Created
June 11, 2017 11:06
-
-
Save thinkler/f1a2493fdb4f0aded58024e87e2b51a9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
print(__doc__) | |
import matplotlib.pyplot as plt | |
import csv | |
from sklearn.decomposition import PCA | |
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | |
def pca_ol(filename): | |
X = [] | |
y = [0, 1, 2] | |
with open(filename) as csvfile: | |
readCSV = csv.reader(csvfile, delimiter=',') | |
for row in readCSV: | |
row = [float(i.replace(",",".")) for i in row] | |
X.append(row) | |
target_names = ["G1", "G2", "G3"] | |
pca = PCA(n_components=2) | |
X_r = pca.fit(X).transform(X) | |
# Percentage of variance explained for each components | |
print('explained variance ratio (first two components): %s' | |
% str(pca.explained_variance_ratio_)) | |
plt.figure() | |
colors = ['navy', 'turquoise', 'darkorange'] | |
lw = 2 | |
print(X_r) | |
for color, i, target_name in zip(colors, [0, 1, 2], target_names): | |
plt.scatter(X_r[i, 0], X_r[i, 1], color=color, alpha=.8, lw=lw, | |
label=target_name) | |
plt.legend(loc='best', shadow=False, scatterpoints=1) | |
plt.show() | |
# pca_ol('tdgma1.csv') | |
# pca_ol('tdgma2.csv') | |
# pca_ol('tdgma3.csv') | |
# pca_ol('tdgma4.csv') | |
pca_ol('tdgma5.csv') | |
print(__doc__) | |
import matplotlib.pyplot as plt | |
import csv | |
from sklearn.decomposition import PCA | |
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | |
def pca_ol(filename): | |
X = [] | |
y = [0, 1, 2] | |
with open(filename) as csvfile: | |
readCSV = csv.reader(csvfile, delimiter=',') | |
for row in readCSV: | |
row = [float(i.replace(",",".")) for i in row] | |
X.append(row) | |
target_names = ["G1", "G2", "G3"] | |
pca = PCA(n_components=2) | |
X_r = pca.fit(X).transform(X) | |
# Percentage of variance explained for each components | |
print('explained variance ratio (first two components): %s' | |
% str(pca.explained_variance_ratio_)) | |
plt.figure() | |
colors = ['navy', 'turquoise', 'darkorange'] | |
lw = 2 | |
print(X_r) | |
for color, i, target_name in zip(colors, [0, 1, 2], target_names): | |
plt.scatter(X_r[i, 0], X_r[i, 1], color=color, alpha=.8, lw=lw, | |
label=target_name) | |
plt.legend(loc='best', shadow=False, scatterpoints=1) | |
plt.show() | |
# pca_ol('tdgma1.csv') | |
# pca_ol('tdgma2.csv') | |
# pca_ol('tdgma3.csv') | |
# pca_ol('tdgma4.csv') | |
pca_ol('tdgma5.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment