Last active
January 31, 2022 08:59
-
-
Save thanoojgithub/902c510c11b6ec53ae3a58fc46d9ae49 to your computer and use it in GitHub Desktop.
Sample code - Implementing SCD Type 2 Data model using PySpark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark.sql import SparkSession | |
from pyspark.sql.functions import * | |
spark = SparkSession \ | |
.builder \ | |
.master('local') \ | |
.appName('pyspark-test-run') \ | |
.getOrCreate() | |
spark.sparkContext.setLogLevel("ERROR") | |
temporaryGcsBucket = "temporarygcsbucket1" | |
spark.conf.set('temporaryGcsBucket', temporaryGcsBucket) | |
df1 = spark.read.format("csv").options(header='True', inferSchema='True', delimiter=',') \ | |
.load("gs://bucket_27122021/data/cancellationData/Cancellation_Details.csv") | |
# For now, converting csv to parquet format, writing to GCP bucket, to make expected input to start transformation. | |
df1.write.mode("overwrite").parquet("gs://bucket_27122021/data/cancellationData/parquet") | |
# actual transformation will start from here. | |
# reading airLine data as parquet format from GCP bucket and dropping unwanted columns | |
df1_1 = spark.read.parquet("gs://bucket_27122021/data/cancellationData/parquet") \ | |
.drop('CreatedTimestamp', 'UpdatedTimestamp') | |
df1_2 = df1_1.filter(col("CancellationCode").isNotNull() & col("CancellationDesc").isNotNull()) | |
df2 = spark.read.format("csv").options(header='True', inferSchema='True', delimiter=',') \ | |
.load("gs://bucket_27122021/data/cancellationData/Cancellation_Details_Jan012022.csv") | |
# For now, converting csv to parquet format, writing to GCP bucket, to make expected input to start transformation. | |
df2.write.mode("overwrite").parquet("gs://bucket_27122021/data/cancellationData/Jan2022/parquet") | |
# actual transformation will start from here. | |
# reading airLine data as parquet format from GCP bucket and dropping unwanted columns | |
df2_1 = spark.read.parquet("gs://bucket_27122021/data/cancellationData/Jan2022/parquet") \ | |
.drop('CreatedTimestamp', 'UpdatedTimestamp') | |
df2_2 = df2_1.filter(col("CancellationCode").isNotNull() & col("CancellationDesc").isNotNull()) | |
ccDF1_3 = df1_2.withColumn("StartDate", to_timestamp(lit("2021-12-31 23:59:59"), 'yyyy-MM-dd HH:mm:ss')) \ | |
.withColumn("EndDate", to_timestamp(lit("9999-12-31 23:59:59"), 'yyyy-MM-dd HH:mm:ss')) | |
ccDF2_3 = df2_2.withColumn("StartDate", to_timestamp(lit("2022-01-31 23:59:59"), 'yyyy-MM-dd HH:mm:ss')) \ | |
.withColumn("EndDate", to_timestamp(lit("9999-12-31 23:59:59"), 'yyyy-MM-dd HH:mm:ss')) | |
ccDF1_4 = ccDF1_3.filter(col('EndDate') != '9999-12-31 23:59:59') | |
ccDF1_4.show(truncate=False) | |
ccDF1_5 = ccDF1_3.filter(col('EndDate') == '9999-12-31 23:59:59') \ | |
.withColumn("EndDate", | |
when(col('CancellationCode').isin( | |
ccDF2_3.select(col('CancellationCode')).rdd.flatMap(lambda x: x).collect()), | |
to_timestamp(current_timestamp(), "yyyy-MM-dd HH:mm:ss")).otherwise(col('EndDate'))) | |
ccDF1_5.printSchema() | |
ccDF1_5.show(truncate=False) | |
ccDF1_6 = ccDF1_4.unionByName(ccDF1_5).unionByName(ccDF2_3).orderBy(col('CancellationCode'), col('EndDate')) | |
ccDF1_6.printSchema() | |
ccDF1_6.show(truncate=False) | |
ccDF1_6.write.format('bigquery') \ | |
.option('table', 'cancellationData1.cancellationData') \ | |
.partitionBy('CancellationCode') \ | |
.mode("overwrite") \ | |
.save() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment