Created
January 24, 2018 15:22
-
-
Save theeluwin/e62989c56f97be8f50bf276ff34c3919 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import os | |
import json | |
import torch | |
import pickle | |
import requests | |
import numpy as np | |
import torch as t | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import FloatTensor as FT | |
from torch import LongTensor as LT | |
from torch.optim import Adam | |
from torch.autograd import Variable as V | |
from torch.utils.data import Dataset, DataLoader | |
class Lotto(Dataset): | |
def __init__(self, logs, window=10): | |
self.logs = logs | |
self.data = [] | |
for i in range(len(logs) - window): | |
self.data.append(self.logs[i: i + window + 1]) | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
return self.data[idx] | |
class Lottery(nn.Module): | |
def __init__(self, x_dim=45, h_dim=128): | |
super(Lottery, self).__init__() | |
self.x_dim = x_dim | |
self.h_dim = h_dim | |
self.lstm = nn.LSTM(self.x_dim, self.h_dim) | |
self.fc = nn.Linear(self.h_dim, self.x_dim) | |
def init_hidden(self, batch_size): | |
hidden = V(t.zeros(1, batch_size, self.h_dim), requires_grad=False) | |
return hidden | |
def forward(self, x): | |
batch_size = x.size()[1] | |
h = self.init_hidden(batch_size) | |
c = self.init_hidden(batch_size) | |
out, (h, c) = self.lstm(x, (h, c)) | |
out = F.leaky_relu(h.squeeze()) | |
out = self.fc(out) | |
return out | |
N = 644 | |
M = 45 | |
K = 6 | |
W = 10 | |
every = 10 | |
num_epochs = 100 | |
if not os.path.isfile('logs.dat'): | |
urlt = "http://www.nlotto.co.kr/common.do?method=getLottoNumber&drwNo={}" | |
logs = [] | |
for i in range(1, N + 1): | |
data = json.loads(requests.get(urlt.format(i)).content) | |
indicies = [data['drwtNo{}'.format(j)] - 1 for j in range(1, K + 1)] | |
log = np.zeros(M) | |
log[indicies] = 1 | |
logs.append(log) | |
pickle.dump(logs, open('logs.dat', 'wb')) | |
else: | |
logs = pickle.load(open('logs.dat', 'rb')) | |
model = Lottery() | |
model.train() | |
modelpath = 'pts/lottery.pt' | |
optim = Adam(model.parameters()) | |
optimpath = 'pts/lottery.optim.pt' | |
losser = nn.BCEWithLogitsLoss() | |
dataset = Lotto(logs, window=W) | |
dataloader = DataLoader(dataset, batch_size=len(dataset), shuffle=True) | |
for epoch in range(num_epochs): | |
seq = next(iter(dataloader)) | |
X, y = torch.stack(seq[:-1]), seq[-1] | |
X = V(X.float(), requires_grad=False) | |
y = V(y.float(), requires_grad=False) | |
z = model(X) | |
loss = losser(z, y) | |
optim.zero_grad() | |
loss.backward() | |
optim.step() | |
if not epoch % every: | |
print("Epoch %03d: %.06f" % (epoch, loss.data[0])) | |
X = torch.stack(FT(logs[-10:])).unsqueeze(1) | |
X = V(X, requires_grad=False) | |
z = model(X) | |
_, indicies = z.topk(6) | |
pred = sorted([index + 1 for index in indicies.data]) | |
print(pred) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment