Last active
April 12, 2024 04:49
-
-
Save thehans/a1494db8046a58832e2ebb10a5908a66 to your computer and use it in GitHub Desktop.
L-system implementation in OpenSCAD
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* L-system OpenSCAD library by Hans Loeblich | |
Version 2.0 | |
- Now supports "M" move without draw | |
- Also support position save "[" and restore "]" | |
- Core functions have been completely rewritten and are about twice as fast using half the memory from before. | |
- Rules now take the form of a single string per rule: "X=ABC" | |
- Added new examples to demonstrate added features | |
This library is for creating L-systems, aka Lindenmayer System, | |
which is a kind of formal grammar that can be used to generate space-filling curves | |
and other fractal shapes by applying replacement rules recursively. | |
See https://en.wikipedia.org/wiki/L-system for a better, more detailed explanation. | |
Many of the example curves in this file use rules found on that wikipedia page. | |
This script relies on recent features so I recommend using a 2019 RC or nightly build of OpenSCAD. | |
See here: http://www.openscad.org/downloads.html#snapshots | |
The "turtle graphics" used by the script supports the following operations: | |
"F" : moves the turtle "forward" by one unit and draws line segment | |
"M" : "move" turtle forward without draw (see island_curve example) | |
"-" : rotates the turtle to the left, by the given angle (default 90) | |
"+" : rotates the turtle to the right, by the given angle (default 90) | |
"[" : saves position on stack | |
"]" : restore position from top of stack | |
If you have rules for an L-system that uses different symbols than "F" for forward | |
or "M" for move, you can specify optional string of characters to interpret as each | |
of those operations, using "draw_chars" and "move_chars" parameters for Lsystem2. | |
See: island_curve, gosper_curve, an sierpinski_triangle examples definitions. | |
The models increase in complexity exponentially so be careful with increasing values of n | |
or the program may hang, or consume many gigabytes of RAM. | |
Some recommended absolute maximum n values have been given for each curve, | |
most of which are currently limited by the 1,000,000 iteration limit for "c-style" for loops | |
in OpenSCAD. This is the limit of the final total instructions length after applying | |
replacement rules. That's also around the point where geometries may need multiple GB of RAM. | |
All the generated shapes are currently 2D, and its recommended to **USE F6 RENDER** to view each curve. | |
It takes roughly the same time to complete as F5, but the framerate of moving the camera etc. | |
will be much better without OpenCSG rendering a 2D object as 3D on these complex models. | |
*/ | |
rounded = true; // Add circles at each vertex | |
// setting rounded = false gives slightly faster preview/render but an uglier curve path | |
n = 18; | |
$fn=16; | |
//dragon_curve(n=14); // Recommended n <= 18 | |
//dragon_curve(n=14, angle=72); // "pentagonal dragon" | |
//dragon_curve(n=14, angle=60); // hexagonal? | |
//twin_dragon(n=12); // Recommended n <= 17 | |
//terdragon(n=5, w=0.1); // Recommended n <= 11 | |
//hilbert_curve(n=4, w=0.5); // Recommended n <= 9 | |
//moore_curve(n=3, w=0.5); // Recommended n <= 8 | |
//peano_curve(n=3); // Recommended n <= 6 | |
//gosper_curve(n=3); // Recommended n <= 6 | |
//levy_c_curve(n=9); // Recommended n <= 17 | |
//koch_curve(n=6,angle=80,w=0.2); // Recommended n <= 6 (try different angles: 60,80,90) | |
//koch_curve(n=4, angle=75+15*(sin($t*360)), w=0.2); // Enable animation!! | |
//koch_snowflake(n=8); // Recommended n <= 8 | |
//quadratic_type1_koch(n=4); // Recommended n <= 8 | |
//quadratic_type2_koch(n=3); // Recommended n <= 6 | |
//sierpinski_triangle(n=6); // Recommended n <= 11 | |
//sierpinski_arrowhead(n=6); // Recommended n <= 11 | |
//island_curve(n=2); // Recommended n <= 4 | |
penrose_tiling(n=4, w=0.2); // Recommended n <= 6 | |
//pentadendrite(n=4); // Recommended n <= 5 | |
//icy(n=4); | |
//tree(n=4); | |
//scale([100,100,1]) round_star(n=8); | |
//fractal_plant(n=6); // Recommended n <= 8 | |
module dragon_curve(n=10, angle=90, w=0.4) { | |
L_system2("FX", ["X=X+YF+","Y=-FX-Y"], n, angle, w); | |
} | |
module twin_dragon(n=10, angle=90, w=0.4) { | |
L_system2("FX+FX+", ["X=X+YF","Y=FX-Y"], n, angle, w); | |
} | |
module terdragon(n=10, angle=120, w=0.4) { | |
L_system2("F", ["F=F+F-F"], n, angle, w); | |
} | |
module hilbert_curve(n=4, angle=90, w=0.4) { | |
L_system2("A", ["A=-BF+AFA+FB-","B=+AF-BFB-FA+"], n, angle, w); | |
} | |
module moore_curve(n=4, angle=90, w=0.4) { | |
L_system2("LFL+F+LFL", ["L=-RF+LFL+FR-","R=+LF-RFR-FL+"], n, angle, w); | |
} | |
module peano_curve(n=3, angle=90, w=0.4) { | |
L_system2("L", ["L=LFRFL-F-RFLFR+F+LFRFL","R=RFLFR+F+LFRFL-F-RFLFR"], n, angle, w); | |
} | |
module gosper_curve(n=4, angle=60, w=0.4) { | |
// final pass, convert A and B to (F)orward instructions | |
L_system2("A", ["A=A-B--B+A++AA+B-","B=+A-BB--B-A++A+B"], n, angle, w, "AB"); | |
} | |
module levy_c_curve(n=10, angle=45, w=0.4) { | |
L_system2("F", ["F=+F--F+"], n, angle, w); | |
} | |
module koch_curve(n=4, angle=60, w=0.4) { | |
L_system2("F", ["F=F-F++F-F"], n, angle, w); | |
} | |
module koch_snowflake(n=4, angle=60) { | |
L_system_polygon("F++F++F", ["F=F-F++F-F"], n, angle); | |
} | |
module quadratic_type1_koch(n=4, angle=90, w=0.4) { | |
L_system2("F", ["F=F-F+F+F-F"], n, angle, w); | |
} | |
module quadratic_type2_koch(n=4, angle=90, w=0.4) { | |
L_system2("F", ["F=F-F+F+FF-F-F+F"], n, angle, w); | |
} | |
module sierpinski_triangle(n=5, angle=120, w=0.2) { | |
L_system2("F-G-G", ["F=F-G+F+G-F", "G=GG"], n, angle, w, "FG"); | |
} | |
module sierpinski_arrowhead(n=6, angle=60, w=0.4) { | |
L_system2("XF", ["X=YF+XF+Y", "Y=XF-YF-X"], n, angle, w); | |
} | |
module island_curve(n=10, angle=90, w=0.4) { | |
L_system2("F-F-F-F", ["F=F-b+FF-F-FF-Fb-FF+b-FF+F+FF+Fb+FFF", "b=bbbbbb"], n, angle, w, "F", "b"); | |
} | |
module penrose_tiling(n=2, angle=36, w=0.2) { | |
L_system2("[7]++[7]++[7]++[7]++[7]", [ | |
"6=81++91----71[-81----61]++", | |
"7=+81--91[---61--71]+", | |
"8=-61++71[+++81++91]-", | |
"9=--81++++61[+91++++71]--71", | |
"1="], n, angle, w, "6789"); | |
} | |
module pentadendrite(n=2, angle=72, w=0.2) { | |
L_system2("F-F-F-F-F", ["F=F-F-F++F+F-F"], n, angle, w); | |
} | |
module icy(n=2, angle=90, w=0.5) { | |
L_system2("F+F+F+F", ["F=FF+F++F+F"], n, angle, w); | |
} | |
module tree(n=2, angle=36, w=0.1) { | |
L_system2("F", ["F=F[+FF][-FF]F[-F][+F]F"], n, angle, w, heading=90); | |
} | |
module round_star(n=7, angle=77, w=0.001) { | |
L_system2("F", ["F=F++F"], n, angle, w); | |
} | |
module fractal_plant(n=4, angle=25, w=0.1) { | |
L_system2("X", ["X=F+[[X]-X]-F[-FX]+X", "F=FF"], n, angle, w, heading=90); | |
} | |
module L_system2(start, rules, n, angle, w=0.4, draw_chars="F", move_chars="M", heading=0, startpos=[0,0]) { | |
tables = create_lookup(start, rules, draw_chars, move_chars); | |
//echo(tables); | |
instrs = apply_rules(start, tables[0], tables[1], n); | |
//echo(instrs); | |
l = len(instrs); | |
// generate a completely flat list of numbers, with each consecutive 4 numbers representing a line segment | |
// this doubles the output size necessary in most cases, but needed to support M (move without drawing) commands | |
coords = // C-style "for" list comprehension | |
[for(i=0,ch=instrs[0],pos=startpos, // init | |
newpos=(ch=="F" || ch=="M") ? pos + [cos(heading), sin(heading)] : pos, | |
heading=(ch=="-") ? heading-angle : (ch=="+") ? heading+angle : heading, | |
stack=(ch=="[") ? [[pos,heading]] : []; | |
i<l; // condition | |
// update variables | |
i = i+1, | |
ch = instrs[i], | |
pos = newpos, | |
newpos = (ch=="F" || ch=="M") ? newpos + [cos(heading), sin(heading)] : (ch=="]") ? stack[0][0] : newpos, | |
heading = (ch=="-") ? heading-angle : (ch=="+") ? heading+angle : (ch=="]") ? stack[0][1]: heading, | |
stack=(ch=="[") ? concat([[pos,heading]],stack) : (ch=="]") ? sublist(stack,1) : stack | |
//,_=echo(ch,pos,newpos,heading,stack) | |
) | |
if(ch=="F") for(x=[pos[0],pos[1],newpos[0],newpos[1]]) x ]; | |
segmented_lines(coords, w); | |
echo("Done!"); | |
} | |
// draw a closed path using polygon, assumes no move commands(all lines connected) | |
// only koch snowflake uses this currently | |
module L_system_polygon(start, rules, n, angle=90, draw_chars="F") { | |
startpos = [0,0]; | |
heading = 0; | |
tables = create_lookup(start, rules, draw_chars, ""); | |
//echo(tables); | |
instrs = apply_rules(start, tables[0], tables[1], n); | |
//echo(instrs); | |
l = len(instrs); | |
path = // C-style "for" list comprehension | |
[for(i=0,ch=instrs[0], // init | |
pos=(ch=="F") ? startpos + [cos(heading), sin(heading)] : startpos, | |
heading=(ch=="-") ? heading-angle : (ch=="+") ? heading+angle : heading, | |
stack=(ch=="[") ? [[pos,heading]] : []; | |
i<l; // condition | |
// update variables | |
i = i+1, | |
ch = instrs[i], | |
pos = (ch=="F") ? pos + [cos(heading), sin(heading)] : (ch=="]") ? stack[0][0] : pos, | |
heading = (ch=="-") ? heading-angle : (ch=="+") ? heading+angle : (ch=="]") ? stack[0][1]: heading, | |
stack=(ch=="[") ? concat([[pos,heading]],stack) : (ch=="]") ? sublist(stack,1) : stack | |
//,_=echo(ch,pos,newpos,heading,stack) | |
) | |
if(ch=="F") pos ]; | |
//echo(path); | |
polygon(path); | |
} | |
// binary tree based join, depth of recursion is log_2(n), rather than (n) for naive join | |
function join(l) = let(s = len(l)) s > 0 ? _jb(l,0,s) : ""; | |
// "join binary", splits list into halves and joins them. | |
// l=list, b=begin(inclusive), e=end(exlusive), s=size, m=midpoint | |
function _jb(l,b,e) = let(s = e-b, m=floor(b+s/2)) s > 2 ? | |
str(_jb(l,b,m), _jb(l,m,e)) : | |
s == 2 ? | |
str(l[b],l[b+1]) : | |
l[b]; | |
// extract substring given begin(inclusive) and end(exclusive) | |
// if end not specified, go to end of string | |
function substr(s,b,e) = let(e=is_undef(e) || e > len(s) ? len(s) : e) (b==e) ? "" : join([for(i=[b:e-1]) s[i] ]); | |
function sublist(s,b,e) = let(e=is_undef(e) || e > len(s) ? len(s) : e) [for(i=[b:1:e-1]) s[i] ]; | |
// return true if value v in list(or string) | |
function in_list(l,v) = len([for(x=l) if(x==v) x])>0; | |
// create lookup tables for every character, then we can do array lookup for replacement | |
// instead of many ternary statments | |
function create_lookup(start, rules, draw_chars, move_chars) = | |
let ( | |
valid_chars = "FM-+[]", | |
allchars = str(join(rules),start,valid_chars), | |
// Create table of size == max ord character in all rules (<256 for ASCII) | |
size = max([for(ch = allchars) if (ch != "=") ord(ch)])+1, | |
rules_l = [for (rule = rules) rule[0]], // rule left symbol | |
rules_r = [for (rule = rules) // rule right symbols | |
assert(rule[1]=="=", str("Invalid rule:\"",rule,"\"\nRules must be single strings starting with a symbol to replace, then '=', then the replacement string")) | |
substr(rule,2) | |
], | |
table = [for(i=[0:size]) // rule_i is index of first rule for ch, otherwise undef | |
let (ch = chr(i), rule_i=[for(j=[0:len(rules)-1]) if(rules_l[j]==ch) j ][0]) | |
is_undef(rule_i) ? ch : rules_r[rule_i] | |
], | |
//valid_identity = | |
final_rules1 = [for (rule = rules) // rule right symbols | |
assert(rule[1]=="=", str("Invalid rule:\"",rule,"\"\nRules must be single strings starting with a symbol to replace, then '=', then the replacement string")) | |
[rule[0],substr(rule,2)] | |
], | |
final_rules2 = [for (ch=valid_chars) [ch,ch]], // use identity rules for valid characters, | |
// needed because any invalid char will be filtered out in final pass | |
final_rules = [for(rule=concat(final_rules1,final_rules2)) | |
[rule[0], join([for(ch=rule[1]) in_list(draw_chars,ch)? "F": (in_list(move_chars,ch)? "M": in_list(valid_chars,ch) ? ch : "") ])] | |
], | |
// final table should specify replacements for draw/move, and keep any other valid chars | |
// if a draw/move char is a F or M then | |
final_table = [for(i=[0:size]) | |
let ( | |
ch = chr(i), // rule_i is index of first rule for ch, otherwise undef | |
rule_i=[for(j=[0:len(final_rules)-1]) if(final_rules[j][0]==ch) j ][0]) | |
is_undef(rule_i) ? undef : final_rules[rule_i][1] | |
] | |
) | |
[table, final_table]; | |
// recursively apply rule replacement using table lookup. | |
// replacement strings are split out into individual characters at each level. | |
// return a list of single character strings to be processed into coordinates | |
function apply_rules(start, table, final_table, n) = | |
n > 1 ? | |
apply_rules([ for(ch=start) for(c2=table[ord(ch)]) c2 ], table, final_table, n-1) : | |
(n == 1 ? | |
[ for(ch=start) for(c2=final_table[ord(ch)]) c2] : | |
start); | |
// works on long lists of "lines" which are specified as a flat list of numbers, | |
// each 4 representing a single line: [xa,ya,xb,yb,...] | |
module segmented_lines(l, w=0.1) { | |
// OpenSCAD doesn't allow ranges > 10000 in modules, | |
// so limit is used to split very large segmented lines into manageable chunks | |
limit = 9999*4; | |
size = len(l); | |
imax = floor((size-1) / limit); | |
for (i = [0:1:imax]) { | |
jmin = i*limit; | |
jmax = min(jmin + limit - 1, size-1); | |
for (j=[jmin:4:jmax]) { | |
line(l[j],l[j+1],l[j+2],l[j+3], w); | |
} | |
} | |
if (rounded) { | |
lmax = len(l)-1; | |
translate([l[lmax-1], l[lmax]]) circle(d=w); | |
} | |
} | |
// works on long lists of "lines" which are a flat list of numbers: [xa1,ya1,xb1,yb1,xa2,ya2,xb2,yb2... | |
// From testing this is not really advantageous over segmented line implementation above | |
module binary_lines(l, w=0.1,b=0, end) { | |
e = is_undef(end) ? len(l) : end; | |
s = e-b; | |
//echo(b,e,s); | |
if (s > 8) { | |
m = b + floor(s/8)*4; | |
binary_lines(l, w, b, m); | |
binary_lines(l, w, m, e); | |
} else if (s == 8) { | |
line(l[b ],l[b+1],l[b+2],l[b+3], w); | |
line(l[b+4],l[b+5],l[b+6],l[b+7], w); | |
} else if (s == 4){ | |
line(l[b],l[b+1],l[b+2],l[b+3], w); | |
} | |
if (rounded) { | |
lmax = len(l)-1; | |
translate([l[lmax-1], l[lmax]]) circle(d=w); | |
} | |
} | |
module line(xa,ya,xb,yb, w=0.1) { | |
//echo(xa,ya,xb,yb); | |
dx = (xb - xa); | |
dy = (yb - ya); | |
d = sqrt(dx*dx + dy*dy); | |
a = atan2(dy, dx); | |
translate([xa,ya]) { | |
if (rounded) circle(d=w); | |
rotate([0,0,a]) translate([0,-w/2]) square([d,w]); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I love it @tecnoloxia ! Very impressive compilation of L-systems you've put together, and I'm happy that you found so much use for my code!
The "6789" parameter specifies the
draw_chars
string, it lists which characters to interpret as draw commands in the final pass, after applying replacement rules. Defaultdraw_chars
is just "F", but penrose needs many individual rules to generate its pattern, so 6,7,8,9 are used. I don't remember where I found the rules for that originally, but the characters are somewhat arbitrary, and could be replaced with any other 4 unique chars by replacing them in the axiom and rules.Also I just noticed, that the "1" in those rules is not actually necessary in my version, so they can be simplified a bit:
Thanks for sharing your project.