Created
April 7, 2020 13:11
-
-
Save thibthibaut/e96ef67d0816b9152840bdfd33ebdb5d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",") | |
data = dataset[:,0:8] | |
label = dataset[:,8] | |
X = Input(shape=(8,)) | |
Y = Input(shape=(1,)) | |
x = Dense(12, input_dim=8, activation='relu')(X) | |
x = Dense(8, activation='relu')(x) | |
predictions = Dense(1, activation='sigmoid')(x) | |
def custom_loss(l): | |
def loss(y_true, y_pred): | |
if l == 0: | |
return binary_crossentropy(y_true, y_pred) | |
else: | |
return mean_squared_error(y_true, y_pred) | |
return loss | |
# Compile model | |
model = Model(inputs=[X, Y], outputs=predictions) | |
model.compile(loss=custom_loss(Y), optimizer='adam', metrics=['accuracy']) | |
# Fit the model | |
model.fit(x=[data, label], y=label, epochs=150) | |
# evaluate the model | |
scores = model.evaluate([data, label], label) | |
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment