Created
March 18, 2018 03:56
-
-
Save thebecwar/b53f3a9b6e0428a40b27d99745c794a8 to your computer and use it in GitHub Desktop.
Chudnovsky Algorithm in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import decimal | |
# for reference, the first 100 digits of pi | |
pi = decimal.Decimal('3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679') | |
# Basic recursive factorial calculation. For large n switch to iterative. | |
def fact(n): | |
if n == 0: | |
return 1 | |
else: | |
return n * fact(n - 1) | |
# Denominator- Calculates the sum from 0 to k. | |
def den(k): | |
a = decimal.Decimal(fact(6*k)*(545140134*k+13591409)) | |
b = decimal.Decimal(fact(3*k)*(fact(k)**3)*((-262537412640768000)**k)) | |
res = a / b | |
if k > 0: | |
return res + den(k - 1) | |
else: | |
return res | |
# Numerator- root_precision is the number of significant digits to use when calculating the root. | |
def num(root_precision): | |
p = decimal.getcontext().prec | |
decimal.getcontext().prec = root_precision | |
d = decimal.Decimal(10005).sqrt() | |
decimal.getcontext().prec = p | |
print(d) | |
return 426880 * decimal.Decimal(10005).sqrt() | |
# Calculates the Chudnovsky Algorithm for a given k, and precision. | |
def chudnovsky(k, root_precision): | |
return num(root_precision)/den(k) | |
# Example usage | |
decimal.getcontext().prec = 100 # set 100 significant figures for decimal numbers | |
pi_estimate = chudnovsky(0, 100) | |
error = pi_estimate - pi | |
print('Error: {}'.format(error)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment