Last active
August 29, 2015 14:25
-
-
Save thekensta/dc731515bda2572f5718 to your computer and use it in GitHub Desktop.
Auto Arima from data.frame embedding forecast in actuals
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## | |
## Wrap forecast auto.arima(..) and forecast(..) into a data.frame | |
## Embeds the forecast into the data.frame | |
## | |
## Allow passing an EndDate so that the forecast can start mid-actuals | |
## (helps with visualization and exaplantion) | |
## | |
## Usage: | |
## Forecast.df <- AutoArimaForecast(Monthly.df, # DataFrame with | |
## H = 6, # Predict 6 months forward | |
## ValueCol = "Purchases", # name of value to predict | |
## DateCol = "Month", # datecolumn | |
## EndDate = ymd("2015-05-01"), # predict from start of month | |
## Freq = "month") # monhtly not daily | |
## | |
## AutoArimaForecastPlot(Forecast.df, | |
## "Month", # Date Column | |
## "Purchases", # Actuals Column | |
## "lightgreen") # colour for predicted range | |
## | |
AutoArimaForecast <- function(DF, | |
H, | |
ValueCol = "Bookings", | |
DateCol = "Date", | |
Freq = c("day", "month"), | |
EndDate = NULL, | |
...) { | |
if (Freq == "month") { | |
## Monthly Data, Season = 12 month per year | |
Interval <- months | |
.F <- 12 | |
} else if (Freq == "day") { | |
## Daily Data, Season = 7 days per week | |
Interval <- days | |
.F <- 7 | |
} | |
# If | |
if (is.null(EndDate)) { | |
TimeSpan <- nrow(DF) | |
df <- DF | |
EndDate <- max(DF[[DateCol]]) | |
} else { | |
#TimeSpan <- interval(StartDate, EndDate) %/% Interval(1) + 1 | |
df <- DF[DF[[DateCol]] <= EndDate,] | |
} | |
## Create the timeseries | |
## Fit the model and | |
## Forecast | |
Ts <- ts(df[[ValueCol]], frequency = .F) | |
Mdl <- auto.arima(Ts, ...) | |
Fcast <- forecast(Mdl, h = H) | |
## Paste Forecast back into the DataFrame | |
Forecast <- as.data.frame(Fcast) | |
names(Forecast) <- c("Forecast", "lower.80", "upper.80", "lower.95", "upper.95") | |
Forecast[[DateCol]] <- EndDate + Interval(1:H) | |
full_join(DF, Forecast, by = DateCol) | |
} | |
AutoArimaForecastPlot <- function(DF, | |
xcol, | |
ycol, | |
.color = "red", | |
.xlim = NULL) { | |
p <- ggplot(aes_string(xcol, ycol), data = DF) + | |
geom_line() + | |
geom_point(shape=1) + | |
geom_line(aes_string(y=Forecast), color = .color) + | |
geom_point(aes(y=Forecast), color = .color) + | |
geom_ribbon(aes(ymin=lower.95, ymax=upper.95), fill = .color, alpha=0.25) + | |
geom_ribbon(aes(ymin=lower.80, ymax=upper.80), fill = .color, alpha=0.25) + | |
theme_classic() | |
if (! is.null(.xlim)) { | |
p <- p + xlim(.xlim) | |
} | |
p | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment