIgwYN4i9/%2BQv33XefpX4LCgr4vkpqAn//EIKDQ5U2QUGen9Xo1k3faYcOnp9GhISoywIDPT8NCNVs9Tf1H9ypXHSYadD5D9Y0aBZwLWmIiND7UP7HhOKPCq9osDsOurlkdx7B5dEQGakuCw/3/DTCpgad/%2BCFuWQ2j8C2hjbFenPbcykszPPTCJvfSfj7q8vgl1WcS13NsWDvp8mSYqV7hz7Lim0J9Z4a%2BMEY/Q4PCQkhNFT9O7wyhw8f5tprr%2BXKK39Jb9apUyeOHTvG6dOnadGihUfdgQMHVvy/n58fHTt2JDc3l44dO/LTTz/RqVOnivJ27dpxxRVXcPjwYdq0aXOpEj2oN8HfmTNnWLNmDYWFhdx2220EBwdz5MgRpk6dSqtWrYiMjCQmJoZBgwYRHBxs2t6NN97IZ599Zrn/tWvXkpyc7HFt8uQpjBunPl6unLg4RcG4LGudr15trZ6Ku%2B9WFo2zYK70H2BcpjUf/vQna/VUaDQkWDAfNEhTmLDdmg%2BvvGKtnooaHQcLc8nuPIIa1pBj3kB6uoVeTFBosOI/mGnYZt7Ayy9b7EmDQkOiRfN77tEUJlr4XnzrLYs9KRgwwJ49QKVftt62b2nBvHlze93rXTCJHiuqqetZydNXq7n8NLis6r8IjH6HT5kyRXtEbGVOnTpFq1atPK6VB4JFRUUewd%2BpU6c8gsTyukVFRZw6dQqgWlutWrXy6nt/Ph38LVq0iMWLFwNwxRVX0LFjR1avXs0117iT8i5ZsoTHH3%2BcXbt2sWfPHl577TVWrlzJyy%2B/TExMjLbt8hVEq8THxxMbG%2Btxbdu2EAwe91cQFOT%2BRbF5MxQWVi8f95reRzp0cP/CTkyEL74wrjNlito%2BMND9S2LrVlBMqpSS0UpzM/8Bxr15q7p/cGv405/g97831jBxot7egobUUr2GQYPggw/UGhJS%2B%2Bt9aN/eHfhNmgRffVW9PDFRb385xkE3l%2BzOI7g8Gl6MUvcfHu4O/EaPhrw84zqzZqntwVSDzn%2BwqCFdE9S0b%2B8O/CZPNp5H4M4ircNEw%2Bpicw333APvvafWkPi/PdUNhIW5A7%2BxY%2BHIEeM6jz2mtg8MdAd%2B27Yp5xGVVkwM8fNzR02nT5tnU75E%2B58crQyvl5s3bw5nzqi7NztawcyFVi0beJLnGsDod3iI2Up7FS7mzAyzujV9/oZPB38LFixg1KhR2johISHce%2B%2B93HvvvZSUlDB58mRWrFhhGvz985//pG3btpZ9CQ0NrbY8vGWLOtN/ZQoLFfVUGfKr8sUX6rqqLPmVKSpS1isweUwEGv/B%2BNQOI774wriuFf9Br8Fpbq7VoDptoSpffWVc1xsa7I6Dlblkdx5BzWpQndxRmbw8dT2bGqz4D16YS6p5BLY15J%2B3Zl5YqD7hw9JcOnKkxr6TLJ/aUVZ2aSd8WLAvs/DUsazs0k/4sOBCg%2BZSYnozjH6HXwxBQUEVq3blnDp1CofDQVCV9ygCAwMN6950000VdU%2BdOkXzSsvH//3vfy09tbRKvXyjwOVysXz5cg4dOuRxPSAggOjoaM6ZHA1z9OhRtm7dyuDBg2vSTUEQBEEQ6gGdO3fmu%2B%2B%2Bo7DSknlubi7t27f3COLK6x4%2BfLji/0tLS/nnP/9J165due6667jyyis9yr/44guKi4vp3Lmz1/ytl8Gfw%2BGgoKCAOXPmsHfvXoqLi3E6nezfv5/09HT69etnaFdSUsLf//53Jk6cyB133EH//iaP%2BwRBEARBuKyUr6p6859dfvvb3xIREcHy5cs5ffo0R48e5c9//nPF08m77rqLvXv3AjBq1Cg2bdrEgQMHOHfuHP/7v/9L48aN%2Bd3vfoe/vz/3338/r776Kt999x1FRUWsWLGCO%2B%2B8k6uuusq%2Boxfw6ce%2BOp555hlee%2B01nnzySb777jtKS0u5/vrrGTlyJA8%2B%2BGBFvR9%2B%2BIGICzvwHA4Hv/nNbxgzZgwJCVa2CQiCIAiCcDmpice%2B3uCll17iiSeeoHfv3rRo0YKRI0cyerT7Pdtjx45V5PG79dZbefzxx5kxYwYnT54kIiKC119/nSuuuAKAadOmcebMGYYMGYLT6eT222/nj3/8o1d99dngb%2BfOndryxo0bM3XqVO1OnWHDhjFs2DBvuyYIgiAIQgPj6quv5o033jAsO1JlA9To0aMrAsOqNG7cmIULF7Jw4UKv%2B1iOzwZ/giAIgiA0POrqyp8v4XDV9H7iBoxZIs/ISMjJgago4w2Krhde1DcQEuJObZGert4ZN2PGpTsA%2BPupp0dkJOzdC927qzdYlr6YbFxQTkgIxMfD2rXGGqZN09tHRsK%2BfXDzzUonAvzV3xSRkbB7N/ToodZQsnip3ofQUHcKjpQU422ef/iD3t6CE/5l6pwLtsfBbAzAK%2BPg79CPg6mGFZr7we69UO6E5n7Q3Qvl5jWuQZcmpdwJzTjoxqDcvFbHwcJ3UqnT/FeWv7%2B9XbJm9v6YNG7XAbM2rEQ/JrlaXI30uVpMMsWY/n6rSUz2bF4STZt6v826jKz8CYIgCILgM8jKn30k%2BBMEQRAEwWeQ4M8%2B9TLViyAIgiAIgmCMz678xcbGkp%2Bfj9%2BFA54bN25MWFgYM2bMoEePHgBkZGSQmprK119/zc8//8wNN9zA2LFjGTFiRLX2Ro4cSW5uLh9//PFFH%2BkiCIIgCMLlQVb%2B7OOzwR94Hu927tw53n77bR5%2B%2BGE2b97M4cOHefrpp3nhhRfo2bMnDoeDzMxMZs2aRdOmTT1O7/jqq6/48ssv6d27N%2B%2B%2B%2By4PP/xwbUkSBEEQBEGoUerNY9%2BmTZsyfvx4QkNDyczMJCsri6ioKPr27Uvjxo0JCAigX79%2BJCUl0b59ew/b9evXc/vttzN48GA2btxYSwoEQRAEQTCjLp7w4Wv49MqfEaWlpfj7%2B9O2bVs2b97Mjh07iI2NrXg83KdPH4/6xcXFZGRk8Nxzz9G9e3cWLlzI3r176d69%2B0X1W1BQwPdVUhvceGMIrVurD4oOD/f8rIbZ4%2BfAQM9PIyIj1WWmDkCk5s%2BDsDDPT0PsatD5D9Y0%2BKvNLWkwO%2By7/NDuKod3/%2BKAiQYLTkRqvpxsj4PdeQTWxkGTGsIXNOjuBfARDSbpOWpdg4V5JAgNMVjzNj6b5y82NpYJEyZUPPY9c%2BYMa9asITk5mS1bthAcHMzChQvZtGkTrVq1IjIykpiYGAYNGkRwcHBFO3/5y19YtGgRf/vb3/D392fu3Ln4%2BfmxZMmSi/InKSmJ5GTPXGqTJk1h%2BnT1CSOCIAiCIFwcJ096v81KYUGDwKeDv8obPq644go6duzIzJkz6dq1a0W977//nl27drFnzx4%2B/vhjzp49y8svv0xMTAwADz30EO3bt2f%2B/PkAZGVlMXnyZD755BOaN29u2R%2Bjlb%2B4OPOVv/R0d07UvLzq5Tmz0vWdBgbC3XfD1q1QVGRcZ9kytb2ZA0B3vxyleVgYpKXBmDFQ5eSaCvbOXqvuH9wa%2BveH7duNNTz/vN4%2BPPwXJxQaevjvU5qHhUFqKiQkqDXsnpyi9yEoCOLiYPNmKCysXv7yy3p7C050L9utNbc1DmZjAF4Zh%2B4O/TiYanhccz/YvRfA9H7Q3QtwmTQsX671wWwcdGMAdWAcLHwnle7RjwNIkmegXid5VuUPt0ND2%2Bfp0499K2/4UBESEsK9997LvffeS0lJCZMnT2bFihXExMRw4sQJsrKy2L17N%2B%2B8806FzdmzZ9myZYvhrmAVoaGhhFZ5PHjsmDXbvDxFMnurM7yoSF1XlabfkgOw38JboUeOaLqxq8GK/6DXoHnsW45Wg9GpHUYUFhrXtapB48R%2BC9/1tsfB7jwC/ThY%2BGVRlzVYuRegjmuw%2BAu71jVo5pEgyGNf%2B9SbDR%2BVcblcLF%2B%2BnEOHDnlcDwgIIDo6mnMXzobZuHEj7dq14/3332fTpk0V/0aOHMmGDRtqw3VBEARBEIQapV4Gfw6Hg4KCAubMmcPevXspLi7G6XSyf/9%2B0tPT6devH2VlZWzcuJH77ruP3/zmNx7/HnjgAfbv38/Ro0drW4ogCIIgCJWQ3b728enHvjqeeeYZXnvtNZ588km%2B%2B%2B47SktLuf766xk5ciQPPvggWVlZFBQUMGTIkGq2N910E126dGHDhg3MmTOnFrwXBEEQBEGoGXw2%2BNu5c6e2vHHjxkydOpWpU4132/bp04d//OMfSvt169bZ8k8QBEEQBO/TEFfqvI3PBn%2BCIAiCIDQ8JPizjwR/NYgLs611kUAOOUQB1Xe2LS3WZ%2BEJLYFxQErJaAqKjevMYbpJ7xBFjkHvblxlGg1l7hb2lkVBmXELK0tMNDhhDJDmjKfAICvBLMcUrX2kA/biTmGh2slYWqp5tbU0EtjH7tKbodRYwxKn/pumTSmMB1aVjiPfWb38SWZr7SOB3UAPdivHobQGx8FsDMBL42BTg%2B5%2BsHIvzPNT3wvgTuK8F3dKF6OdvVr/wZKG586rNbQphkRgdfFo8s8b15nnMtHgunBPu/ax36Arl8u%2BhpocB7MxAHBafFPdz%2BYb7Xp7C43bdUDTxs9OfQoDhwMaA8WuAGW6liaYZXlz4NDWqcVcL4JtJPgTBEEQBMFnkJU/%2B9TL3b6CIAiCIAiCMbLyJwiCIAiCzyArf/ap8yt/w4YN4/kqR0sdPnyYsLAwtm/f7nH9rbfeok%2BfPjzwwAMsMzhCKDMzk7BKJ5YnJCRYqicIgiAIQt1A8vzZp84Hf3379iUrK8vj2q5du2jWrFm161lZWfTp0wdHbR46KAiCIAiCUIfxieAvLy%2BPwsLCimvZ2dkMHTqU7OzsimtOp5M9e/bQt2/f2nBTEARBEITLgKz82afOv/PXrVs3WrRoQVZWFoMHD6a4uJicnBwWLlzIhg0bOHHiBL/61a84dOgQZ8%2BepXfv3qxZs%2Bay%2B1lQUMD3VQ4yD7nxRkJbt1YbhYd7flYhNFTfZ1CQ56cRkZGX3H15C7YaMNMQGOj5Wa13TfcA5U/ntU/pXfY0tGmj9yE42POzKl7R4Ky5cTAbA/CShrKa02D3XgALGnT%2Bg%2B255A0N5i7Y11CT42BpHgmYPdwqL5eHYIIKh8ulygJUd5g2bRrNmzdnyZIlZGdns3DhQrZv3864ceOIi4tj%2BPDhJCcnk5mZyTvvvENCQgL79u3D398zF5LL5aKkpIQjR44AWK5nhaSkJJKTkz2uTZk0ianT9Xm5BEEQBEGwzkX8arZMQ/uDo86v/IH70W95YJWVlUV0dDQAvXr1Ijs7m%2BHDh5Odne3xyHf8%2BPHMmjXLo53MzEwmTJjgcc1qPTPi4%2BOJjY31uBYSFwcpKWqj8HBIT4fRoyEvr1pxyvQcbZ9BQRAXB5s3Q6Wn4h68%2BOIldw9wIQH1pTeQNlOvITAQBg6ELVugqKh6%2BcqVWnPCwiAtDcaMUX8h7HXdrG4gPPyXBhQaVk3ep/UhOBiGDIGMDDh5snr5q69qzQkLg9RUSEhQa9jtrLlxMBsD8NI4lNnToLsfrNwLSUnq7sFcg9Z/sKRh9TS9hnvugffeU2t46SV7LmjvZysNULPjYGUe7dmjti/H4UCZ3NgKZvb65MdecMCkjeIS/ZKewwEBAVBSonajcYBNDbW4rNgQH9N6G58J/hYsWMDRo0f59NNPGT9%2BPADR0dGkpqZy9uxZDh48yOzZ%2BpMUapLQ0FBCqz4POXbMmnFeHuyvnk2/oMCaeWGhuq5Bs1a7L2/BVgNWNRQVGde14j%2B4f1Eo67rsacjPt%2BbDyZPGdb2iwVnz46AaA/CSBsWJER7Y1GD3XgCNBiv%2Bg%2B25VFiormdVg9oF%2Bxouxzho55FgOa50uezHoEL9xCeCv6uvvpqbbrqJzMxMPv/8c3r27AlA586dOXfuHBs3bqR58%2BZ06dKllj0VBEEQBKEmkZU/%2B9T53b7l9O3bl7S0NNq3b0/QhbeJGzVqxC233EJKSgoxMTH4eeMsRUEQBEEQhHqMz0RLffv25fjx4xXv%2B5XTq1cvvvnmG0nxIgiCIAgNAEn1Yh%2BfeOwLEBMTY7j7NjExkcTERI9rqamphm3ceuutHm1YrScIgiAIQt2gIQZr3sZnVv4EQRAEQRAE%2B/jMyp8gCIIgCIKs/NnHJ5I8%2BypLl%2BrLQ0Nh3Dh3KkCjtAizX7lR30CnTvD%2B%2BzB4MBw%2BbFzn8cfV9iEhMHIkrFkDVU4nKWfp%2BalKczP/wQsaZszQ24eEuHOSpacrNawsUyfaDg115xRLS1NreOxVk%2Byfv/0tvPsuDB0K//xn9fJJk/T2FjQsLdZrMB2H5N%2Bo%2B%2B/cGT74AAYNgn/8w7iObh6BJQ3LnXoNCQnufIcqDTOX/0rdf0QEbNsGAwZAbq5xnblz1fZgquG58/qE7W3aQGIirF6tTtUyd54mN1pkJOTkQFSUOs%2BJWaI/k3tadz%2BDxbm00uY4zJ%2BvtrfwncQDD6jtAfz9oVUr%2BPFHKC3V171E%2B//6qY/D8fODli3hp5/UQYpZ8GLmQmBrC7%2B2TfL0lZbp8/T5%2B%2Bt/fFXORris1EQaILPTc%2BobsvInCIIgCILPICt/9pHgTxAEQRAEn0GCP/vU%2BQ0fw4YN4/nnn/e4dvjwYcLCwti%2BfbvH9bfeeos%2BffrwwAMPsGzZsmptZWZmElbpAL%2BEhAR%2B%2B9vfEhERQUREBH369GHatGnsl9TygiAIgiDUU%2Bp88Ne3b1%2BysrI8ru3atYtmzZpVu56VlUWfPn1wXMSZg%2BPHjyc3N5cDBw6Qnp5Op06dGDduHJs2bfKK/4IgCIIgeA/J82cfnwj%2B8vLyKKx0Snh2djZDhw4lOzu74prT6WTPnj2XnOzZ39%2Bf66%2B/nkceeYT58%2BfzzDPP8OOPP9r2XxAEQRAEoS5R54O/bt260aJFi4pVvuLiYnJychg7diz/%2Bc9/OHHiBACHDh3i7Nmz9O7d23afI0aMwOVy8cknn9huSxAEQRAE7yErf/ap8xs%2BGjVqRExMDLt27WLw4MHs27ePNm3acMMNN9CtWzeysrIYPnw4WVlZRERE0Lp1awBWrVpFSkqKR1tWs9o0atSI66%2B/nm%2B//daynwUFBXxfJTWBv38IwcGhSpsLRxRXfFajUyd9p%2B3aeX4aERKiLgsM9Pw0IPRntbmp/2Bfg85/sKZBM%2BwWzN2pXHS0bev5WRVvaChRm1sah86d1WV25xFY06BJG2FJQ0SEuqx9e89PI2xqaFOsN7ekQZdPIjzc89MImxp09zPUgXGwckOa5RgpP%2BP9Us96t2Dvp3mzyEr3Zm8m2ZVQ32mIwZq38Yk8f%2BvWrSM5OZm//e1vLF%2B%2BnP/%2B9788/fTTvPrqq3z55ZcsX76cMWPGEB0dzdSpU0lISKBr167MmjXLo53MzEwmTJhQcXSbqh5AXFwc9957Lw899JAlH5OSkkhOTva4NnnyFKZN0%2BfVEgRBEATBOrt2eb9NLzw01HLq1Cn%2B%2BMc/snv3bvz8/Ljtttt44oknuOKKKwzrb9%2B%2BneTkZI4fP05oaCgPPfQQ999/P%2BCON1555RUaNfJcv/vrX//KVVddZcmfOr/yB%2B73/hYsWMDRo0f59NNPGT9%2BPADR0dGkpqZy9uxZDh48yOzZs73S35kzZ/j6669pqyflFMoAACAASURBVFrJMSA%2BPp7Y2FiPa9u2hVBl8dGDoCCIi4PNm6HSK40VjFs3WN9pu3bw4oswfTocPWpcR5cQNTDQnYx12zYoKjKskvLzSKW5mf/gBQ2jR%2BvtAwPh7rth61alhjSXuo3AQBg4ELZsUZozZv1QvQ9t28Ly5TBzJvzrX9XLR4zQ21vQkFKi1mBpHN4ZpO6/XTt38uBp09TzaMwYtT1Y0pBaqtcwaJA717RKQ8L/P0Ddf/v28PLLMHkyfPWVcZ1x49T2YKphdbF%2BLgYFwT33wHvvqTUkvhSlbiA83J1gevRoyMszrjNnjtYHs3tadz%2BDxbmUbnMcHnxQbW/hO4mBA9X24F4ua9ECTp%2B%2BtCUiC/Y/OVppzZs3hzNn1N2bLbmYudCqZcNO8uyLK39PPPEExcXFvP/%2B%2B5SUlDB9%2BnSWLVvGggULqtU9dOgQs2bNYsWKFfzud79j165dTJ48mbZt29K9e3cAhgwZwrPPPnvJ/vhE8Hf11Vdz0003kZmZyeeff07Pnj0B6Ny5M%2BfOnWPjxo00b96cLl26eKW/119/nZYtW9KrVy/LNqGhoYSGej7i3bJFnSW/MoWFinqqUzuqcvSouq4qS35lioqU9QrOm5sr/Qf7Gqz4D3oNFr4oioo0GoxO7TDiX/8yrusNDSaPHMFkHFQnd1Tm6FF1PW9ocJqbazWoToyozFdfqevZ1JBv4V4AtwbVCR%2BWjibIy1PXs6nByv0MdWAcNPPI8qkdZWWXdsKHBfsyC49jde%2BSWQ1e7EoQ6gY//PADO3bs4N133yXowjsVkyZNYvr06cydO5eAgACP%2BqdOneKRRx7hjjvuAOC2226jQ4cO7N27tyL4s4tPBH/gXv1LS0ujffv2FT%2B8Ro0accstt5CSkkJMTAx%2BNl%2BQKCoq4p133uHPf/4zK1asUC7HCoIgCIJQO9TEyp/Re/shISHVFnUuhc8//xx/f3%2BPPMOdOnXi7Nmz/Otf//K4DnDrrbdy6623Vvy/0%2Bnk%2B%2B%2B/p02bNhXXjhw5wsiRI/niiy%2B45pprmD9/Pn369LHsk8%2B8Ttq3b1%2BOHz9OdHS0x/VevXrxzTffXHKKl1WrVlUkeb7zzjvZt28fKSkpFRG3IAiCIAh1h5rY7bt27VqGDRvm8W/t2rVe8ffUqVO0aNHCIwfxlVdeCbgXncxYtmwZzZo1Y%2BCFVx6uvvpqrrvuOp577jl27drFiBEjmDhxIv8yeu1Igc%2Bs/MXExFRs1KhMYmIiiYmJHtdSU1MN27j11ls92lDVEwRBEASh4WD03n6I2e76SmRkZDBH8U7uY489ZjnbSGVcLhfLli3j/fff56233qJJkyaAOx3diErvkicmJvLBBx/w3nvvMWPGDEtt%2B0zwJwiCIAiCUBOPfY3e278YhgwZwpAhQwzLdu3axenTpyktLcX/wk6ZU6dOARAcHGxoU1ZWxvz58zl06BBvv/021113nbb/a6%2B9lgIrmwwu4DOPfQVBEARBEHyNjh074nK5yKu0iz83N5dWrVpx4403GtosXryYL7/80jDwe%2BWVVzxOOAM4evSoaYBYGZ/I8%2BermG2Fj4yEvXuhe3fjzX2lK17UNxAS4k4LkZ6u3hmnWwKOjIScHIiKUu4u9PdTTw8z/wFKX0w2LignJATi42HtWmMN06bp7SMjYd8%2BuPlmpRMB/uo/EyMjYfdu6NFDraFk8VK9D6Gh7jQiKSnGWyT/8Ae9vQUn/MvUWZ4tjcMLSer%2BQ0Jg5EhYs0Y9j6ZPV9uXO2EyDg6XfhxMpiKuFzT3g5V74bHH1PblTmg06PwvNzfV8JLNcbByP2iccKD/uq/1cbAwj1yl5ss%2BJllObNub/RxtO2DWhtPC1vmAAChRf2%2B4GgUoy8y6Ly%2BvLT780Ptt3nmn99uszGOPPcbp06d57rnnKC4uZsqUKdxyyy3MnTsXgHHjxhEfH8/AgQPZt28fjz76KFu2bDHM27d48WIyMzN55ZVXuPbaa0lLS%2BPFF19k27ZtXH311Zb8kce%2BgiAIgiD4DL6Y5%2B/pp59m4cKF9OvXj4CAAAYPHsxjlf4QOn78OP/9738B2LBhAz/99BO33367Rxu33HILq1atYubMmYD7Xb9Tp07Rvn17Vq9ebTnwAwn%2BBEEQBEEQapSWLVuyYsUKZfnOnTsr/nvx4sUsXrxYWbdJkyb84Q9/4A9mT5U0SPAnCIIgCILP4Isrf3UNn9jwMWzYMJ5//nmPa4cPHyYsLIzt27d7XH/rrbfo06cPDzzwAMuWLavWVmZmZrWEigDHjh0jPDychx9%2B2LvOC4IgCILgNWoiz19DwyeCv759%2B5KVleVxbdeuXTRr1qza9aysLPr06eORTNEK69ato3///mRnZ5OvPJtJEARBEATBt/GZ4C8vL4/CSieNZ2dnM3ToUI/tzk6nkz179lz0aR9Op5OMjAxGjhxJ9%2B7d2bRpk9d8FwRBEATBe8jKn3184p2/bt260aJFC7Kyshg8eDDFxcXk5OSwcOFCNmzYwIkTJ/jVr37FoUOHOHv2LL1792bNmjWW2//rX/%2BKn58f0dHR5Ofn8%2Bqrr/LII49clI9G5wLeeGMIrVurk0aWP302eArtxiy7eGCg56cRkZHqsvBwz08jc82fB6b%2Bg30NOv/BmgZNyh1LGswSf144a7ris5oDJhosOBGp%2BXKyPQ525xFYGwdN2ggL5rWuQee/BXM3ta1Bb137Giw5IAiCXXwmz9%2B0adNo3rw5S5YsITs7m4ULF7J9%2B3bGjRtHXFwcw4cPJzk5mczMTN555x0SEhLYt29fRTbtclwuFyUlJR7HvD3yyCO0bduWuXPncubMGXr37s0bb7zBLbfcYtm/pKQkkpM9c9pNmjSF6dOn2hMuCIIgCEIFGRneb1NxOEe9xSdW/sD96Lc8uMrKyiI6OhqAXr16kZ2dzfDhw8nOzvZ45Dt%2B/HhmzZrl0U5mZiYTJkyo%2BP/8/Hz%2B/ve/V%2BTbad68OXfccQfr16%2B/qODP6FzAIUNC0B0fHBYGaWkwZgwYHFvM3sfT9Z0GBsLdd8PWraA6HNpg00sF4eHuZKyjR0OlzOOV6e6XozQ38x9g72yTg7EDA6F/f9i%2B3VhDlY0%2B1QgP/8UJhYYe/vuU5mFhkJoKCQlqDbsnp%2Bh9CAqCuDjYvBkqvZpQwcsv6%2B0tONG9bLfW3HQcZmlWwgMDYcAA2LZNPY%2BWmiS6tjAOUS71OFiYiuTM0twPVu6F5cvV9uVOaDTo/C83N9Uwx%2BY4WLkfNE5Eob6fLZgDNTwOFuaRa69%2BHECSPAP1OslzQ3xM6218KvhbsGABR48e5dNPP2X8%2BPEAREdHk5qaytmzZzl48CCzZ8%2B%2BqHY3bNhAaWkpo0aNqrhWUlJCo0aNeOKJJ2jRooWldozOBTx2zJoPR44oktmrMuRXpahIXVeVpr8yeXnKevstvBWq9B/sa7DiP%2Bg1mJy0AiYarJ6XWFhoXNeqBo0T%2By182dkeB7vzCPTjYOF3oca81jVY8V9j7qa2NVizrn0NWgcEQbCLzwR/V199NTfddBOZmZl8/vnn9OzZE4DOnTtz7tw5Nm7cSPPmzenSpYvlNl0uFxs3bmTSpEnce%2B%2B9HtfHjBnDli1buP/%2B%2B72uRRAEQRCES0NW/uzjM8EfuFf/0tLSaN%2B%2BPUEXXq5v1KgRt9xyCykpKcTExODnZ30D86effsp3333HmDFjqp2fd88997B%2B/XoJ/gRBEARBqFf4RKqXcvr27cvx48cr3vcrp1evXnzzzTcXneJl/fr13HbbbYYHJw8fPpyDBw/y1Vdf2fJZEARBEATvIale7ONTK38xMTEeu3TLSUxMJDEx0eNaqmKnxa233lrRxnLNi8ft2rUz7EsQBEEQhNqjIQZr3sanVv4EQRAEQRAEe/jUyp%2BvUVpmshe%2BLBLIYW9ZFJRV39m2tFi/vTC0BMYBKSWjKSg2rjOH6Up7d%2B/u9A%2BqfXUunQYT/wFWlphocMIYIM0ZT4FBVoJZjila%2B0gH7AW6O/axX%2BFqKbqUBpHAbnbTA9VeyCVOdboEgDalMB5YVTqOfIMMDE%2Bi34Hu9gB6sFs5Dtq5ZGEclmvmUmgJJACpJSPV88ihz1dpZRxcLt394NaQQxSqcXjuvFpDm2JIBFYXjyb/vHGdPzjU9wKYa9D7D1Y0LNVoCP35wv3880gKFBrmYDIO6O9pF/Y11OQ4WJlHFpKc1HtKtN9pbgJM6gWYpavBYZLSpvZyvcjKn31k5U8QBEEQBKEBISt/giAIgiD4DLLyZx8J/gRBEARB8Bkk%2BLOPzz32HTt2LAsWLDAsy8jIICoqirNnz/Ljjz/y3HPP0a9fP7p06UKfPn2YPn06X3zxRUX9efPmVRzrVpmjR48SFhbGt99%2BW2M6BEEQBEEQagOfC/6GDx/O1q1bOX%2B%2B%2BtvEmzZtYtCgQZSVlTFq1Ci%2B/PJLXn/9dQ4ePMi6desICgoiPj5eUrgIgiAIgo8ief7s43PB34ABA/Dz82P79u0e17/77js%2B/fRTRowYwRtvvMHp06d55ZVXaNeuHQ6Hg2uuuYaFCxcyatQofvjhh1ryXhAEQRAEoXbxuXf%2BmjRpQlxcHO%2B%2B%2By733HNPxfWMjAzat29Ply5dmDdvHiNGjKBx48bV7OfMmVMjfhUUFPB9lYPMQ268kdDWrdVG4eGen1UIDdX3eeGEu4pPIyIjL7n78hZsNWCmITDQ87Na75ruAcLCPD8N8dM0YqGBNm30PgQHe35WxSsanDU3DnbnEVjUUGZPg24cLosGnf9QJ8bB3AX7GmpyHCzNI6HB0xBX6ryNw%2BVymSX7qXN8/vnnDBs2jJ07d3LNNdcA7hXB0aNHM27cOCIiInj22WcZNGiQtp158%2BaRkZFBo0aeMbDL5aKkpISPPvqIX//615Z8SkpKIjk52ePalEmTmDpdn1tMEARBEATrvPmm99t86CHvt1mX8bmVP4COHTvSsWNHNm3axKOPPsr%2B/fs5ceJExUqgw%2BGgtLTUUlt33XUXK1eu9Lh29OhRBg4ceFE%2BxcfHExsb63EtJC4OUlLURuHhkJ4Oo0dDXl614pTpOdo%2Bg4IgLg42b4bCQuM6L754yd0DXEj2eukNpM3UawgMhIEDYcsWKCqqXl5laKoRFgZpaTBmDKhe5dzr10PfQGoqJCQoG1g1cbfWh%2BBgGDIEMjLg5Mnq5a%2B%2BqjW34gK7nfbGIfUx9TgEBcGgQfDBB5c2j8DiOJTZ07B6ml7DPffAe%2B%2BpNVT526waZhq0/oMlDbp72u79bMUF7f1spQFqdhyszKM9e9T25TgcYGdZw8xen/zYCw6YtFHiNE%2BwHBAAJZr89AGNbGpw1F6SZ8E%2BPhn8gXvjR0pKCo8%2B%2Bijvvvsud9xxB4EXnh3%2B5je/4auvvrqs/oSGhhJa9ZnOsWPWjPPyYH/1bPoFBdbMCwvVdQ2atdp9eQu2GrCqoajIuK4V/8H9i0JZ189CI5oG8vOt%2BXDypHFdr2hw1vw42J1HYKJBcfqIBxoNVsahsFBdz7YGK/5DnRgHtQv2NVyOcdDOI6HBI4997eNzGz7KiYuL4z//%2BQ85OTls27aNESNGVJQNGDCAd955h9OnT1ezmz17NqtXr76MngqCIAiCINQdfDb4a9myJQMGDGDJkiU0b96cXr16VZSNHz%2Beq666igceeIDDhw/jcrn4z3/%2Bw5NPPkl2djb9%2BvWrRc8FQRAEQbhUJNWLfXw2%2BAMYMWIEhw4d4r777sNR6f2DZs2akZ6eTs%2BePZk6dSpdu3YlPj4ep9PJunXruO6662rRa0EQBEEQLhUJ/uzjs%2B/8Adxyyy3KhM2tWrVi/vz5zJ8/X2n/7LPPGl5v166dJIIWBEEQBKFe4tPBnyAIgiAIDYuGuFLnbXz6sa8gCIIgCIJwcfhkkmdfYelSfXloKIwb504FaJTaYfbCZvoGunWDrCyIiYEDB4zrLFmitg8JcefzSk%2BHKqeTlLO0WJ2k2sx/gNmLFUd3lNOlC/ztb3DbbXDoUPXyP/5Rb29Bw3KnXkNCgjvPnkrDzOW/0vsQEQHbtsGAAZCbW7187ly9/eUYh6dbqvvv2hU%2B%2BQT69IGDB43rLFqktofLo2FBE3X/3brBZ59Bz57qe%2BH559X2YKpB5z9Y1LBSM5fM5hHYnkvPnddraNMGEhNh9Wp1qpa58zT53SIjIScHoqLUuVpeekltHxICI0fCmjXKecTo0Wp7AH9/aN0aTp0Ci/leL9b%2BJIrjfLzQvZU2gltpEviVY5Lor9QvwNQHnf/%2B/uYu1BRJSd5vc%2BpU77dZl5HHvoIgCIIg%2BAzy2Nc%2B8thXEARBEAShAeFzwd/YsWNZsGCBYVlGRgZRUVGcPXuWH3/8keeee45%2B/frRpUsX%2BvTpw/Tp0/niiy8q6s%2BbN4%2BOHTsSERFB586diY6O5uGHH%2BZvf/vb5ZIjCIIgCMJFIKle7ONzwd/w4cPZunUr58%2Bfr1a2adMmBg0aRFlZGaNGjeLLL7/k9ddf5%2BDBg6xbt46goCDi4%2BM90rjcdddd5Obmkpuby8aNG7n99tt5/PHHefX/sXfmYVWV2%2BP/ADIoiBNCajiU5QQqphlpWuCshONFDTWle01RHErTMk1zvE6VWmZ6nXK6Aoqmpha3n7fM6y0z0bRSb06pgDKIMrt/fxDny5GzBzhMJ9fnec5zYL/vWnutvd99zjrvsF69DVkFQRAEQRBsEJsL/rp37469vT2HDh0yO379%2BnWOHTvGoEGD%2BOSTT0hLS%2BPDDz/k8ccfx87Ojjp16jBr1iyGDBlCYmJiIb12dnbUrVuXIUOGsHz5cj744AN%2B%2B%2B23MvJKEARBEAQjSM%2Bf9dhc8Ofs7ExQUBC7du0yOx4TE0Pjxo1p2bIlhw8fZtCgQTg5ORWSnzp1Kh06dNA8R6dOnWjYsCGHDx8uUdsFQRAEQbAOCf6sxyZX%2Bw4aNIj%2B/ftz/fp16tSpA8CuXbsY%2BkcKgCtXrtCoUSOrztGoUSOuXr1quH58fDwJD6QmcHCoTa1anqoyNWuavxeidWvtkz75pPm7JWrXVi%2BrUcP83QKeGhkFdO2HvFQuWjzxhPn7g2jZD8Z80EhXYMgHX19tGxo3Nn9/kJLwwdr70KqVepm17QjKxget56FJE/N3S1jpg5b9UAJtSa8dgdU%2BeGVpixvywc9PvaxpU/N3S1j5maSbYyS/vLi5SAzIa2m29vQlpUMQtLDZPH/9%2B/ena9eujBkzhh9%2B%2BIHhw4dz5MgRatSoQcuWLZk7dy4vvviipo5p06aRmZnJ8uXLC5W9%2Buqr1K1bl5kzZxqyZ8WKFaxcudLsWHj4OCIiHrLkQYIgCIJQiixaVPI69VJo/tmwyZ4/yFv4sXHjRsaMGcOuXbvo0qULNf74tdigQQPOnz9fbN3379/n3LlzdOzY0bBMSEgIAQEBZscOHqzNxo3qMjVrQlAQ7N0Lt28XLh/x8bPaJ33yybxsrC%2B/DAVWMZsxbpy6fI0a0LMnHDgASUkWq2zMVk%2Boqmc/wIh/dFY/P%2BT1%2BK1dC6%2B8Ar/%2BWrh89GhteQM%2BbM7V9qF3b9i3T92HYZ9217ahcWNYtQrCw8FSuxsxQlu%2BLO7DJxpt%2Bckn4R//gFGj1NvR2LHq8lA2PnzYXv38TZrApk0wfDio7cs9QTvBsZ4PWvaDQR%2B2arQlvXYEVrelDVn6Prz4IuzZo%2B7Dyx%2B0UVfQtGlegumhQ%2BHcOct1pk5Vl69RIy/J9cGDqu2IHj3U5SGvu6xqVbhzp/hJnnXkk6leaqc3oqO668Od5FmwHpsN/oKCgli0aBEnTpzg4MGDZr133bt359NPP%2BVvf/sbbm5uZnJTpkyhRYsWvPzyy6q6o6KiuHXrFl27djVsj6enJ56e5kO8%2B/erZ/ovyO3bKvXUdip4kF9%2BUa%2BrliW/IElJqvXidYaJQMN%2BsLxrhyV%2B/dVyXSP2g7YPOfrimj6o7bbwIOfPW65bEj5Yex/Udu4oyC%2B/qNerCD4YeR5%2B/tm6ZwFUfTBiP5RAW1JrR2C1DzcLJ0mwyO3b6jt8qO7cUZBz59TrWfmZZDiiys0tfvSlI29Eq7WnLykdf0Yexjl6JY3NLfjIp2rVqnTv3p0FCxbg6uqKv7%2B/qWzUqFF4eHgQGhrKmTNnUBSFGzduMHPmTL799lsCAwMt6kxLS2PHjh3Mnz%2BfadOm4eXlVVbuCIIgCIJgAFtc8JGcnMzEiRN59tln6dixI2%2B99ZbFlHUA0dHRNG3aFF9fX7PXqT86SO7fv8/y5csJDAykXbt2hIWFceXKlSLZY7PBH%2BQt/Dh16hQDBgzAzu7/9pusUqUKW7dupX379owfP55WrVoREhJCTk4OO3fuxNvb21T3888/N13Y5557js8%2B%2B4z33nuPl156qTxcEgRBEAThT8bbb79Neno6n332GVFRUVy4cIElS5ao1m/Xrp0pB3H%2Bq%2BUfCyi3bNnC3r17WbNmDf/6179o2LAh4eHhFGUJh80O%2B0LexflZZX6Pu7s706dPZ/r06aryCxcuZOHChaVlniAIgiAIJYytDfsmJibyxRdfsGvXLmr%2BsZR%2B7NixTJgwgTfeeANHR%2B35lw%2ByY8cOXn75ZR5//HEAJk2aRPv27fnxxx9prZcl5A9suudPEARBEAShInP27FkcHBxoUiAVVYsWLbh37x4XL160KHP9%2BnVGjhxJu3btCAwMJCYmBoCMjAzOnz9P8%2BbNTXXd3Nxo0KABcUbnp2PjPX%2BCIAiCIDxclEbPn6VcvbVr1y60kLM4JCcn4%2BbmZjY9rVq1agAkWVjVXrNmTRo2bMjkyZNp3Lgxhw8fZurUqXh6evLYY4%2BhKIpJvqA%2BS7rUsNk8f7aA3lJ4Pz/47jto29bywrjc91ZoK6hdGwYPhu3b1VfGRURoG3DiBLRpo7oyz8FevXno2Q%2BQu/Ij9fMDeHjAoEGwcydY2HaP8HBteT8/%2BP57eOopVSMcHdQ/Kfz84PhxePppdR%2By5y/WtsHTMy8Fx8aNlpd5vvmmtrwBIxzuq6dssPo%2B6N0DKJH74GCnfR90fdB6Hqx9FvKN0HgetJ6FfPFS90EvXY3OfdC6B/ni5XofDHwmZWfpf2XpZDmxWt4RHeXWGlASOnTklUraQ412dqAVHRSIY8qcWbNKXqeHR%2BFcvePGjWP8eGO5emNiYpiqksZo0qRJrF%2B/nv/85z%2BmYzk5ObRo0YKNGzfyzDPP6OqfOHEijo6OvP7663Tq1Im9e/fyZIHE/EOGDMHf358Ivc%2B5P5CeP0EQBEEQHmos5eqtrbejTgGCg4MJDg62WPbNN9%2BQlpZGbm4uDn/0CiUnJwNQq1YtQ/rr1avH6dOnqV69Ovb29ib5fJKTkw3rAgn%2BBEEQBEGwIUpj2NdSrt6SolmzZiiKwrlz52jRogUAcXFxuLu7W9yKdtu2bVSrVo1evXqZjl24cAFvb2%2BcnZ154oknOHPmDE8//TQAqampXL582bQa2Aiy4EMQBEEQBJvB1vL81axZk%2B7du/Pee%2B9x%2B/Ztbty4wapVqxg4cCCVKuX1wY0YMYL9%2B/cDkJWVxbvvvktcXBzZ2dl89tlnHDlyhMGDBwN5Q7ybNm3iwoULpKWlsWTJEpo1a4av3j70BbC5nr/hw4dTv3595s6dW6gsJiaG2bNn8/XXX5OTk8NHH33EoUOHSEhIwN3dnaeeeorw8HCzcXKAO3fu0LFjR7y9vfnss8/KyhVBEARBEB4C5syZw6xZswgMDMTR0ZE%2BffowadIkU/mVK1dISUkB8uKcu3fvMmHCBBISEnj00UdZtWoVPj4%2BAAwePJiEhASGDRvG3bt3ad%2B%2BfaH5inrYXPA3cOBAZs%2BezYwZM3BxcTEr2717N7179%2Bb%2B/fsMGTKEOnXqsGbNGh577DFu3LjBmjVrCAkJYfv27WZLrvfs2UObNm346aef%2BPHHH2nVqlVZuyUIgiAIggFsLc8f5O1KtmzZMtXy2NhY0992dnaMHTuWsSp7qtvZ2REREWF4cYclbG7Yt3v37tjb23Po0CGz49evX%2BfYsWMMGjSITz75hLS0ND788EMef/xx7OzsqFOnDrNmzWLIkCEkPrCiMSoqil69etG1a1eioqLK0h1BEARBEIQyxeZ6/pydnQkKCmLXrl28%2BOKLpuMxMTE0btyYli1bMm3aNAYNGoSTk1Mh%2BQeXYp89e5Zff/2VHj160KBBA8aMGcP06dOpXLlykeyylCOoUaPaVK%2BuPoE0v/OxQCekOXorjWrUMH%2B3hJ%2BfelnTpubvlsQ1fh7o2g95aUS0qF7d/L2QARr2gzEfNFLuGPJBbxLwHxnbTe%2BFDNDxwYARfhq/dK2%2BD3r3AErmPmikhjDkg9bzYO2zALo%2BaD0LYCM%2B6KTnKHcfDLQjQbDFnr%2BKhk3m%2BTt79iz9%2B/cnNjaWOnXqAHk9gkOHDmXEiBH4%2BvqycOFCevfuratrzpw5JCYm8sEHH6AoCoGBgURERNC3b98i2bRiReEcQWPHjmPCBGM5ggRBEARB0GfKlJLXuVgnneufDZvr%2BYO8ZdPNmjVj9%2B7djBkzhh9%2B%2BIHff//d1BNoZ2dHbm6urp7MzEz27t1r2t/Xzs6OoKAgIiMjixz8WcoRFBxcm82b1WWaNIEtW%2BCll8DSFsXfvb5d%2B6Q1akD37nDwIKhl9v7739XlmzaFrVth6FA4d85ilbb2J1TF9ewH%2BO6Nnernh7zepq5d4fBheCBvEQB6ey83bfp/Rqj48LTD96riTZrA5s0wbJi6D8fDN2rbULMmBAXB3r1w%2B3bh8lWrtOUNGNH2/nFNcavug949gBK5D23ttO%2BDrg9az4O1zwLoPg9azwKUkQ9631A690HrHkAFuA8GPpOy/6N9H0CSPBuRt%2BUkz4L12GTwB3kLPzZu3MiYMWPYtWsXXbp0ocYfQw0NGjTg/Pnzujo%2B//xzUlNTee2110zbruTm5pKVlcXly5epX7%2B%2BYXss5Qj63/%2BMyf78s0oye7UM%2BQ%2BSlKRe3IdUmQAAIABJREFUVy1Nf0HOnVOt94OBWaGq9oP6jhEPkpxsua4R%2B0HbB52dVkDHB0u7dlji9m3LdY36oGHEDwaGOay%2BD2r3AErmPhj4stD0wcjzYO2zAKo%2BGHkWoIL7YPALu9x90GhHgiDDvtZjcws%2B8gkKCuLGjRucOHGCgwcPMmjQIFNZ9%2B7d%2Bec//0laWlohuSlTprBhwwYAIiMjGTBgADExMezevZvdu3ezd%2B9emjVrJgs/BEEQBEH4U2KzwV/VqlXp3r07CxYswNXVFX9/f1PZqFGj8PDwIDQ0lDNnzqAoCjdu3GDmzJl8%2B%2B23BAYGcunSJf773//y0ksv0aBBA7PXwIED2bVrl6GhY0EQBEEQyg5bS/JcEbHZ4A9g0KBBnDp1igEDBpiGbQGqVKnC1q1bad%2B%2BPePHj6dVq1aEhISQk5PDzp078fb2JioqiiZNmpi2WilInz59SE5O5uuvvy5LdwRBEARB0EGCP%2Bux2Tl/AO3ateNnlVnJ7u7uTJ8%2BnenTp1ssnzx5MpMnT7ZYVq1aNU6dOlVidgqCIAiCIFQUbDr4EwRBEATh4eJh7KkraWwyz5%2BtYOTKai2nt0u7oy1sbw%2BurnD3rurTkFulqqYKBwfQmtporzMxQDcdQLJKuoeCBri7Q2qqRUNy3TWSxRZQUao%2BZKTrK3BxgYwMi4oUF/2E4Xo2WCtvl5qiXmhvD1Wrwp076u3IrZquDeXalnTaEVjflvTsh9L3Qamu70Opt6Xbt9QLHRzyUgclJ6v6kO1eS/P8umlWnHSWLPv5wYkT0KZN8VYMG5C3Q/0CWXt6IzqU369rK6hUKS8Zd0IC5ORYrHIpq46quJMT1KkD169DVpblOg0aaJtQmowvhfS5K1aUvM6KjPT8CYIgCIJgM0jPn/VI8CcIgiAIgs0gwZ/1lOhq34CAALZt21aSKgVBEARBEIQSpEjBX0BAAC1atMDX15eWLVvSoUMHXnvtNW7evGlYvnXr1ty9e7dQ2YYNG2jSpAnR0dFFMUmVbdu20b17d/z8/AgODuaLL77QtMvHxwdfX1/T69VXXy0ROwRBEARBKDkk1Yv1FLnnb8aMGcTFxXHq1Cmio6NJTExk5syZhuWrVKliMRDbu3cvNWvWNKRjy5Yt3LqlPun44MGDLF26lPnz53P8%2BHFCQ0OZOHEiV65cUZVZt24dcXFxptfq1asN2SIIgiAIgmBLWDXs6%2BXlRbdu3fhfgU1sk5KSCAsLo3Xr1vTp04fvvvvOTKZz587s2bPH7NilS5dISkqicePGAGRkZNC1a1e2bNliqrN06VL69%2B9Pbm4u//vf/%2BjWrRtvv/02Fy5cKGRXRkYGkydP5qmnnsLR0ZFBgwbh6urKyZMnrXFXEARBEIRyRnr%2BrKfYCz4UReHq1avExMTQp08f0/Ht27ezbNkyfHx8eP/99wkPD%2BfIkSM4OzsDeUOsU6ZMITExEQ8PDyCv16979%2B6cPn0aABcXF2bPns2kSZPo1asXd%2B7c4dNPP2Xr1q04ODgwY8YM/vrXv7Jp0yYGDx5MmzZtGDlyJM888wwAwcHBZrampqZy9%2B5dvLy8VP3ZtGkTb731Frdu3eK5555j1qxZ1KqlnZKgIPHx8SQ8sJG5h0dtPD09DesohF5uifxyIzkoygsHB%2B1yW/DBTie1RH65Xr3yROv62sI9AO22JD6UHVo%2B5JfpPffW4OenXd60qfl7UTEgr2WBtac3pKOSzld3frlGPSfrxMuVhzFYK2mKlOcvICCAmzdvYm9vj6IoZGdn4%2B/vz9KlS6lVqxYBAQF07NiROXPmAJCSkkL79u3ZtGkTTz/9NAEBASxYsIDNmzfz9NNPM3z4cAB69uzJsmXLmD9/Pv369aN///4ATJs2DScnJxISEnjiiScs7siRlpbGP//5TzZt2kSjRo1Yv369WbmiKEyYMIFbt26Z9SQWJDw8nJYtWxIaGkpqaipvvPEG9%2B/f59NPPzV6aVixYgUrV658QO84IiJKISGRIAiCIDykhIWVvM5160peZ0WmyHH9jBkzGDJkCJDXo7Z582b69u1rGsrNH7qFvG3SqlWrVmhBSN%2B%2BfVm9ejXDhw/np59%2Bwt7enmbNmhU617Rp0%2BjVqxeurq689957Fu1xc3OjdevWHD9%2B3Gz4GSA7O5tp06Zx/vx5Nm3apOrTqlWrTH%2B7uroya9YsevXqxeXLl6lfv77OFckjJCSEgIAAs2MeHrV1k61qJnm%2BV3hhjBn29lC5MqSnqyfndXHVVFHqiXnvpGorsLcHNzdIS7PoQ66ru7Y8ZeBDZoa%2BAmdnyMy0nOTZ2UVb3oAN1sprJgwvgWThUM5tSacdgfVtqUSSPFvpg1JV34dSb0spyeqFDg7/lzBcLcmza3XN8%2BsmeW7fRlOepk1h61YYOhTOndOuW0z5NpwotdMb0XHiYELhgwWpVAlq1ICkJNUkz9dzamuK6%2BSIpo56juhSR3r%2BrMeqTl13d3fCw8OJioriwIEDANhb%2BITMH/LNp1OnTrz11lv89ttv7N27l6CgIIv6b9%2B%2BTXZ2NqmpqSQnJ5sN296/f5/Y2FjWrl3LtWvXCA0NZdGiRabyjIwMxo4dS3p6Olu2bKFGDf3M%2BPnUq1cPyBvKNRr8eXp6FhritXrvFKMtvCJPWtCKBgpy/77xumWN0RupKCVw00sJI%2B2jIrcjMNY%2BKnI7gofHh9zc0vPB6LYZ584Vf4sNHXkjWq09vaYOtYjMUj2Vumo7dzwobqSeYHuU2Ih%2BZmYmgFnvW0pKCikpKYXm2jk5OdGzZ08OHjzIwYMHLfbKKYrCrFmzCAsLIz4%2Bnjlz5ph66KKiolizZg0uLi6MHDmS3r174%2BjoaCY7adIkKlWqxIYNGwoFnwW5du0aa9as4a233sLJKW8WRP4iEm9v72JeDUEQBEEQSoOK/BvVVrBqZnFmZibr168nKSmJwMBAAGJjYzl9%2BjRZWVmsWbMGLy8vfHx8Csn27duXHTt24OXlxaOPPlqoPDIykvj4eEaNGsXEiRM5ceIEn3/%2BOQA//vgj77zzDjExMfTt29cs8IO8BSTnz5/n/ffftxj4HT58mKFDhwJQq1YtYmNjWbhwIffu3ePmzZssWLCAF154QXOBiCAIgiAIZY%2Bs9rWeIvf8zZ07l/nz5wN5w7nNmzdn7dq1puHR0NBQlixZwsmTJ/H29uaDDz7AwcLKr9atW%2BPo6GhxyDcxMZHFixezfPlynJyccHJy4vXXX2fu3Ln4%2B/ubFpSoERUVxbVr13j66afNjgcHBzN37lzu3LnDpUuXgLyVxWvXrmXhwoV06tQJgK5duzJ9%2BvSiXhpBEARBEIQKT5GCv9jYWEPlYSpLcR6UP3jwoNn/mzdvNv19/Phxs7IBAwYwYMAAQ3Zu3LhRs7x///6mFcUATZo0KbRKWBAEQRCEisfD2FNX0lTwhFKCIAiCIAhCSVJBUzgKgiAIgiAURnr%2BrEeCP0EQBEGwJfRSveTvNpSbazwtjA0hwZ/1yLCvIAiCIAjCQ0SpBH8BAQFs27atNFQLgiAIgvAQI6lerKdYwV9AQAAtWrTA19eXli1b0qFDB1577bVC27jp8fXXX9OkSRNmz55dHDNUycjIYN68eXTq1Im2bdsycuRIfvnlF4t1r169SpMmTfD19TV7rXvYNvoTBEEQBOGhoNg9fzNmzCAuLo5Tp04RHR1NYmIiM2fOLJKOnTt30rt3b/bt22faIUSP27dvs3PnTrI09pxZvHgx33//Pdu3b%2BfIkSPUrVuXcePGaeqNi4sze6mlqxEEQRAEofyQnj/rKZFhXy8vL7p162a2tVtSUhJhYWG0bt2aPn368N1335nJJCUlERsbS0REBDVq1ODw4cOmssWLFzNs2DCz%2BocPH6Zt27Y4Ojry2Wef8cILL7Bq1Spu375dyB43NzemTp1K3bp1qVKlCiNGjODSpUtF7pkUBEEQBKFiIcGf9Vi92ldRFK5evUpMTAx9%2BvQxHd%2B%2BfTvLli3Dx8eH999/n/DwcI4cOWLabi0mJoZmzZrRsGFDgoKCiIyMNMn36NGD9evXk5ycTPXq1YG84K9Lly5UrVqVjRs3cubMGdatW0eXLl0ICgri5ZdfplGjRgBMmjTJzMbr16/j7Oxs0mWJqVOncvToUXJychg0aBARERGFto3TIj4%2BnoSEBLNjHh618fT0NKyjEPY6sXl%2BuV698sTC7i5m2IIP%2BSvn9Mr16pUnWtfXFu4BaLcl8aHs0PIhv0zvubcGPz/t8qZNzd%2BLigF5LQusPb0hHXrfTZUqmb9bwEmxSlywcewURdFoApYJCAjg5s2b2NvboygK2dnZ%2BPv7s3TpUmrVqkVAQAAdO3Y0bcOWkpJC%2B/bt2bRpk2nLtT59%2BjBkyBBeeuklrly5Qrdu3Th8%2BLBpn9/AwEDGjRtHv379yMnJ4dlnn2Xx4sV07tzZzJZr166xYcMGoqOjCQsLY%2BzYsWblKSkpDBo0iF69ejFx4sRCvsTHxxMREUFYWBjPP/88Z8%2BeZfz48fTv358JEyYYviYrVqxg5cqVZsfCw8cRETHesA5BEARBELQJDi55nTExJa%2BzIlPsuH7GjBkMGTIEgNTUVDZv3kzfvn3Zs2cPAI0bNzbVrVatGtWqVTMNu548eZLffvuNnj17AuDt7U3r1q2Jjo4mIiICyOv9%2B%2BKLL%2BjXrx/Hjx/Hzs6ODh06FLLjkUcewc/Pj2PHjnH9%2BnWzsvj4eF555RWaNWvG%2BPGWgzBPT0%2B2b99u%2Br9ly5aMHj2ajz/%2BuEjBX0hICAEBAWbHPDxqoxda29mhWsfu3l1tYXt7qFwZ0tNV%2B61zXVw1VTg45KWC0jqFFlr2A9jdSdVWYG8Pbm6QlmbRh1xXd215ysCHzAx9Bc7OkJlpUZHi7KItb8AGa%2BXt0u6oF9rbg6sr3L2r3o6qVNW1oVzbkk47AuvbkpEOudL2Qamq70Opt6WUZPVCBweoWhXu3FG9kNmu6iMwkNeplZ2tUd6%2BjaY8TZvC1q0wdCicO6ddt5jybThRaqc3ouPE/hvaCipVAg8PSExUzfN3XXlEU7x2bUhIUE8TWKeOtglCxaZEOnXd3d0JDw8nKiqKAwcOAGBv4ZMyf8h3586d5OTkEBgYaCrLzs7m5s2bjBs3Dnt7e3r27EloaCgZGRkcOnSIbt26UalAH/S9e/eIjIxkw4YNVKtWjbCwMHr37m0qv3z5Mi%2B//DKdO3dmxowZOBRhGKJevXokJiaiKAp2BofyPD09Cw3xWvMBDBifiFCRJy1oRQMFuX/feN2yxuiNVJQSuOmlhJH2UZHbERhrHxW5HcHD40Nubun58MMPxuqdO2e8bhHljWi19vSaOrSi44Lk5KjWzTLwqOfkgMbaynKjIn9M2QolPqKfv2q34OKPlJQUUlJS8PLy4u7du%2Bzfv5/Zs2fzzDPPmOqkp6czcOBAvv32Wzp06ICPjw8eHh4cPXqUL774gsWLF5v0f/jhh2zfvp3WrVszb948/P39zWy4ffs2o0aNon///rqrfL/99ltOnjzJmDFjTMcuXrxIvXr1DAd%2BgiAIgiCUDRL8WU%2BJBH%2BZmZls3bqVpKQkAgMD2bx5M7GxsfTr148nn3ySNWvW4OXlhY%2BPD9HR0Tg7O9OvXz%2BcnJzM9AQEBBAZGWka3u3Rowfr1q1DURTTXMHk5GSSkpLYtm0bjz32mEV7li1bRqtWrVQDv6VLl5Kdnc20adOoWrUqq1atom7duvTq1Ytz586xbt06SfUiCIIgCMKfkmIHf3PnzmX%2B/PlA3nBu8%2BbNWbt2LfXr1wcgNDSUJUuWcPLkSby9vfnggw9wcHAgKiqKoKCgQoEfwIABAxg3bpxplW%2BPHj345JNPCA0NNQ3benl5mRaSqBEVFYWDgwOHDh0yO/7uu%2B/St29fEhISTD2UPj4%2BLF%2B%2BnJUrVzJz5kyqVq3KsGHDGDFiRHEvjSAIgiAIpYT0/FlPsYK/2NhYQ%2BWWes8KLq54kM6dOxMXF2f638fHh59//rnI9p09e1azfOHChWb/d%2B3ala5duxb5PIIgCIIglC0S/FlPBU8oJQiCIAiCIJQkksJREARBEASbwRZ7/pKTk3nnnXc4fvw49vb2dO7cmbfffhsXl8KpwGbMmEHMA4kHc3NzCQ4OZsGCBUybNo09e/aYZTFxdnYutJOaFhL8lSJ2GEn7Yada7w7audXsAVfgLq6oPQtV0Uu34ICDZh29zmF1%2BwGSqKFzdnAHUnG3aEUNXfvztJSmD%2BlU1pEGFyADF4taKlvZDoyhLZ9CNdUye6Aqee1NrR1VqwD3IcVevS3Z2/3hg50791VOY70PRgZKStuH8m9Lt6ilWuYAVAeSqa56FWuhl6bEEUeNOnq%2B%2BQEnyMvFV5xMK0bkFbQyQeRpOEEbjCWFKbqOS/e1r4GTAnXIy%2BWnltKlAZe0NAB1qMN1QC3XSwNNGwRz3n77bbKysvjss8/Izs5mwoQJLFmyhBkzZhSqO3fuXObOnWv6Pycnh759%2B9KjRw/TsTFjxqjmLzaCDPsKgiAIgmAz2NrevomJiXzxxRdMmjSJmjVr4uXlxdixY4mKiiLbQM7GjRs3Urdu3UI7nFlDiQZ/AQEBbNu2rSRVCoIgCIIgmLC14O/s2bM4ODjQpEkT07EWLVpw7949Ll68qCmbmprK6tWrmTJlitnxY8eO0bdvX/z8/Bg4cCCnT58ukk1FCv4CAgJo0aIFvr6%2BtGzZkg4dOvDaa6%2BZtm0zIt%2B6dWvu3i28bdmGDRto0qQJ0dHRRTFJlW3bttG9e3f8/PwIDg7miy%2B%2B0LTLx8cHX19f0%2BvVV18tETsEQRAEQajYxMfHc%2BbMGbNXfHx8iehOTk7Gzc3NbOOIatXypuIkJSVpyn766ae0a9eOJ554wnTM29ubBg0a8PHHH/Pvf/%2Bbtm3bMmrUKF1dBSlyz9%2BMGTOIi4vj1KlTREdHk5iYyMyZMw3LV6lSxWIgtnfvXmrWrFlUc0zcunWLLVu2AHDw4EGWLl3K/PnzOX78OKGhoUycOJErV66oyq9bt464uDjTa/Xq1cW2RRAEQRCE0qE0ev527NhB//79zV47duwwbFNMTAxNmjSx%2BLp27RpKMbb%2BzM3NZcuWLQwfPtzseHh4OPPnz8fLyws3NzemTJmCk5OTZifXg1g17Ovl5UW3bt3MtnJLSkoiLCyM1q1b06dPn0KrTzp37syePXvMjl26dImkpCQaN24MQEZGBl27djUFc5C3K0f//v3JfWC/yAsXLvD222%2Bb2ZGRkcHkyZN56qmncHR0ZNCgQbi6unLy5Elr3BUEQRAE4U9ISEgI0dHRZq%2BQkBDD8sHBwfz8888WX76%2BvqSlpZnFL8nJyQDUqqW%2BgOq///0vWVlZtG3bVvPcDg4O1KlTp0g9lcUO/hRF4cqVK8TExNCnTx/T8e3btzNmzBiOHTvGc889R3h4uGk3DcgbYv3%2B%2B%2B9JTEw0Hdu7dy/du3c3/e/i4sLs2bP54IMPSEpK4vLly3z66afMmzfPtLT52LFjjB49msGDB1O1alX2799vWjUTHBzM0KFDTfpSU1O5e/cuXl5eqv5s2rSJLl264OfnR0REBLdu3SrupREEQRAEoZQojZ4/T09PWrRoYfby9PQsEXubNWuGoiicO3fOdCwuLg53d3caNWqkKvfll1/yzDPPUKnS/yVmURSFBQsWmOnKysri8uXLeHt7G7apyKle8rd1UxSF7Oxs/P39eemll0zlzz//vClKffXVV1m/fj0//vijaW9ed3d3OnbsyP79%2B01dmfv27WPZsmVmExafffZZXnjhBZYvX05CQgLDhg2jWbNmAIwcOZKLFy8yfPhwli5dipubm6q9iqIwY8YMWrVqZbLhQZo1a0bLli35%2B9//TmpqKm%2B88QYTJkzg008/NXxd4uPjSUhIMDtW28PDqsZjrxOa55fr1StPCqQhsogt%2BGCnldWhQLlevfJE6/rawj0A8aGioPVM55fpPffW4OenXd60qfl7UTEmr2GEtQYY0GFhd1Qz8mOFSprf8BpKjCkoN2wtz1/NmjXp3r077733HosWLSIrK4tVq1YxcOBAU2A3YsQIQkJC6NWrl0nu7Nmz%2BPr6mumys7Pj6tWrzJ49m/feew83Nzfef/99HB0d6dKli2GbinxnZ8yYwZAhQ4C8HrXNmzfTt29f01Bu/tAt5E1orFatWqEFIX379mX16tUMHz6cn376CXt7e1NgV5Bp06bRq1cvXF1dee%2B990zHf//9d5o0aULr1q01A7/s7GymTZvG%2BfPn2bRpk2q9VatWmf52dXVl1qxZ9OrVi8uXL5v2KtZjx44drFy50uzYuPBwxkdE6AurRA2uroZOTWXNNHQGPoWt/aTWiHrc3Y2pUL%2BNBm0rRR8s5OC0iLOzqnKrbbBWvqp2ykhAr72V/30QH6AitKXq1fXFtf101FfgqF7nxAl9cYCtW43VK568ASOsNUBDRx2D4rVra5Ua0KKtQCgCc%2BbMYdasWQQGBuLo6EifPn2YNGmSqfzKlSukpKSYySQkJODh4VFI17x581i0aBH9%2B/cnLS2Nli1bsnHjRqpUqWLYHqvCend3d8LDw4mKiuLAgQMA2Fv42er8wLdip06deOutt/jtt9/Yu3cvQUFBFvXfvn2b7OxsUlNTSU5ONg3b7tixg%2B3btzNx4kTq1atHWFgYgYGBZufOyMhg7NixpKens2XLFmrU0E42XJB69eoBeb15RoO/kJAQAgICzI7V9vAAvUmednaqde7e0/4At7fPC/zS09V/Cbm66CS2dXCAXI06et0QGvYDpN7R98HNDdLSLPvg7mogMW8p%2B5CRqe2DnV1e4JeZaVmNi7OBib46NlgrfydN3Qd7%2B7yA4%2B5d9XZUtUr534dy98FIl1xp%2B%2BBW/m0pOUXdBweHvMDvzh31y1jdVSevmaMjaOQ%2Ba9NeO3hs2jQvZho6FAqMjBnGiHxe8uVSMsCAjuv7tIPPSpXy4raEBMjJsVwnL4GzNQqMhqAlj631/AFUrVqVZcuWqZbHxsYWOnbw4EGLdatXr86CBQussqfE%2BnTz5/UVXPyRkpJCSkpKobl2Tk5O9OzZk4MHD3Lw4EGLvXKKojBr1izCwsKIj49nzpw5ph666tWr8%2BqrrzJq1Cj27dvHypUrWbJkCX/7298YMGAAiqIwadIkKlWqxIYNGwoFnwW5du0aa9as4a233sLpj770CxcuABRp/NzT07PwEK81H8AYb%2BBlkaeouGjFAgW5f9943bLG6G1UFKtvealhpH1U5HYE4kNFwchzmptbes/zDwY3zTh3znjdossbUGytARo6stQ23XiAnBytugaUaCsQbBirZpdkZmayfv16kpKSCAwMBPKi19OnT5OVlcWaNWvw8vLCx8enkGzfvn3ZsWMHXl5ePProo4XKIyMjiY%2BPZ9SoUUycOJETJ07w%2Beefm9VxcnKiX79%2BxMTE8M477/Djjz8CeQtIzp8/z/vvv28x8Dt8%2BLBpQUitWrWIjY1l4cKF3Lt3j5s3b7JgwQJeeOEFzQUigiAIgiCUPbaW5LkiUuwFH5A3nNu8eXPWrl1rGh4NDQ1lyZIlnDx5Em9vbz744AOzzYfzad26NY6OjhaHfBMTE1m8eDHLly/HyckJJycnXn/9debOnYu/v78pOWJB/P398ff3ByAqKopr164VWuARHBzM3LlzuXPnDpcu5e1r6OLiwtq1a1m4cCGdOnUCoGvXrkyfPr2ol0YQBEEQhFLmYQzWSho7pTiZBwVjGLm0GvNrtOYHQQnNcyrleVpJydo%2BODjkLQpJTbVsRg338p9rlp6hP%2BfPxQUyMiyrqexS/vO0UlK155rlz9NSa0fV3Mr/PpS7DyUw589qH9zLvy3duq095696dUhOVr%2BMtdytm/Nn56Q958/PL29RSJs2xRt1NSKvaC28sdYAAzou/aZ9f52c8qbkXb%2BuPmrbgEtWKmigaUNp0q5dyev8739LXmdFpmKu4xYEQRAEQbCA9PxZTwXPKCUIgiAIgiCUJNLzJwiCTaD1az8/LZ2iVOxegT%2BDD0L5Y2QGRf67al0bbmPyfFiPBH%2BCIAiCINgMEvxZjwz7CoIgCIIgPESUSvAXEBDAtm3bSkO1IAiCIAgPMZLnz3qKFfwFBATQokULfH19admyJR06dOC1114rtIevHl9//TVNmjRh9uzZxTFDlYyMDObNm0enTp1o27YtI0eO5JdffrFY9%2BrVqzRp0gRfX1%2Bz17p160rUJkEQBEEQhIpAsXv%2BZsyYQVxcHKdOnSI6OprExERmzpxZJB07d%2B6kd%2B/e7Nu3z7Q9XHH59ddfTfsLL168mO%2B//57t27dz5MgR6taty7hx4zTl4%2BLizF5hYWFW2SMIgiAIQskjPX/WUyLDvl5eXnTr1s1sX9%2BkpCTCwsJo3bo1ffr04bvvvjOTSUpKIjY2loiICGrUqMHhw4dNZYsXL2bYsGFm9Q8fPkzbtm3JeiDh5NGjR3nllVcYNmwYGRkZALi5uTF16lTq1q1LlSpVGDFiBJcuXSpyz6QgCIIgCBULCf6sx%2BrVvoqicPXqVWJiYujTp4/p%2BPbt21m2bBk%2BPj68//77hIeHc%2BTIEdNeuzExMTRr1oyGDRsSFBREZGSkSb5Hjx6sX7%2Be5ORkqlevDuQFf126dMHJyYmsrCz279/PP/7xD%2B7evcvIkSNZsWIFlStXBmDSpElmNl6/fh1nZ2eTLktMnTqVo0ePkpOTw6BBg4iIiMDRUTuTfEHi4%2BNJSEgwO1bbwwNPT0/DOh5Ebzl/frmRjQfKCws7%2B5lhCz7YaW/wYZZWoaKidX1t4R6AdlsSH8oOLR/yy/See2vw89Mub9rU/L2oGJPXMMJaAwzo0PtqqlTJ/N0iipOVCgRbpljbuwUEBHDz5k3s7e1RFIXs7Gz8/f1ZunQptWrVIiAggI4dOzJnzhwAUlJSaN%2B%2BPZs2bTLtt9sTZJycAAAgAElEQVSnTx%2BGDBnCSy%2B9xJUrV%2BjWrRuHDx/m0UcfBSAwMJBx48bRr18/cnJyePbZZ1m8eDG%2Bvr4EBwfj6elJWFgY3bt3t7h3cD4pKSkMGjSIXr16MXHixELl8fHxREREEBYWxvPPP8/Zs2cZP348/fv3Z8KECYavyYoVK1i5cqXZsXHh4YyPiDCsQxAEQRAEbZo0KXmdP/9c8jorMsUO62fMmMGQIUMASE1NZfPmzfTt25c9e/YA0LhxY1PdatWqUa1aNdOw68mTJ/ntt9/o2bMnAN7e3rRu3Zro6Ggi/giWevTowRdffEG/fv04fvw4dnZ2dOjQgcTERJKSkujWrRu%2Bvr6agV98fDyvvPIKzZo1Y/z48RbreHp6sn37dtP/LVu2ZPTo0Xz88cdFCv5CQkIICAgwO1bbw0N/j02NfTTv3tPf27dyZUhPV%2B%2B2dnUp3719U%2B/o%2B%2BDmBmlpln1wdy3/PWUzMvX39nV2hsxMy2pcnMt/P1atfaJLZI9oKNe2pNeOoATaUgns7Wu1D1XLvy0lp2jv7Zu/P7HaZazuat3evm3aa3d7NW0KW7fC0KFw7pz2qYorf4I2pWeAAR039p/QFK9UCTw8IDERcnIs13lEua6toHZtSEhQV1CnjqYNQsWmRPp03d3dCQ8PJyoqyrTowt7CB2X%2BkO/OnTvJyckhMDDQVJadnc3NmzcZN24c9vb29OzZk9DQUDIyMjh06BDdunWjUqVKPPLII3z22Wds2LCB4OBgOnfuzKhRo/D19TU71%2BXLl3n55Zfp3LkzM2bM0AwSH6RevXokJiaiKAp2BsfyPD09Cw/xWvMBjPF5CBV5zoJWLFCQ%2B/eN1y1rjN5GRbH6lpcaRtpHRW5HYKx9VOR2BA%2BPD7m5pefDDz8Yq3funPG6RZc3oNhaAzR0aMTGZuTkaNS9n6VS8ICCLAP1ypiK/DllK5T47JL8VbsFF3%2BkpKSQkpKCl5cXd%2B/eZf/%2B/cyePZvdu3ebXpGRkcTHx/Ptt98C4OPjg4eHB0ePHuWLL76gV69eJn0NGzbknXfeITY2lieffJIxY8YwbNgw06KS27dvM2rUKPr378%2BsWbM0A79vv/2Wjz76yOzYxYsXqVevnuHATxAEQRCEskEWfFhPiQR/mZmZrF%2B/nqSkJFNvXmxsLKdPnyYrK4s1a9bg5eWFj48P%2B/fvx9nZmX79%2BtGgQQPTq2nTpgQEBBAZGWnS26NHD9atW4eiKKa5ggWpXr06Y8aMITY2ln79%2BnHy5EkAli1bRqtWrVTTuyxdupSFCxcCULVqVVatWkVMTAzZ2dnExcWxbt0605C2IAiCIAjCn4liD/vOnTuX%2BfPnA3nDuc2bN2ft2rXUr18fgNDQUJYsWcLJkyfx9vbmgw8%2BwMHBgaioKIKCgnByKrzSaMCAAYwbN860yrdHjx588sknhIaGavbeOTk50b9/f9P/UVFRODg4cOjQIbN67777Ln379iUhIcHUQ%2Bnj48Py5ctZuXIlM2fOpGrVqgwbNowRI0YU99IIgiAIglBKPIw9dSVNsYK/2NhYQ%2BWWEiUXXFzxIJ07dyYuLs70v4%2BPDz8XYwnO2bNnNcvze/3y6dq1K127di3yeQRBEARBEGwNSeIjCIIgCILNID1/1iPBnyAIgiAINoMEf9ZTrCTPgjHS07XL7ezAxQUyMiynCDGSFs3JKW8lvtpddK5kXZ6/tHT1uZb29lClCty7p/4wumXe0j9/9eqQnGzZDjc3bXkDFyH9vrOmuNY9AKjsZGV%2BOL1UCQaMyLSvrCmu2w6cip9vEkBBf%2BW7Xno5rctQFj6o5isriEaOucz72vnlbMGHbPR3LdJJs4cj1uXps9qAxERteb0cdXrX0NERHnkEbtxQtePSfW9VcSenvBR416%2Brt3m9z3Y9E7zr6zyPfn5w4gS0aaOabiY3R7st6qXtLM1dXPTwVr/8xebKlZLXWZGRnj9BEARBEGwG6fmzngq%2Bi6QgCIIgCIJQkthc8BcTE0ObNm1MW8UVJDQ0lMmTJ5eDVYIgCIIglAWS5Nl6bC74Cw4OplWrVqYcg/ns3r2bX375hTfffLOcLBMEQRAEobSR4M96bC74A3jnnXf417/%2BxTfffAPAnTt3WLx4MVOmTMHDw4P09HTeeecdOnfuTOvWrRkxYgQXLlwwyZ86dYrBgwfTtm1bOnTowJw5c8j5YxLw0aNHadu2Lf/4xz/w8/Pj1KlT5eKjIAiCIAhCaWCTCz4aNGjAmDFjmDNnDnv37mX58uU0bNiQgQMHArBo0SJ%2B/fVXdu7cibu7O8uXLyciIoJ9%2B/ahKAoTJkxgwIABbN26levXrxMSEkLjxo0ZOnQoAFlZWVy7do1jx45Z3InEEvHx8SQkJJgdc3evTe3anqoy%2BVsHq20hrLe1sJ58SaC1Kq3g%2BVXr6S0Jyy9Xq1cCF0FLRVlcwz%2BFDyWArftQEZ5HgbzVvEbK1erp3SA9eUBr0bYBcetN8PPTVtC0qfn7n4yHsaeupLHZVC/Z2dn069ePJ598ki%2B//JLo6Ggef/xxcnJyaNeuHatWreLZZ58F8vYefuqpp9i%2BfTs%2BPj6kpaXh7OyMo2Ne2oMJEybg6urK/PnzOXr0KCNHjuTAgQM89thjhu1ZsWIFK1euNDsWHj6OiIjxJee0IAiCIDzk1KpV8jpv6WQl%2B7Nhkz1/AI6OjsyePZuhQ4cyZswYHn/8cQASExO5d%2B8ef/vb37Ar8PNKURSuX7%2BOj48PR48e5cMPP%2BTSpUvk5OSQk5ND7969zfTXq1evSPaEhIQQEBBgdszdvTYZGeoydnbg7AyZmcXP85efEksthHdysC7P371M9Z47OzuoXDkvn6Ha%2BatkJeufv2pVuHPHsh1VqmjLG7gIGffVe2/17gGAi6OVef70cp4ZMCLL3kVTXLcdOJZ/nj%2Bty1AWPlibIy9L0c/zV9F9%2BFPk%2BUvW%2BUypVAlq1ICkJMvXSyt5Xb68h0dePkGV631deURTXCvNIBjr%2BdMy4ZFebbQVNG0KW7fC0KFw7pzFKrn/PaGpoiLn%2BROsx2aDP4CnnnoKgDZt/u9BcHbOS%2BgbGRlJUwtd3r/%2B%2BiuTJk3izTffZMCAAbi4uFhcIexQxJbt6emJp6f5EK9WUFQQRbFcz2ifrJp8SaDVvZ4fnCqKRj29D9qC9SzVLYGLYM09KBH%2BDD6UALbuQ0V4HgWMBcD59YqT5LlgPbUfAgaGHXNyip/kWdcElcTNhTh3znhdG0KGfa3HJhd8aFGjRg2qVq3KuQd%2B7Vy9ehWAM2fOULlyZV566SVcXFxQFIWzZ8%2BWh6mCIAiCIAhlzp8u%2BIO8IdgPP/yQixcvkp2dzbp16/jLX/5CRkYGjz76KPfu3ePcuXOkpKSwaNEiXFxciI%2BPL2%2BzBUEQBEHQQVK9WI9ND/uqMX78eNLS0hgyZAjZ2dk0b96cTz75BBcXF9q2bcvgwYN56aWXqFKlCuHh4QQEBDB27Fhee%2B01BgwYUN7mC4IgCIKgwsMYrJU0Nrva1xZIT9cut7MDFxfIyCj%2Bgg/djeQrWbfgIy1dfe6jvX3eeox799QfRrdMnSVUDg5QvXreJG5Ldri5acsbuAjp9501xbXuAUBlJysXfKhN/CmCEZn2lTXFdduBVm6KfCWlvOBD6zKUhQ/WLpbIvK%2B/4KOi%2B/CnWPCRmKgtr7fiQu8aOjrCI4/AjRuqdly6760q7uQEderA9evFn/OnZ4J3fZ3n0c8PTpyANm1U5/zl5mi3xYq84KNq1ZLXeedOyeusyPwpe/4EQRAEQfhzIj1/1vOnnPMnCIIgCIIgWEaGfUsTI5dWY5gnO0d/qE1vhEQvGb7eKJMd1g1T5d7X90FreMHB3rprCPpDlnrXwAhaOnSvYUkYoSOv15asbUcGTLC6LZW3DyVxH/WeB72hNiMpQmzdB712dPmytryRYVdr5RtwqfQMMKAj99EGuip0h20radxHA8PG5ZnPqLL6LJhiozdN68%2BGDPsKgiAIgmAzyLCv9ciw7x8MGzaMJUuWlLcZgiAIgiAIpUqFCv4CAgJo0aIFvr6%2BpldAQAALFizg7t27ZWZHcnIyO3fuLLPzCYIgCIJgDFvN8xcXF0fXrl35y1/%2Bolt306ZNdO/enTZt2jBkyBBOnz5tKsvMzGTmzJl06tSJ9u3bExERQVJSUpFsqVDBH8CMGTOIi4sjLi6OU6dO8fHHH/PNN9%2BwaNGiMrPh2LFjEvwJgiAIglAi7Nmzh/Hjx9Oggf58zdjYWFasWMHf//53jh49ygsvvMCrr77KvXv3AFi%2BfDlnzpxhx44dHDx4EEVRmD59epHsqXDBX0Hs7Ox44okn%2BOtf/8rhw4cBuHbtGq%2B%2B%2Birt27enXbt2TJ06lbS0NADS09N544038Pf3x8/Pj8GDB5ui5RUrVhSKtjt06EB0dLTZsQMHDjB58mROnTqFr68vV65cKQNPBUEQBEEwgi32/GVmZrJjxw5atWqlW3fHjh3079%2BfVq1a4eLiwiuvvALAv/71L3JycoiMjGTs2LHUqVOH6tWrM3HiRL766itu3rxp2J4KHfzlk/3HEj5FUUwOf/XVV3z%2B%2BefcvHnT1Cu4ceNGEhMTOXz4MP/5z3947rnnePvtt4t0rp49ezJmzBhatmxJXFwc3t7qyTwFQRAEQShbbDH4GzRoEF5eXobqnjlzhubNm5v%2Bt7e3p1mzZsTFxXH58mXu3LlDixYtTOWPP/44Li4unDlzxrA9FXq17/379/n555/55JNPCAoKIi4ujl9//ZVt27ZRuXJlKleuzPjx4wkLC2POnDmkpqbi6OiIi4sLlSpVYuzYsYwdO7ZMbI2PjychIcHsWG0PDzw9Pcvk/IIgCA8DTk7a5fkpfYyk9im%2BvIYR1hpQUjr08PNTL2va1Pz9IcDid3jt2uXyHZ6cnEy1atXMjlWrVo2kpCSSk5MBcHd3Nyt3d3cv0ry/Chf8zZ07l/nz5wN5wV/lypUZNmwY4eHhHDx4kNzcXNq3b28mk5ubS1JSEkOHDiUsLIzOnTvz3HPP0aVLFwIDA8vE7h07drBy5UqzY%2BPGjWP8%2BPGqMvHx8ezYsYOQkBCLDcxRZycmPXk9jMmr54IyIq%2B3BZC%2BDu2cYkZs0NJg7TU0psN6H6yV12pLZXMNwNq2VP4%2BWH8ftZ4H8cGYfJ06%2BjpWrMjTUadO8WzQl1c3Ij4%2Bnh0rVuT5oGdsMXXo7axm6D6cOKF//vfeq5AdGKWRYnDFiqJ/hxckJiaGqVOnWixbsGAB/fv3L5I9eimYrU3RXOGGfQsu%2BPj444/Jzs4mODiYSpUq4ezsTJUqVUzl%2Ba%2BffvqJmjVr8uijj7J//34WL16Mm5sbM2fOZMKECarnytXKgFlEQkJCiI6ONnuFhIRoyiQkJLBy5cpCvzaMYuvyFcEG8UGuQUWxQXyQa1BRbCgJH2yN4nyHFyQ4OJiff/7Z4quogV%2BNGjVMPXz5JCcnU7NmTWrWrGn6vyApKSnUqlXL8DkqXM9fQTp27EhgYCBvv/02mzZton79%2Bty7d48rV66Y5uKlpaWRnZ1NjRo1uHv3Lo6Ojjz77LM8%2B%2ByzjBw5koCAAJKSknB2dia9QArvO3fuFLp41uDp6VkhfyEJgiAIgqBNRfoO9/Hx4cyZM/Tr1w/I66j66aefGDhwIN7e3lSrVo0zZ85Qr149AH755ReysrLw8fExfI4K1/P3IG%2B%2B%2BSbnzp1jx44dPPnkk/j5%2BTFv3jxu375Namoqs2bNMnW1RkREsGjRItLS0rh//z4//PAD1atXp1q1ajRo0ID//e9//PLLL2RkZPDee%2B/h6upq8ZzOzs4kJCSQnJxMVnG35xEEQRAEQTBAjx49%2BO677wAYMmQIu3fv5uTJk6Snp/PRRx/h5OTE888/j4ODA3/5y19YvXo1169fJykpiWXLltG1a1c8PDwMn6/CB38eHh5MnjyZxYsXc/PmTZYuXYqiKAQGBtK1a1dyc3NZuHAhAO%2B%2B%2By6XLl2iU6dOtGvXjk8//ZRVq1Zhb29PYGAg3bt3Z/DgwXTr1g0fHx/q1q1r8ZxdunRBURSef/55s8SKgiAIgiAIRaV79%2B74%2Bvry0UcfmVLJ%2Bfr6cu3aNQD%2B97//mfL4derUicmTJzNx4kSefvppjh49ypo1a3BxcQHyOrpatWpFcHAwgYGBuLq6Mm/evKIZpAjlxs2bN5UPPvhAuXnz5kMpXxFsEB/kGlQUG8QHuQYVxYaS8EGo2NgpSmmsmxEEQRAEQRAqIhV%2B2FcQBEEQBEEoOST4EwRBEARBeIiQ4E8QBEEQBOEhQoI/QRAEQRCEhwgJ/gRBEARBEB4iJPgTBEEQBEF4iJDgTxAEQRAE4SFCgj9BEARBEISHCAn%2BBEEQBEEQHiIk%2BBMEQfgTcuHChfI2odgoisKRI0fK2wybQfagF4qKbO8mAHmbSkdFRfH666%2BXtynFJi0tjb179zJkyJBSP5eiKJw%2BfZqrV6/i4ODAY489RuPGjUtEd2pqKu7u7iWiS4s/gw%2BlRVk8D2lpaXz99ddm19/f3x8nJ6di67x37x779u0jMjKSU6dOcfbsWYv1fv/9d0P66tatq1l%2B%2BfJlDh8%2BbPKhUaNGdOvWjdq1axfZdoArV64QFRXFrl27SElJ4eTJk8XSER8fj7e3N56ensWywxrK4/xPPfUU3377rVVt5%2BrVqzz66KOFjmdlZfHTTz/RunVra0wUKhgS/JURu3fvNlSvb9%2B%2BqmWKorB7924%2B//xzrl69ir29PY899hhBQUF06dKlyDalp6ezf/9%2BoqKiOHHiBK1atWLHjh2q9f/73/8a0tuuXTvN8uPHj1v0oVmzZkWyP59jx44RFRXFoUOHqF69Ov/v//0/1boBAQHY2dnp6vzyyy9Vy/7zn//w1ltvcfXqVdzd3cnJyeHevXs0adKEefPm4ePjUyw/vv32W3bu3MmXX37Jjz/%2BWGr2l7cPFfFZAOPPQ9OmTQ3dA7XAC2DPnj3MmTMHRVGoX78%2BOTk5XLp0CXd3d959911eeOGFItn%2B3XffERUVxeeff46rqysvvvgiAwYM4PHHH7dYX88HRVGws7PT9GHNmjW8//77NGzYkEaNGpGTk8PPP//M7du3mTZtmuEfYZmZmXz%2B%2BedERkby/fff07RpUwYMGEBQUJDuD4ixY8fy4YcfAnD79m0mTJhg%2Bpyys7MjICCARYsW4ebmZlF%2B/fr1jBw5EoDc3Fw%2B/PBDoqOjSUhIoF69egwdOpQRI0aU2vlLwoZ8HdeuXWPYsGHUqVOHSpUqmZXb2%2BsP8rVq1criM5uSksLzzz/PDz/8oKtDsB0k%2BCsjOnbsaPb/rVu3qFWrVqF6X3/9tUX5%2B/fv8%2Bqrr3Ly5El69%2B5No0aNyM3N5aeffuLAgQN069aNpUuXGvpSOnHiBFFRUezfv5%2BMjAxCQkIIDQ3V7fVp2rSp2f92dnY82Hz0vjBmzpxJdHQ0zz77rJkPP/zwA2FhYYZ7Wm7cuEF0dDTR0dFcu3aN559/nsGDB/Pcc89pftBt377d9LeiKMybN48ZM2YUqjd48GCL8hcuXGDAgAEMGzaMl19%2B2XQPL126xIoVK4iNjWXnzp2qX7oP8vvvvxMdHc2uXbtISEjghRdeYMCAAXTq1KlU7K8IPlSkZwGK/jz8%2B9//Nv2tKApjx47lo48%2BKlTvueeesyh/8uRJRowYwfTp0xk0aBAODg5AXq/dxx9/zMaNG9m0aRMtW7bUtDshIYFdu3YRFRVFfHw8Xbp04eDBg3z22WfUr19fU/bixYtmPvTt25eYmJhC9R577DGL8keOHGHy5MksX77czE9FUYiMjGTBggW8//77qtcA4NSpU0RGRrJ//36qVatGUFAQGzZsYO/evXh7e2van0/BgCUiIoKUlBRmzpzJo48%2Byvnz51m4cCH169dn3rx5uvLLli1jz549jB49mnr16nHhwgX%2B8Y9/MHz4cP7617%2BWyvlLwgbI%2B8GdlZVFVlaWxXKtz%2BSdO3cSGRlJXFycxTYXHx%2BPoij861//UtUh2CCKUC74%2BvoWqf6nn36q9OjRQ0lISChUdv78eaVr167Kpk2bVOUTExOVNWvWKD169FD8/PyUadOmKd98843SunVr5fLly4ZsyMzMNL0yMjIUX19fs2P5LzX27NmjdOjQQfnll18KlX3zzTeKv7%2B/smfPHlX5rKwsZf/%2B/cqoUaOU5s2bK6Ghoco///lPpVWrVoZ9eJCWLVsWqf60adOUhQsXqpbPnz9fmTRpkqaOzMxMZd%2B%2BfcrLL7%2BsNG/eXBkyZIji4%2BOjnD17tki2KErR7VeUiudDWT8LilIyz0M%2BRb0HEyZMUD7%2B%2BGPV8tWrVyujR4/W1DF69GilZcuWyqhRo5Rdu3Ypd%2B/eVRRFKZb9ilJ0H0aPHq1s27ZNtXz79u3KsGHDVMv79OmjPPPMM8rbb7%2BtHD9%2B3HS8qPYXbDt%2Bfn7KjRs3zMpv3LihtGvXzpC8v7%2B/curUKbPyU6dOKc8991ypnb8kbFAURTl69KjmS4vk5GTlwIEDSvPmzZUVK1YUeq1Zs0a5ePGipg7B9pDgr5wo6odtSEiI8tVXX6mWHzlyRHnxxRdVy1u0aKGMHj1a2bt3r3Lv3j3T8eJ%2BWShK0X0YMWKEsm/fPtXy/fv3K3/5y19Uy9u3b6/069dPWb16tXL16lXT8bL04YUXXlAuXLigWn7jxg3lmWeeUS2fM2eO8vTTTyvdunVTVqxYYbK7rL60FcX2fbD2WVCUkn0eimp/x44dNc%2BRlJSkGzA0bdpUmTBhQqEv9rK6B/7%2B/sr169dVy9PS0pQ2bdponm/UqFHKzp07lTt37piOF9X%2BgnZ36dLF7F4qiqLcu3dPadu2rSH5Dh06KDk5OWbl2dnZSqtWrUrt/CVhgx6vv/66oXoHDhwo9jkE26OSft%2BgUBE4f/685jCQv78/ly5dUi338fHhu%2B%2B%2Bw93dnRo1atChQ4fSMFOTs2fPas4HDAwM5M0331Qtd3Z2Jj09nYyMDLKzs0vDRF1u3bpFgwYNVMu9vLy4e/euavmWLVvo3bs3EyZM0B2aKy1s3QdrnwUo3%2BchNTXV4sT6fKpXr05mZqamjgMHDrBz506mTJmCg4MDQUFBvPjii4aHuq0lLS2NRx55RLXc1dWVnJwc1fJvvvmGPXv2sHXrVtMcx%2BDg4CLbkZuby3fffYeiKDRp0oTNmzfzt7/9DYDs7GyWLl2qO3yeT4cOHfjqq68IDAw0HTtw4AANGzYsk/MX1wbImwrxz3/%2Bk9OnT5sN/cbHx/PTTz%2Bpyi1btszsf626kydP1rFesCUk%2BLMRsrOzqVGjhmp5pUqVCs2/K8j27du5cOECkZGRpi%2BMPn36cP/%2B/dIw1yLp6emaqwCdnJw07fnqq684cuQIUVFR9OnTh2bNmhXrC8Na8udoqaH1Bbx27VoiIyNNC1yCg4Pp2bNnSZuoiy37YO2zAOX/PFgbpDVs2JApU6YwefJkYmNjiYqKol%2B/fty/f5%2BYmBiGDh1KzZo1S8jawlhrv5ubG0OHDmXo0KGcPXuWyMhI3njjDdLT0/n4448JDQ0tNMfYEp6enkydOtWiXfPmzSM2NpZ169apymdmZpoWmimKwpUrV0yB1%2BrVq1m1ahXLly8vtfOXhA355zp06BBPPfUUhw8fpkePHpw9exYXFxfTghRLGF3EUVY/KoSyQxZ8lBNqK6usqW9UZ3Z2Nl9%2B%2BSWRkZEcPXqUxx9/nIEDB/Liiy9qfqkW93xFqW9U5%2B3bt02T3S9evPj/2zv3uJzv//8/kmI5bUxsZpub%2BcgKtc46oEhFWYZS1Bw2xGYTwyhyzGFMY04z7SAjlZoJiw3VVVLIHDaHHDpI5ySdX78/%2BvX%2BdtV1eF/X%2B7o68Lzfbm5c7/f78Xo93%2Bmqx/V6v16PF6ytreHh4YGRI0fKNDaNV2%2BuWbMGAQEBTcyCu7u7RL2BgYHE6xu3KS93q7CwEFFRUQgPD0d6ejpqa2sRGBgINze3Jiv1VFl/a7iHxrTk9xGg%2BPuh8WjJ/v37MXPmzCbXSRsp0dfXl3h9Q3788UeFs9tycnK4mJTs7GyMHDkS3333ncRr/fz8xF7HxMRINPDffPONRP37778v1/CfPHkS169f51l9XaRITEwMwsPDkZycjEGDBiEiIoK3vjFZWVno0aMHOnToIPWazMxMsdfa2trcB1SRSISuXbtCX19fbf2rqgZra2uEhYXhjTfewJAhQ5CWlgbGGDZt2oR%2B/fph8uTJSt0D8eJC5q%2BZaLzCMS8vD6%2B//nqT66StcNTT05N4fUPy8/NlruqSRHZ2NsLDw7logWvXrkm91t3dXewT4NWrVzF06NAm1zVckdqQQYMGSby%2BIWlpaTIfPUgiJSUFR48excmTJ/HKK68gISFB6rV2dnZy29PQ0JAalcJHDwBnz57ldR1Qt/ozLCwMMTEx6NixI1xdXbF06VKl%2B5dVP982APXdQ2t9LwD83g/Tpk2T246GhgZ%2B/vlnief46AHgl19%2B4XWdJEQiEY4ePSrVvC1btoxXOxs2bFCLXh4PHjxAREQEvvzyS6X0LxumpqZcxIyRkRGSkpKgra2N4uJiuLq6yoy/qkdeBJOs6CWi7UHmr5mIjIzkdZ2bm5ta9PJgjCEhIUHm3KcdO3bwamv%2B/Plq0aenp6Nfv35SdaWlpThx4kSb/ZRbH9AbHh4u1UC3dvjcQ2t/LwD83g%2BEMG7fvo28vDxYWlqKHf/5559hZ2cnc14kX7y8vPDgwQOpHyTksXHjRjx58kSqiVZ3/3xrmDJlCmxtbfHJJ59g0qRJmDx5MqZMmYJ///0XXl5euHTpktx%2BGn8oq6mpQVFRETp37ow333xTYhQQ0XYh8/eScOrUKYwZM4Z7XZ%2BRV59EP2XKFLnhuPLMlzyE6vX09PDWW2/B2toatra2sLCwgI6OjkJt1GcB2tjYKDQRu7XopXHv3gXDb4wAAB/TSURBVD1UVlZi4MCBSs/PEdrGvXv3UFFRwTsEuaU5ceIE%2Bvfvj4EDBwKoGy3btm0bnj9/Dnt7eyxYsKDV3ocqgqZlmS97e3v06dNHZttC9Ldv34a7uzs8PT2bZHsuXrwYSUlJCAsLQ69evWTWII/Y2Fg8ffpU6Q8CW7duRW5urtIjmEL751tDWloavvjiCxw/fhxxcXFYuHAhdHR0UFZWBg8PD4lZoHx4%2BvQptm/fDgMDAxr5e8Eg89dMCDVfQvUN50CFhIRgx44d8PDw4IJEIyIisGLFCkyYMEFqG0LNl1D9rVu3kJiYiISEBCQnJ6O6uhpGRkacmeIzQXzDhg0QiUS4ffs2unXrBisrK9jY2MDa2lruo8TWoK%2BtrcVPP/2E9PR0ODk5wdTUFHPmzOFGFv73v/9h3759Mn9pCm1Dnn7gwIHYu3evzBqEGi%2Bh%2BrCwMGzYsAE7duzAsGHDUFBQAHt7e5iZmcHCwgKhoaHw9PTkdl5oiFDjpQrjJjRo%2Bvbt25g8eTK8vLyUMl9C9V988QW6d%2B%2BOgIAAiecDAgJQW1uLtWvXSjxPyObOnTu4fv06%2BvTpAxMTE0FtlZeXw9HREX///bdqiiNaBWT%2Bmgmh5kuovn4SMAAMHz4c69evF3ukFR8fj5UrVyI2NlbqPQg1X6owb/VUV1fj8uXLEIlEEIlE%2BOeff/Dqq6/CxsYG69evl6svKChAfHw8RCIREhMTkZWVhUGDBnG1yNuirqX0W7ZswbFjx2BsbIxLly7BxcUFmZmZWLZsGRhj2Lp1KzQ1NbFp0yapfQttQ6heiPFShR4AXF1d8cUXX3DzH3/55Rfs2bMH586dg6amJi5fvoyAgAD8/vvvTbRCjZdQvSQUXTQj1HwJ1dvY2ODo0aNSzeHjx48xZcoUXrtKZGRk4OrVq%2BjVq5dEoxMQEIDVq1fLbCM3NxfdunWTuDdudHQ0XF1d1dq/0BrquXHjBrKysriBgMrKSkH7/QJ1Rt/DwwMpKSmC2iFaGc2QJUgw8RR3W1tbFhcXJ3Y%2BLi6O2dvbq03fMEjU3NycVVVViZ1XNEi0qqqKXbx4kW3fvp15eHgwAwMDZm1tzZYtW9Ys%2BobcuXOHHThwgI0ePZrp6ekprGeMsfv377OQkBCl22gu/ahRo7hdNFJSUtigQYNYVlYWdz4/P58NGzZMZl9C2xCqd3FxYWfOnOFe//zzz2LhtqmpqWzcuHFq0zNW935oGKY7e/ZstmLFCu51dXU17/eDMkHbqtQr04a1tXWT3Sgakp2dzUaMGKE2PZ%2BvLZ9rYmNjmYGBATM3N2cGBgZs6tSpLD8/X%2BwaWV%2Bb//77jzk4ODA9PT02dOhQFhwczGpra3nrhfavihoYY%2Bzu3bts7NixzMDAgOnr6zPGGMvIyGBWVla8d92ZPHkyc3d3F/vj6urKDAwMmJ%2BfH682iLYD5fw1Ew0f81RUVMDc3FzsvLm5OfLy8tSmb4iJiQmuXLki9in14sWLMkNbG9O%2BfXuYmprC1NQUY8eOxYULFxAaGorIyEheI29C9Lm5uUhISOBG/UpLS2FiYgIPD48m849kUVVVhdTUVCQkJCAxMRHXr19Hv379MHXq1Farz8vL40ZIhw4dinbt2uGNN97gznfv3h2lpaUy%2BxXahlD9gwcPMHz4cO51fHy8WETPkCFD8OjRI7Xpgf/LlNTU1ARjDJcvXxYLGK%2BtrZW5R3Rb5%2BnTpzIfy/fu3RuFhYVq07/%2B%2Buu4f/%2B%2B1PDiGzdu8Mop3LFjB1auXImJEyeipKQEK1asgLe3Nw4ePIhu3boBgMxIo6CgIJiammLHjh3IysrC%2BvXrkZ6eLrY3tCy90P5VUQNQF81kY2OD8PBw7qlBnz59MH36dKxbt47XynFJI83a2tp49913xUKniRcDMn8tgFDzpYy%2BoqKCewOXlpaipKSEi6I4dOgQNm3aJHN3jYYINV/K6tetWweRSITMzEwMGTIE5ubmcHd3x5AhQ%2BSGFtdz8%2BZNJCQkICEhASkpKejZsycsLS3h4%2BMDCwsLub9wWlrfMIRYU1OT932rsg2heqHGSxXG7d1330VycjKGDRuGM2fOoLS0VGy1Y1pampihfdEQar6E6kePHo3169fj%2B%2B%2B/b5IJ%2BezZM6xYsUJsjrM0Hjx4wC2m6Nq1K4KDg%2BHn5wdfX1%2BEhIRAS0tL5vzKa9euYefOnejYsSMGDBgAQ0NDeHt7Y926ddwiCVl6of2rogagLmppz5490NbWFrvWx8dH4pQCSUhKWSguLuZMLPFiQeavmRBqvoTqG2eOde7cmfv3a6%2B9hi1btsj9dCfUfAnVHzt2DDU1NXB2doa5uTksLCygq6srV9cQNzc3dOrUCW5ubli5cqXC25O1tJ4xhvv373MjAY1f1x9TZxtC9UKNlyqM29SpU/H555/D2NgYycnJGD9%2BPHr06MHp/f394ezsLLONlqRx0HR1dXWTY4D0oGmh5kuo3tfXFx4eHhg9ejQmTpyIfv36oba2Frdv30ZYWBh69OiBefPmSdXXo6uri2vXrsHQ0JA7tnHjRnz66af47LPPsH37dpn6V155BcXFxejYsSMAoFu3bti3bx88PDzQo0cPzJ07V%2Bb3stD%2BVVFDvebp06fc93A9jx494v3h7Pr16/D39%2BeCtRcsWIBTp07htddew86dO/HBBx/waodoG9CCj2bi4sWLYq87d%2B6M999/H0BdEr6WlpZM8yVUL4nKykoUFBRAV1eX1yMuU1NT1NTUwMnJSSnzJVRfW1uLf/75hxs5u3LlCt566y1YWlrC0tIS5ubm6NKli8w2Tp8%2BzY06PnnyBB988AEsLCxgaWkJfX19uZ%2BwW1pfv1JU0tu2/riGhobMlaJC2xCqj4qKwpo1azjj5ejoyD3qT0tLw9KlS%2BHs7Cw171Govp6TJ09CJBKhX79%2B8PT05CbGb926FU%2BePMHatWsl7lQidIcPoXqgLiha2v9BPbKCpp8%2BfQoPDw%2BUlZVJNV%2BHDh0S%2B5CoSn15eTlqamqwd%2B9exMbG4tGjR9DQ0MA777wDBwcHzJw5E6%2B88orUe6vn0KFD2LZtGxYuXAgPDw/ueEVFBb788kvcuXMHWVlZUndLWbduHVJTU7FkyRKYmZlxxx8%2BfIiZM2di6NChOHXqlNTwe6H9q6IGAFi1ahXu3r0LX19fzJ49G0ePHsWtW7ewc%2BdODBs2DCtXrpSqrWfKlCmwsbGBr68vYmNjsWrVKhw5cgSpqakIDQ1FaGio3DaItgOZvxZEUfMlRJ%2BZmYmQkBAsX74cBQUFCAgIwNmzZ8EYQ/v27TF%2B/HgsX75c5g9coeZLFeatIc%2BfP0dKSgoSExORnJyM//77D/3798fRo0d56bOysjgjlpSUhKqqKm7FqJeXV6vUN94KShK5ubliIxGqbkMVNShrvFSlB%2BpWaV64cAGampoYPnw470w5ocZLqB6oC%2BStXxlubW2Nrl278qq9HqHmS6je2NgY48aNw8SJEzF48GCFam/M6dOnUV5eLnE1bHR0NCIiIhASEiJRW1FRgc2bN6NLly5YsGCB2LnCwkJ88803iIiIkLnr0KlTp1BRUaFU//U1bNq0CV27dlW6hvLycgQFBSEqKgrPnz8HAHTp0gXu7u747LPP5G4xB9T9nyQlJaF9%2B/ZYtmwZunTpgq%2B//hqMMZiZmXE7iBAvBmT%2Bmgmh5kuofsaMGejfvz%2BWL1%2BOzz//HDk5Ofjss8/Qp08fZGRk4Pvvv0e/fv14LdaoR6j5EqoH6h5rJCQk4OLFi7h06RKKiooUiryo59mzZwgPD8cvv/yCjIwMhbcGa2l9QxSN/VBHG/L0yhovVemTk5Px6aefQldXFzU1NSgsLERISAgvIyLUeAnVA3XRNPWRSc%2BfP8fgwYO5/Ew%2B4eFCzZdQfVRUFKKiopCYmIgBAwZg0qRJcHV1Vepr8TLj5%2BeH5cuXc/Mra2pqkJeXhw4dOuDVV19VqK36aRTa2toYPnw4Nm/eDEtLSzx79gy2trYU9fKCQeavmRBqvoTqjYyMEBcXh06dOsHc3BzR0dFivzDz8/Ph4OCg8BtcqPlSVF9SUoLExETEx8cjISEBGRkZ6Nu3L/fL1NzcnNfjIsYY0tLSEB8fj/j4eFy9ehU6OjqwsLCAjY0NJk2a1Kr1smiY6dhSbcjSCzFeqtADdXP%2B7O3tuSzA/fv348KFCzJHaOoRaryE6htSU1ODq1evcounrly5gs6dO3Ph4dJ2ZRBqvlRl3rKzsxEVFYVjx44hOzsbo0aNwqRJk2BhYaFQO/XMmDED2dnZOHLkiEJPEerZvXs3srKysHLlSt5z5UJDQ3H//v0mc64jIyNx9epVrFq1Sm4bJ0%2BeRHl5eZP/r9TUVFy5cgUzZsyQqJs6dSpu376Nr776Ch999BGveqWxdOlS5Ofno3379khPT0dMTAyqq6uxceNGPHjwAPv27RPUPtHKUH16DCEJQ0NDVlpayhhjzMzMrElGVl5eHvvggw/UpreysmL3799njDHm7OzMcnNzxc4/ePCAmZmZyb2P4uJidurUKRYQEMBGjRrF9PT02OjRo9nq1avZX3/9xcrKytSmnzhxInv//feZoaEhmz17Nvv111/ZgwcP5NbckNDQUDZ//nxmamrK9PT02IQJE9i2bdvYpUuXxHLfWqueDy2RG6eI3svLi/3444/c6x9%2B%2BIH5%2BPjwbluonjHGTExMWHl5Off62bNnvL7/G1JdXc1SUlLYjh07mJeXF9PX12fm5uZs4cKFLDIyUu16SZSVlbFff/2Vd95kVlYW27VrFxszZgwbMmQIW7hwIROJRLz7E6pvSGpqKvP392dmZmbM3t6e7dq1SyF9YmIiGzFiBJs9ezbbs2ePwv2np6czY2Nj5urqyqKionjr8vLymLGxMcvJyeGO1dbWsjFjxvD%2BWvz333/M0tJS7HuSMca8vb3lfi9ERkYyKysrNnXqVHbv3j3edTfm%2BfPnbNeuXWzTpk0sIyODMVb3vpgxYwbLzs5Wul2idULmr5kQar6E6r///nvm7OzM/vzzTxYWFsZmzZrFkpKS2I0bN1h4eDhnwGQh1HwJ1QcFBbGEhARWUVHBHSsqKmKHDh1iBw4cYA8fPpTbhqWlJVu8eDGLiopqEsbKh5bW86G1mz%2BhxksVxk1SfULvWVHjpSp9dnY2Cw8PZ35%2BfszKyooZGxuz2bNnswMHDijUv1DzJVTfsJ1JkyYp/DWsv%2BfU1FRma2ur8IepVatWsXXr1rE//viDubm5KaT19/dnmzdv5l7/%2BeefbPz48Qq1MWvWLHbw4EHu9bVr15i1tXWTQH5JPH36lAUGBjJDQ0MWHBzMLly4IPZHUQoKChTWEG0LinppJry8vODr64svv/wS06dPx7Jly/DJJ5%2BgS5cuuHnzJnbv3o1x48apTT937lx07doVQUFByMjIAPB/20x17twZEydOlLm6EKjLF1y4cCGMjY25CfbFxcX47bffUF5eDnt7e/Tt21dt%2BunTpyMgIACrVq2Ci4sLPD098eGHH0JLSwsA8N1332H//v0yFxpMmDAB7dq1w507d3Dnzh2p10n7WrS0/vDhw1I19dTU1Mg8L7QNofrKykqxCeg6OjooLy%2BX26aq9Krk8ePH3AKmxMRElJeXw8TEBJ6enmrVx8bGcrrHjx/D0NAQlpaWmDZtGgwMDJTKfzQyMoKRkRHc3NywYcMGbN%2B%2BHXPmzGkWfU5ODo4dO4bIyEjk5OTAwcEBX331Fe%2B%2B7969i9TUVGzduhU6Ojp488038ccff/DaEg2oW1gRHR2N48ePo1evXvjmm29w8eJFsdW3svDx8YGnpyd8fX2ho6OD/fv34%2BOPP%2BZdP1D3823lypWYMmUKNDQ0cODAAXh5eclduATU/QxfunQpiouLsXPnTrFz8lb/1/Ps2TNs3LgR0dHRqK6uxj///IOioiIsWbIEGzZs4BW6TbQdyPw1E0LNlyrMm5eXF7y8vJCTk4OcnBwwxvD666%2Bjd%2B/evH5ZCDVfQvWbNm1CeXk5vL29ER0djdTUVHh4eMDX1xcAcODAAXz77bcy523xmY8oK26lpfV79uyRq5cXnyO0DVXU0NLU1NTgyJEjYituJR1zd3dvohVqvFRh3ObPn8/lRXp7eyucF9kYoeZLGX1lZSVOnz6NyMhIJCYmQk9PDz4%2BPnBxcZEaESONn376CZMnT4aOjg4AYObMmdi5cydv8/fbb79hxIgRXD6kj48PfvzxR97mr3///jAyMsKRI0cwZMgQZGZmyvwwLolhw4ZBR0cHp0%2Bfhr6%2BPv7%2B%2B29eES0AIBKJEBgYCC0tLYSGhiqVybd69Wo8efIEP/zwAzfHUEtLC507d8batWsl5kgSbRda8NECKGu%2BhOpramqQn5/P/WKuqKjAuXPnoKWlBSMjI7mrwxYtWoS8vDyMHj0a0dHR6NSpE0xMTMTM17lz56SaL6F6a2trREZGomfPnnj06BEcHByQnJzM/aKorKyEtbV1k0xEonVhYGCAgIAAMZO1Zs2aJsckGS9V6AHAzs5Obp0aGho4c%2BZMk%2BN6enqCjJdQPVC3g0Z8fDxEIhEuX74MXV1dscgkPis9JZmviRMn8jZfQvT%2B/v44efIkNDQ04OLigkmTJnFbBipKQUEBxowZgxMnTqBnz54A6hZUOTo6YvXq1U22wpR0H3Z2dti3bx8GDRoEoC6JYOTIkTh8%2BDDeeecdXnUkJSVhyZIl0NPTg5GREWbPnq3wvRw7dgwHDx7E0KFDUVNTI9f85ebmYt26dfj7778xZ84czJo1i9dIoSTMzc0RExOD7t27i63WLykpwZgxYyASiZRql2idkPlrRoSaLyH6tLQ0zJkzB4WFhTAxMcG3334LT09PPHnyBEDdlln79u2TudpQqPkSqjc0NMSVK1e414MHD24SfKqKmBNCvQgxXqrQC0Wo8VKFcWtIZWUlUlJSIBKJkJiYiJs3b2LAgAGwsLCQOvom1HwJ1fv4%2BGDixIkYM2YMNwVEWUJDQ3Hv3j1uK7R6IiIikJaWJne17dGjR3H8%2BPEmHzq3bduGoqIiBAYG8q5l%2BvTp3GpjZWJrqqqqYGdnh%2BLiYhw/flzuBwNjY2MYGhoqtVtQYywsLHD%2B/Hloa2uL/RwtLCyEvb09UlNTBbVPtC7I/DUTQs2XUP20adOgr68PNzc3hISEICMjA4MGDcKSJUugoaGB4OBgpKSkyNwAXKj5EqpvfE7StWT%2BiOZEGeOlSn1j7t27h/Pnz%2BPgwYMy8yKFmi9VmjdVwP7/rjKSePr0qczYl8LCQu7xZkMqKytRWFjIK0NSSP/1VFVVQUtLCwUFBaiqquLVb3R0NO9H2/KYO3cu%2BvTpg0WLFsHc3BxXr15FZmYm1q1bh9raWuzevVsl/RCtAzJ/zYRQ8yVUb2Zmhri4OGhra6OgoABWVlZISEjAa6%2B9BqBuFNHa2lpmirtQ8yVU3/hxn6RHfWvWrJG5lRJBqAu%2BxkuV%2BsLCQohEIi738vHjx3jvvfe43EBLS0tlb6dN8dFHH2H9%2BvUYOHCg2PHTp09jzZo13PxoaZiammLUqFEYO3Yshg0bpvCOS9L6P3XqFNauXSu3f1XUIJTMzEz4%2Bvri7t27qK6uRqdOnVBWVgZDQ0Ns3bpV7n7ZRNuCFnw0E//%2B%2By/2798PbW1tLF68GFZWVggODubm6s2dO1dsc3pV6zU1NVFeXg5tbW10794d77zzDmf8gLp5HfJoPCFe2qR5del1dXXFPn02fl1/jCCaA2nGa9SoUbC1tVWrfsuWLUhISMCtW7fQqVMnWFpawtfXF7a2tgrvdvIiMGzYMHh4eMDHxwe%2Bvr4oLi5GYGAgUlNTsWjRIrn69evXIzY2Fn5%2BfmjXrh1Gjx6NsWPHwszMTO5%2B27L6v3z5Mvz8/Hjdg9AahNKnTx9ERUXh2rVrePToETp06IC3334bAwYM4J4wES8ONPLXTFhaWuLUqVPcPBBHR0ecPHmSO5%2BbmwtnZ2epI29C9V999RWePXsGf39/9O7dW%2BzcrVu3sGnTJujq6iIoKEjqPfCZawUAZ8%2BeVYueIFoDkoyXjY0Nb%2BMlVA/UjTTV72pjaGioVLTLi8bDhw8RFBSEu3fvori4GOPGjcOCBQsU2umjpqYGSUlJ%2BPPPPxEbGwvGGJycnLB8%2BfJm6V9oDcpQVlaGjRs3IjY2FgDg6uqKxYsXcyOPR44cwebNm2lv3xcMMn/NhFDzJVRfXFyMr7/%2BGk5OTk0iCOzt7dG/f39s3rwZ3bp1E3CXBPHiI9R4kXFTD8XFxdi6dStiY2NRVVWFWbNmYcaMGUqtfq2srER8fDz279%2BPlJQUXo/gVdm/sjUoQ1BQEOLj4/HJJ5%2BgsrISP/zwA8aNGwdXV1csX74c//77LxYuXAgPDw%2B19E%2B0DGT%2Bmgmh5ksd5q24uBgxMTHIz8%2BHq6urzIBlgiCI1kpoaCi2b98OOzs7bo/alStXIi8vDwEBAbzmPpaUlODs2bM4c%2BYM4uLi0LNnT4wZMwaOjo7Q19dXe/9Ca1AWe3t77N27F/379wcA3Lx5E97e3qiuroadnR2%2B/vpr9OjRQy19Ey0Hmb8WRKj5UkT/5MkTBAQEID09XWLAclFRkdzdMQiCIFojDg4OCAwMbGKywsLCsGXLFiQlJcnUe3t7IzU1Fb1794ajoyOcnJwUMltC%2B1dFDcrSeJEdYwyDBw/Gnj17YGVlpfb%2BiZaBzF8zIdR8CdX7%2BfkhPz9f6YBlgiCI1kpFRYXYln8Nyc/PlztytWXLFjg6OsLAwKDJuZKSErmZfUL7V0UNykKRWS8nZP6aCaHmS6iedscgCOJF49ixY7yu%2B/DDDxVuWyQSISwsDGfOnJFqhNTZP98ahELm7%2BWEol6aiaSkJM582drawsHBAcHBwdx5Ly8v7Nq1S2360tJSbuujvn37on379mKhptra2qioqBByiwRBEM3K0qVL0aNHD26%2BmqSxDA0NDd7mKysrCxEREYiMjERubi5GjhyJ7777rtn6V6YGoQjZ55pou5D5ayaEmi%2Bh%2BsY/lJo7QJQgCELVLF26FMePH0dmZiYcHR3h4uKi8B7BlZWViI2NRVhYGC5evIihQ4fiyZMnCAsLk9uWKvoXWoNQpOWlNjymoaFB5u8Fg8xfMyHUfAnVCw1YJgiCaG18/PHH%2BPjjj/Hw4UP8/vvvWLhwITQ1NeHi4oJx48bhzTfflKlfs2YNjh8/jldffRUuLi5YvXo1%2BvbtCyMjI3Tq1Ent/auiBqFQrurLCZm/ZoJ2xyAIglAPb7/9NubNm4d58%2Bbhxo0bOH78OLy9vdGrVy%2B4urpKHbU6ePAgxo4diwULFuDtt99u9v5VWQNBKAIt%2BGgmaHcMgiCI5uHhw4c4efIkDh8%2BDC0tLbHdkBoSFxeHo0eP4q%2B//sKgQYMwfvx4ODk5YeTIkYiOjlY6%2B5Rv/%2BqsgSBkQeaPIAiCaPMUFBTgxIkTiIqKQkZGBpycnDB%2B/HgMHTpUrrawsBBRUVEIDw9Heno6amtrERgYCDc3N947dAjpX1U1EARfyPwRBEEQbZLnz58jNjYW0dHRuHTpEmxsbODq6orhw4dzGaiKcuXKFYSFhSEmJgYdO3aEq6srli5d2mz9K1oDQSgDmT%2BCIAiiTVK/KMLW1hZ2dnZSt7c0NTVVuO2ysjL88ccfCA8Px2%2B//dbs/fOtgSCUgcwfQRAE0SbhMxdaQ0MDZ86ckXtdZWUl0tLSkJOTgw4dOqBXr14wMDCAhoZGs/SvbA0EoQxk/giCIIiXmkuXLmHevHkoKSlBt27dwBhDSUkJevfujeDgYAwePPilqIF4eSDzRxAEQbR5hIyaubi4wNraGnPnzuX20C0uLsbevXsRFxeHqKgotfavqhoIgi9k/giCIIg2jaxRs%2B3bt2PIkCEy9UZGRkhKSoK2trbY8aqqKpiZmeHy5ctq7V8VNRCEItAeXwRBEESbJjAwEBMmTEBSUhISExO5v52dneHv7y9Xb2xsjOvXrzc5fvv2bRgaGqq9f1XUQBCKQCN/BEEQRJtGmVGzw4cPc/8uKCjA4cOHMWLECLz33nvQ0NBAeno6zp49i2nTpmH69Okq71/VNRCEIlByJEEQBNGmqR81MzIyEjsua9Rsz549Yq/btWuH8%2BfP4/z582LHf/31V7nGS5n%2BVV0DQSgCjfwRBEEQbQ51jZoVFRUhJiYGFRUVsLe3l7q9mjpH7fjWQBDKQuaPIAiCaHPw3e9cVs5ebm4u/P39kZ6eDhcXF3h6euLDDz%2BEtrY2GGMoKirC/v37JY7eqaJ/oTUQhLKQ%2BSMIgiBeGBQZNfPz80N%2Bfj5Gjx6N6OhodOrUCSYmJvD19QUAHDhwAOfOnUNISIha%2BldXDQQhDzJ/BEEQRJtE6KiZtbU1IiMj0bNnTzx69AgODg5ITk5G586dAdRl91lbW%2BPixYtq6V8VNRCEMlDUC0EQBNEmCQoKQnl5Oby9vXHhwgUsWrQIHh4eiI2NxZkzZzB//nx8%2B%2B23UvWlpaXo2bMnAKBv375o3749Z7oAQFtbGxUVFWrrXxU1EIQy0GpfgiAIok2SlJTEjZrZ2trCwcEBwcHB3HkvLy/s2rVLqr7xg6927RQbDxHavypqIAhlIPNHEARBtEmEjprV1NTgyJEjnAFr/Lr%2BmLr6V0UNBKEMZP4IgiCINonQUTNdXV3s3r1b6uv6Y%2BrqXxU1EIQykPkjCIIg2iRCR83Onj3bov2rogaCUAZa7UsQBEG0Sfhm7anLYLV0/wShLGT%2BCIIgCIIgXiJoWRFBEARBEMRLBJk/giAIgiCIlwgyfwRBEARBEC8RZP4IgiAIgiBeIsj8EQRBEARBvESQ%2BSMIgiAIgniJIPNHEARBEATxEkHmjyAIgiAI4iXi/wHUsUcBad7HxwAAAABJRU5ErkJggg%3D%3D" class="center-img"> | |
</div> | |
<div class="row headerrow highlight"> | |
<h1>Sample</h1> | |
</div> | |
<div class="row variablerow"> | |
<div class="col-md-12" style="overflow:scroll; width: 100%%; overflow-y: hidden;"> | |
<table border="1" class="dataframe sample"> | |
<thead> | |
<tr style="text-align: right;"> | |
<th></th> | |
<th>ID</th> | |
<th>League</th> | |
<th>Date</th> | |
<th>HomeTeam</th> | |
<th>AwayTeam</th> | |
<th>B365H</th> | |
<th>B365D</th> | |
<th>B365A</th> | |
<th>BWH</th> | |
<th>BWD</th> | |
<th>BWA</th> | |
<th>IWH</th> | |
<th>IWD</th> | |
<th>IWA</th> | |
<th>LBH</th> | |
<th>LBD</th> | |
<th>LBA</th> | |
<th>PSH</th> | |
<th>PSD</th> | |
<th>PSA</th> | |
<th>WHH</th> | |
<th>WHD</th> | |
<th>WHA</th> | |
<th>VCH</th> | |
<th>VCD</th> | |
<th>VCA</th> | |
<th>BbMx>2.5</th> | |
<th>BbAv>2.5</th> | |
<th>BbMx<2.5</th> | |
<th>BbAv<2.5</th> | |
<th>Year</th> | |
<th>HS</th> | |
<th>HST</th> | |
<th>HF</th> | |
<th>HC</th> | |
<th>HY</th> | |
<th>HR</th> | |
<th>AS</th> | |
<th>AST</th> | |
<th>AF</th> | |
<th>AC</th> | |
<th>AY</th> | |
<th>AR</th> | |
<th>Result</th> | |
</tr> | |
</thead> | |
<tbody> | |
<tr> | |
<th>0</th> | |
<td>GER310812#0</td> | |
<td>Germany</td> | |
<td>31/08/12</td> | |
<td>Mainz</td> | |
<td>Greuther Furth</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>2.09</td> | |
<td>1.98</td> | |
<td>1.94</td> | |
<td>1.83</td> | |
<td>2013</td> | |
<td>[8.0]</td> | |
<td>[3.0]</td> | |
<td>[13.0]</td> | |
<td>[8.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>[8.0]</td> | |
<td>[3.0]</td> | |
<td>[13.0]</td> | |
<td>[8.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>0</td> | |
</tr> | |
<tr> | |
<th>1</th> | |
<td>GER010912#0</td> | |
<td>Germany</td> | |
<td>01/09/12</td> | |
<td>Fortuna Dusseldorf</td> | |
<td>M'gladbach</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>2.11</td> | |
<td>2.00</td> | |
<td>1.90</td> | |
<td>1.80</td> | |
<td>2013</td> | |
<td>[9.0]</td> | |
<td>[4.0]</td> | |
<td>[14.0]</td> | |
<td>[0.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>[9.0]</td> | |
<td>[4.0]</td> | |
<td>[14.0]</td> | |
<td>[0.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>1</td> | |
</tr> | |
<tr> | |
<th>2</th> | |
<td>GER010912#1</td> | |
<td>Germany</td> | |
<td>01/09/12</td> | |
<td>Hoffenheim</td> | |
<td>Ein Frankfurt</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>2.00</td> | |
<td>1.93</td> | |
<td>1.95</td> | |
<td>1.88</td> | |
<td>2013</td> | |
<td>[14.0]</td> | |
<td>[8.0]</td> | |
<td>[6.0]</td> | |
<td>[4.0]</td> | |
<td>[0.0]</td> | |
<td>[0.0]</td> | |
<td>[14.0]</td> | |
<td>[8.0]</td> | |
<td>[6.0]</td> | |
<td>[4.0]</td> | |
<td>[0.0]</td> | |
<td>[0.0]</td> | |
<td>0</td> | |
</tr> | |
<tr> | |
<th>3</th> | |
<td>GER010912#2</td> | |
<td>Germany</td> | |
<td>01/09/12</td> | |
<td>Leverkusen</td> | |
<td>Freiburg</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>1.69</td> | |
<td>1.62</td> | |
<td>2.44</td> | |
<td>2.25</td> | |
<td>2013</td> | |
<td>[19.0]</td> | |
<td>[10.0]</td> | |
<td>[22.0]</td> | |
<td>[7.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>[19.0]</td> | |
<td>[10.0]</td> | |
<td>[22.0]</td> | |
<td>[7.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>2</td> | |
</tr> | |
<tr> | |
<th>4</th> | |
<td>GER010912#3</td> | |
<td>Germany</td> | |
<td>01/09/12</td> | |
<td>Nurnberg</td> | |
<td>Dortmund</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>NaN</td> | |
<td>1.83</td> | |
<td>1.76</td> | |
<td>2.16</td> | |
<td>2.07</td> | |
<td>2013</td> | |
<td>[18.0]</td> | |
<td>[8.0]</td> | |
<td>[20.0]</td> | |
<td>[6.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>[18.0]</td> | |
<td>[8.0]</td> | |
<td>[20.0]</td> | |
<td>[6.0]</td> | |
<td>[2.0]</td> | |
<td>[0.0]</td> | |
<td>1</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
</div> | |
</div> | |
</body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment