Created
May 26, 2020 18:16
-
-
Save theelous3/9ba59d1316b10b2ea84be6ca58506892 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
>>> from collections import deque | |
>>> | |
>>> def ldp(n, current=60): | |
... # largest_divisible_power | |
... s = 1 | |
... while n > current: | |
... current = current ** s | |
... s += 1 | |
... return s - 2 | |
... | |
>>> | |
>>> def ntb(n): | |
... # num to babylonian representation | |
... char_map = { | |
... 1000000:";", | |
... 100000: "|", | |
... 10000: "=", | |
... 1000: "~", | |
... 100: ">", | |
... 10: "<", | |
... 1: "^" | |
... } | |
... n_power_map = deque() | |
... power = 1 | |
... for n in reversed(str(n)): | |
... n_power_map.appendleft((n, power)) | |
... power *= 10 | |
... representation = "" | |
... for num, power_ in n_power_map: | |
... num = int(num) | |
... representation += char_map[power_] * num | |
... return representation | |
... | |
>>> | |
>>> def base_60(d): | |
... # convert decimal `d` in to modernised babylonian base 60 | |
... modulus = 60 | |
... number_parts = deque() | |
... while d >= 60: | |
... largest_power = ldp(d) | |
... current = 60 ** largest_power | |
... times_in_to_d = int(d / current) | |
... remainder = d / current % 1 | |
... d = d - current * times_in_to_d | |
... number_parts.append(times_in_to_d) | |
... number_parts.append(d) | |
... current_representation = [ntb(num) for num in number_parts] | |
... return " ".join(current_representation) | |
... | |
>>> print(f""" | |
... 13 == {base_60(13)} | |
... 149 == {base_60(149)} | |
... 12345 == {base_60(12345)} | |
... 9999999 == {base_60(9999999)} | |
... """ | |
... ) | |
13 == <^^^ | |
149 == ^^ <<^^^^^^^^^ | |
12345 == ^^^ <<^^^^^ <<<<^^^^^ | |
9999999 == ~~>>>>>>><<<<<<<^^^^^^^ <<<<^^^^^^ <<<^^^^^^^^^ | |
>>> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment