Last active
March 16, 2021 09:03
-
-
Save theogf/22bcc3f7ebee0939556aff795822a1ec to your computer and use it in GitHub Desktop.
Sample code for generating a Mondrian process and plotting it
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using CairoMakie | |
# using Animations | |
using Distributions | |
using Random | |
using AbstractTrees | |
CairoMakie.activate!() | |
mutable struct Partition | |
x | |
y | |
t | |
p1 | |
p2 | |
end | |
AbstractTrees.children(p::Partition) = p.p1 != [] ? (p.p1, p.p2) : () | |
AbstractTrees.printnode(io::IO, p::Partition) = print(io, "x=$(p.x), y=$(p.y), t=$(p.t)") | |
## Create a Breadth-First iterator | |
struct BFS | |
p::Partition | |
end | |
Base.iterate(d::BFS) = (d.p, children(p)) | |
Base.iterate(::BFS, state) = (first(state), (Base.tail(state)..., children(first(state))...)) | |
Base.iterate(::BFS, ::Tuple{}) = nothing | |
## Create the partitioning process | |
function dring(p::Partition) | |
λs = [diff(p.x)[1], diff(p.y)[1]] | |
t_drings = rand.(Exponential.(inv.(λs))) | |
t, d = findmin(t_drings) | |
if p.t + t > t_end | |
return p | |
else | |
if d==1 | |
p.p1, p.p2 = cutx(p, t) | |
else | |
p.p1, p.p2 = cuty(p, t) | |
end | |
return p | |
end | |
end | |
## Cut on the x axis | |
function cutx(p::Partition, t) | |
cut = rand(Uniform(p.x...)) | |
return dring(Partition([p.x[1], cut], p.y, p.t + t, [], [])), dring(Partition([cut, p.x[2]], p.y, p.t + t, [], [])) | |
end | |
## Cut on the y axis | |
function cuty(p::Partition, t) | |
cut = rand(Uniform(p.y...)) | |
return dring(Partition(p.x, [p.y[1], cut], p.t + t, [], [])), dring(Partition(p.x, [cut, p.y[2]], p.t + t, [], [])) | |
end | |
## Plotting helpers | |
function corners(p::Partition) | |
Point2f0.([[p.x[1], p.y[1]], [p.x[2], p.y[1]], [p.x[2], p.y[2]], [p.x[1], p.y[2]], [p.x[1], p.y[1]]]) | |
end | |
## Run algorithm | |
λ = 2.0 | |
t_end = rand(Exponential(λ)) | |
p0 = Partition([0.0, 1.0], [0.0, 1.0], 0, [], []) | |
p = dring(p0) | |
print_tree(p) | |
## Plotting all the leaves | |
AbstractPlotting.inline!(true) | |
fig = Figure() | |
ax = fig[1,1] = Axis(fig, title="Mondrian Process") | |
hidedecorations!(ax) | |
for p in Leaves(p) | |
poly!(ax, | |
corners(p), | |
color=rand([:blue, :red, :white, :black, :yellow]), | |
strokecolor=:black, | |
strokewidth=4, | |
) | |
end | |
display(fig) | |
## Plotting the partitioning process | |
fig = Figure() | |
ax = fig[1,1] = Axis(fig, title="Mondrian Process") | |
hidedecorations!(ax) | |
record(fig, "mondrian.gif", fps=5) do io | |
for p in BFS(p) | |
poly!(ax, | |
corners(p), | |
color=rand([:blue, :red, :white, :black, :yellow]), | |
strokecolor=:black, | |
strokewidth=4, | |
) | |
fig |> display | |
recordframe!(io) | |
end | |
end | |
## Trying to plot with UnicodePlots | |
## Plotting with UnicodePlots | |
import UnicodePlots | |
function UnicodePlots.lineplot!(canvas::UnicodePlots.Plot, p::Partition, args...; kwargs...) | |
for p in Leaves(p) | |
UnicodePlots.lineplot!(canvas, first.(corners(p)), last.(corners(p)), args...; kwargs...) | |
end | |
end | |
function UnicodePlots.lineplot(p::Partition, args...; kwargs...) | |
plt = UnicodePlots.Plot(UnicodePlots.BrailleCanvas(40, 10, # number of columns and rows (characters) | |
origin_x = 0., origin_y = 0., # position in virtual space | |
width = 1., height = 1.)) # size of the virtual space | |
UnicodePlots.lineplot!(plt, p) | |
return plt | |
end | |
UnicodePlots.lineplot(p0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment