Created
September 23, 2018 06:25
-
-
Save thomasaarholt/b25afd3ea963022be4753e6410fedf19 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--------------------------------------------------------------------------- | |
ValueError Traceback (most recent call last) | |
<ipython-input-39-840bfeb05f2a> in <module>() | |
----> 1 m.fit_background(bounded=True) | |
c:\users\me\documents\github\hyperspy\hyperspy\models\edsmodel.py in fit_background(self, start_energy, end_energy, windows_sigma, kind, **kwargs) | |
445 windows_sigma[1] * component.sigma.value) | |
446 if kind == 'single': | |
--> 447 self.fit(**kwargs) | |
448 if kind == 'multi': | |
449 self.multifit(**kwargs) | |
c:\users\me\documents\github\hyperspy\hyperspy\model.py in fit(self, fitter, method, grad, bounded, ext_bounding, update_plot, **kwargs) | |
1064 output = \ | |
1065 least_squares(self._errfunc, self.p0[:], | |
-> 1066 args=args, bounds=ls_b, **kwargs) | |
1067 self.p0 = output.x | |
1068 | |
C:\ProgramData\Anaconda3\envs\py\lib\site-packages\scipy\optimize\_lsq\least_squares.py in least_squares(fun, x0, jac, bounds, method, ftol, xtol, gtol, x_scale, loss, f_scale, diff_step, tr_solver, tr_options, jac_sparsity, max_nfev, verbose, args, kwargs) | |
797 x0 = make_strictly_feasible(x0, lb, ub) | |
798 | |
--> 799 f0 = fun_wrapped(x0) | |
800 | |
801 if f0.ndim != 1: | |
C:\ProgramData\Anaconda3\envs\py\lib\site-packages\scipy\optimize\_lsq\least_squares.py in fun_wrapped(x) | |
792 | |
793 def fun_wrapped(x): | |
--> 794 return np.atleast_1d(fun(x, *args, **kwargs)) | |
795 | |
796 if method == 'trf': | |
c:\users\me\documents\github\hyperspy\hyperspy\models\model1d.py in _errfunc(self, param, y, weights) | |
437 if weights is None: | |
438 weights = 1. | |
--> 439 errfunc = self._model_function(param) - y | |
440 return errfunc * weights | |
441 | |
c:\users\me\documents\github\hyperspy\hyperspy\model.py in _model_function(self, param) | |
838 self.p0 = param | |
839 self._fetch_values_from_p0() | |
--> 840 to_return = self.__call__(non_convolved=False, onlyactive=True) | |
841 return to_return | |
842 | |
c:\users\me\documents\github\hyperspy\hyperspy\models\model1d.py in __call__(self, non_convolved, onlyactive) | |
402 for component in self: | |
403 if component.active: | |
--> 404 sum_ += component.function(axis) | |
405 else: | |
406 for component in self: | |
c:\users\me\documents\github\hyperspy\hyperspy\_components\physical_background.py in function(self, x) | |
279 Cthickness=self.coating_thickness.value | |
280 | |
--> 281 Mu=Mucoef(self.model,self.quanti.value) | |
282 Mu=np.array(Mu,dtype=float) | |
283 #Mu=Mu[self.model.channel_switches] | |
c:\users\me\documents\github\hyperspy\hyperspy\_components\physical_background.py in Mucoef(model, quanti) | |
140 | |
141 if np.sum(quanti)==0: | |
--> 142 raise ValueError("The quantification cannot be nul, but an an array with all weight percents set to 0 have been provided" ) | |
143 else: | |
144 t=(np.linspace(model._signal.axes_manager[-1].offset,model._signal.axes_manager[-1].size*model._signal.axes_manager[-1].scale,model._signal.axes_manager[-1].size)) | |
ValueError: The quantification cannot be nul, but an an array with all weight percents set to 0 have been provided |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment