-
-
Save theharshpat/c3b60f783b870c2f8d5c9fdd9309e54d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# git clone https://github.com/NVlabs/stylegan2 | |
import os | |
import numpy as np | |
from scipy.interpolate import interp1d | |
from scipy.io import wavfile | |
import matplotlib.pyplot as plt | |
import PIL.Image | |
import moviepy.editor | |
import dnnlib | |
import dnnlib.tflib as tflib | |
import pretrained_networks | |
audio = {} | |
fps = 60 | |
# https://www.google.com/search?q=death+grips+black+google+download | |
for mp3_filename in [f for f in os.listdir('data') if f.endswith('.mp3')]: | |
mp3_filename = f'data/{mp3_filename}' | |
wav_filename = mp3_filename[:-4] + '.wav' | |
if not os.path.exists(wav_filename): | |
audio_clip = moviepy.editor.AudioFileClip(mp3_filename) | |
audio_clip.write_audiofile(wav_filename, fps=44100, nbytes=2, codec='pcm_s16le') | |
track_name = os.path.basename(wav_filename)[15:-5] | |
rate, signal = wavfile.read(wav_filename) | |
signal = np.mean(signal, axis=1) # to mono | |
signal = np.abs(signal) | |
seed = signal.shape[0] | |
duration = signal.shape[0] / rate | |
frames = int(np.ceil(duration * fps)) | |
samples_per_frame = signal.shape[0] / frames | |
audio[track_name] = np.zeros(frames, dtype=signal.dtype) | |
for frame in range(frames): | |
start = int(round(frame * samples_per_frame)) | |
stop = int(round((frame + 1) * samples_per_frame)) | |
audio[track_name][frame] = np.mean(signal[start:stop], axis=0) | |
audio[track_name] /= max(audio[track_name]) | |
for track in sorted(audio.keys()): | |
plt.figure(figsize=(8, 3)) | |
plt.title(track) | |
plt.plot(audio[track]) | |
plt.savefig(f'data/{track}.png') | |
network_pkl = 'gdrive:networks/stylegan2-ffhq-config-f.pkl' | |
_G, _D, Gs = pretrained_networks.load_networks(network_pkl) | |
Gs_kwargs = dnnlib.EasyDict() | |
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_kwargs.randomize_noise = False | |
Gs_syn_kwargs = dnnlib.EasyDict() | |
Gs_syn_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_syn_kwargs.randomize_noise = False | |
Gs_syn_kwargs.minibatch_size = 4 | |
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')] | |
w_avg = Gs.get_var('dlatent_avg') | |
def get_ws(n, frames, seed): | |
filename = f'data/ws_{n}_{frames}_{seed}.npy' | |
if not os.path.exists(filename): | |
src_ws = np.random.RandomState(seed).randn(n, 512) | |
ws = np.empty((frames, 512)) | |
for i in range(512): | |
# FIXME: retarded | |
x = np.linspace(0, 3*frames, 3*len(src_ws), endpoint=False) | |
y = np.tile(src_ws[:, i], 3) | |
x_ = np.linspace(0, 3*frames, 3*frames, endpoint=False) | |
y_ = interp1d(x, y, kind='quadratic', fill_value='extrapolate')(x_) | |
ws[:, i] = y_[frames:2*frames] | |
np.save(filename, ws) | |
else: | |
ws = np.load(filename) | |
return ws | |
def mix_styles(wa, wb, ivs): | |
w = np.copy(wa) | |
for i, v in ivs: | |
w[i] = wa[i] * (1 - v) + wb[i] * v | |
return w | |
def normalize_vector(v): | |
return v * np.std(w_avg) / np.std(v) + np.mean(w_avg) - np.mean(v) | |
def render_frame(t): | |
global base_index | |
frame = np.clip(np.int(np.round(t * fps)), 0, frames - 1) | |
base_index += base_speed * audio['Instrumental'][frame]**2 | |
base_w = base_ws[int(round(base_index)) % len(base_ws)] | |
base_w = np.tile(base_w, (18, 1)) | |
psi = 0.5 + audio['FX'][frame] / 2 | |
base_w = w_avg + (base_w - w_avg) * psi | |
mix_w = np.tile(mix_ws[frame], (18, 1)) | |
mix_w = w_avg + (mix_w - w_avg) * 0.75 | |
ranges = [range(0, 4), range(4, 8), range(8, 18)] | |
values = [audio[track][frame] for track in ['Drums', 'E Drums', 'Synth']] | |
w = mix_styles(base_w, mix_w, zip(ranges, values)) | |
w += mouth_open * audio['Vocal'][frame] * 1.5 | |
image = Gs.components.synthesis.run(np.stack([w]), **Gs_syn_kwargs)[0] | |
image = PIL.Image.fromarray(image).resize((size, size), PIL.Image.LANCZOS) | |
return np.array(image) | |
size = 1080 | |
seconds = int(np.ceil(duration)) | |
resolution = 10 | |
base_frames = resolution * frames | |
base_ws = get_ws(seconds, base_frames, seed) | |
base_speed = base_frames / sum(audio['Instrumental']**2) | |
base_index = 0 | |
mix_ws = get_ws(seconds, frames, seed + 1) | |
# https://rolux.org/media/stylegan2/vectors/mouth_ratio.npy | |
mouth_open = normalize_vector(-np.load('data/mouth_ratio.npy')) | |
mp4_filename = 'data/Culture Shock.mp4' | |
video_clip = moviepy.editor.VideoClip(render_frame, duration=duration) | |
audio_clip_i = moviepy.editor.AudioFileClip('data/Culture Shock (Instrumental).wav') | |
audio_clip_v = moviepy.editor.AudioFileClip('data/Culture Shock (Vocal).wav') | |
audio_clip = moviepy.editor.CompositeAudioClip([audio_clip_i, audio_clip_v]) | |
video_clip = video_clip.set_audio(audio_clip) | |
video_clip.write_videofile(mp4_filename, fps=fps, codec='libx264', audio_codec='aac', bitrate='8M') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment