Last active
August 2, 2024 19:12
-
-
Save thewh1teagle/b3f1002c690ac567b4cef0613e0fbfa8 to your computer and use it in GitHub Desktop.
Audio speech segmentation using pyannote
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # python3 -m venv venv | |
| # source venv/bin/activate | |
| # pip3 install onnxruntime numpy librosa | |
| # wget https://github.com/pengzhendong/pyannote-onnx/blob/master/pyannote_onnx/segmentation-3.0.onnx | |
| # wget https://github.com/thewh1teagle/sherpa-rs/releases/download/v0.1.0/motivation.wav -Otest.wav | |
| # python3 main.py | |
| import onnxruntime as ort | |
| import librosa | |
| import numpy as np | |
| def init_session(model_path): | |
| opts = ort.SessionOptions() | |
| opts.inter_op_num_threads = 1 | |
| opts.intra_op_num_threads = 1 | |
| opts.log_severity_level = 3 | |
| sess = ort.InferenceSession(model_path, sess_options=opts) | |
| return sess | |
| def read_wav(path: str): | |
| return librosa.load(path, sr=16000) | |
| if __name__ == '__main__': | |
| session = init_session('segmentation-3.0.onnx') | |
| samples, sample_rate = read_wav('test.wav') | |
| # Conv1d & MaxPool1d & SincNet https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html https://pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html https://github.com/pyannote/pyannote-audio/blob/develop/pyannote/audio/models/blocks/sincnet.py#L50-L71 | |
| frame_size = 270 | |
| frame_start = 721 | |
| window_size = sample_rate * 10 # 10s | |
| # State and offset | |
| is_speeching = False | |
| offset = frame_start | |
| start_offset = 0 | |
| # Pad end with silence for full last segment | |
| samples = np.pad(samples, (0, window_size), 'constant') | |
| for start in range(0, len(samples), window_size): | |
| window = samples[start:start + window_size] | |
| ort_outs: np.array = session.run(None, {'input': window[None, None, :]})[0][0] | |
| for probs in ort_outs: | |
| predicted_id = np.argmax(probs) | |
| if predicted_id != 0: | |
| if not is_speeching: | |
| start_offset = offset | |
| is_speeching = True | |
| elif is_speeching: | |
| start = round(start_offset / sample_rate, 3) | |
| end = round(offset / sample_rate, 3) | |
| print(f'{start}s - {end}s') | |
| is_speeching = False | |
| offset += frame_size |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment