Last active
April 6, 2025 13:58
-
-
Save thinkphp/f0faa1f49de0382e92d2f90d7006d704 to your computer and use it in GitHub Desktop.
marketing_campaign.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Facem un program care analizeaza Campaniile de Marketing | |
- unealta complexa pentru analiza performantei campaniilor de marketing. | |
Scop: | |
- evalueze performanta diferitelor campanii de Marketing | |
- vizualizeze datele intr-un mod intuitiv si informativ | |
- prezicere ROI (return on investment) bazat pe performanta istorica | |
- simulare diferite scenarii de buget pentru a gasi nivelul optimal de investment | |
- ofere recomandari actionabile pentru decizii strategice de marketing. | |
Aplicatia noastra - calculeaza | |
- profit | |
- returnarea investitiei ROI | |
- costul de achizitie al clientilor | |
- venit per client | |
- profit per client | |
""" | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.linear_model import LinearRegression | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import r2_score, mean_squared_error | |
import io | |
# functie care incarca dataset dintr-un fisier source or String | |
def load_data(source, is_file=False): | |
if is_file: | |
df = pd.read_csv( source ) | |
else: | |
df = pd.read_csv(io.StringIO(source)) | |
return df | |
def calculate_metrics( df ): | |
df['Profit'] = df['Revenue_Generated'] - df['Total_Spend'] | |
df['ROI'] = (df['Profit'] / df['Total_Spend']) * 100; | |
df['Customer_Acquisition_Cost'] = df['Total_Spend'] / df['Customers_Acquired'] | |
df['Revenue_per_Customer'] = df['Revenue_Generated'] / df['Customers_Acquired'] | |
df['Profit_per_Customer'] = df['Profit'] / df['Customers_Acquired'] | |
return df | |
def analyze_performance( df ): | |
metrics = ['Profit', 'ROI', 'Customer_Acquisition_Cost', 'Revenue_per_Customer'] | |
results = pd.DataFrame({ | |
'Metric': [], | |
'Best Campaign': [], | |
'Best Value': [], | |
'Worst Campaign': [], | |
'Worst Value': [] | |
}) | |
for metric in metrics: | |
if metric == 'Customer_Acquisition_Cost': | |
best_idx = df[metric].idxmin() | |
worst_idx = df[metric].idxmax() | |
else: | |
best_idx = df[metric].idxmax() | |
worst_idx = df[metric].idxmin() | |
results = pd.concat([results, pd.DataFrame({ | |
'Metric': [metric], | |
'Best Campaign': [df.loc[best_idx, 'Campaign']], | |
'Best Value': [df.loc[best_idx, metric]], | |
'Worst Campaign': [df.loc[worst_idx, 'Campaign']], | |
'Worst Value': [df.loc[worst_idx, metric]], | |
})], ignore_index = True) | |
print("Performance Analysis:") | |
print(results) | |
print("\nSummary Statistics:") | |
print(df.describe()) | |
return results | |
def main(): | |
data = """Campaign,Total_Spend,Revenue_Generated,Customers_Acquired | |
Email,5000,15000,150 | |
Social Media,7500,22500,300 | |
Google Ads,10000,35000,500 | |
Referral,3000,9000,100 | |
Content MArketing,6000,18000,250""" | |
df = load_data(data, is_file=False) | |
df = calculate_metrics(df) | |
print("Marketing Campaign Data:") | |
print(df) | |
performance_results = analyze_performance(df) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment