Created
April 13, 2024 13:40
-
-
Save theWatchmen/746f35c349748525b412cfd9466608ce to your computer and use it in GitHub Desktop.
Resampling impementation in Python (2nd attempt)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
Fs = 44100 | |
Fs_prime = 96000 | |
A = 90 | |
TEST_SAMPLES = 1000 | |
Nz = 13 | |
Nzd = Nz * 2 + 1 | |
# Cutoff frequency = pi / L | |
Nn = 7 | |
Neta = 6 | |
Np = Nn + Neta | |
L = 1 << Nn | |
M = Nzd * L | |
K = 32 | |
def beta(): | |
if A > 50: | |
return 0.1102 * (A - 8.7) | |
elif A > 21: | |
return 0.5842 * (A - 21)**(2./5.) + 0.07886 * (A - 21) | |
else: | |
return 0.0 | |
# From https://dsp.stackexchange.com/questions/37714/kaiser-window-approximation | |
def bessel_coeff(): | |
result = np.zeros(K) | |
fact = 1 | |
for k in range(K): | |
fact *= (k + 1) | |
exp = 2 ** k | |
result[k] = 1 / (fact * exp)**2 | |
return result | |
def bessel(x, bc): | |
k = K - 1 | |
x2 = x**2 | |
y = x2 * bc[k] | |
for k in range(K - 2, 0, -1): | |
y = x2 * (bc[k] + y) | |
return y | |
def window(bc): | |
b = beta() | |
b_beta = bessel(b, bc) | |
m2 = M//2 | |
y = np.zeros(M) | |
for n in range(m2 + 1): | |
bn = b * ( 1 - ( n / m2 )**2 )**0.5 | |
bb = bessel(bn, bc) | |
y[n + m2 - 1] = (1 / b_beta) * bb | |
y[m2 - n] = y[n + m2 - 1] | |
return y | |
def resample_window_sinc(o, r, w): | |
rho = Fs_prime / Fs | |
input_increment = 1 / rho | |
y = np.zeros(r.shape[0]) | |
o_padded = np.concatenate([np.zeros(Nz), o, np.zeros(Nz)]) | |
Lo = len(o_padded) | |
for n in range(y.shape[0]): | |
input_delay = Nz + n * input_increment | |
n0 = int(input_delay) | |
delay_start = int(input_delay - Nz) | |
additional_delay = input_delay - delay_start | |
integral_delay = int(additional_delay) | |
fractional_delay = additional_delay - integral_delay | |
l_offset = fractional_delay * L | |
l0 = int(l_offset) | |
eta0 = 1 - (l_offset - int(l_offset)) | |
eta1 = 1 - eta0 | |
v = 0 | |
nn = (l0) % L | |
for z in range(-Nz, Nz + 1): | |
ni = n0 + z | |
if ni < 0 or ni >= Lo: | |
continue | |
v += o_padded[ni] * eta0 * w[nn][z + Nz] | |
nn = (l0 + 1) % L | |
for z in range(-Nz, Nz + 1): | |
ni = n0 + 1 + z | |
if ni < 0 or ni >= Lo: | |
continue | |
v += o_padded[ni] * eta1 * w[nn][z + Nz] | |
y[n] = v | |
return y | |
def resample_box(o, r): | |
t_increment = 1 / Fs_prime | |
inteval_orig = 1 / Fs | |
y = np.zeros(r.shape[0]) | |
t = 0 | |
for n in range(y.shape[0]): | |
n0 = int(t / inteval_orig) | |
ot = n0 * inteval_orig | |
eta = (t - ot) / inteval_orig | |
if eta <= 0.5: | |
y[n] = o[n0] | |
else: | |
new_n = min(len(o) - 1, n0 + 1) | |
y[n] = o[new_n] | |
t += t_increment | |
return y | |
if __name__ == '__main__': | |
bc = bessel_coeff() | |
x = np.array(np.arange(-16, 16, 1/M)) | |
y = np.zeros(x.shape) | |
for i in range(y.shape[0]): | |
y[i] = bessel(x[i], bc) | |
w = window(bc) | |
scale = min(1, Fs_prime/Fs) | |
omega = min(Fs,Fs_prime) | |
fc = 0.5 / L | |
sinc = [np.sin(2*np.pi * fc * i) / (2*np.pi * fc * i) if i != 0 else 1 for i in range(-M//2, M//2)] | |
sinc = [w[i] * sinc[i] for i in range(M)] | |
sinc = [0]*34 + sinc # TODO(marco): compute correct number of zeros | |
sinc = np.array(sinc) | |
sincr = np.zeros((L, Nzd)) | |
for l in range(L): | |
for i in range(Nzd): | |
sincr[l][i] = sinc[L*i + l] | |
o_count = TEST_SAMPLES | |
xo = np.array(np.arange(0, 1, 1/o_count)) | |
original = np.sin(400 * np.pi * 2 * xo) | |
r_count = TEST_SAMPLES * Fs_prime/Fs | |
xr = np.array(np.arange(0, 1, 1/r_count)) | |
r = resample_window_sinc(original, xr, sincr) | |
fft_o = np.fft.fft(original) | |
fft_r = np.fft.fft(r) | |
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, layout='constrained') | |
ax1.set_title('Individual Filters') | |
for i in range(sincr.shape[0]): | |
ax1.plot(sincr[i]) | |
ax2.set_title('Original') | |
ax2.plot(original[:TEST_SAMPLES // 4]) | |
ax3.set_title('Output') | |
ax3.plot(r[:r.shape[0] // 4]) | |
ax4.set_title('FFT Output') | |
ax4.plot(np.abs(fft_r[:fft_r.shape[0]//2])) | |
ax4.plot(np.abs(fft_o[:fft_o.shape[0]//2])) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment