Skip to content

Instantly share code, notes, and snippets.

@thesamovar
Created April 23, 2018 16:02
Show Gist options
  • Save thesamovar/aa6cc7e773280c7c550950528f5966a5 to your computer and use it in GitHub Desktop.
Save thesamovar/aa6cc7e773280c7c550950528f5966a5 to your computer and use it in GitHub Desktop.
gaussian_kde sample code
import numpy as np
from scipy import stats
def measure(n):
"Measurement model, return two coupled measurements."
m1 = np.random.normal(size=n)
m2 = np.random.normal(scale=0.5, size=n)
return m1+m2, m1-m2
m1, m2 = measure(20)
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()
X, Y = np.mgrid[xmin:xmax:10j, ymin:ymax:10j]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment