Created
June 10, 2024 20:12
-
-
Save thomasahle/00ad0913d6810343cc740705e30a6769 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import Counter | |
from manim import * | |
import networkx as nx | |
import random | |
import numpy as np | |
import itertools | |
class UF: | |
def __init__(self, ids): | |
self.name = {i: i for i in ids} | |
def find(self, i): | |
while i != self.name[i]: | |
i = self.name[i] | |
return i | |
def union(self, i, j): | |
# j -> i | |
i = self.find(i) | |
j = self.find(j) | |
self.name[j] = i | |
def transform_vdicts(scene, vdict1, vdict2, run_time=1): | |
k1 = vdict1.submob_dict.keys() | |
k2 = vdict2.submob_dict.keys() | |
transforms = [] | |
for key in k1 - k2: | |
transforms.append(FadeOut(vdict1[key])) | |
for key in k2 - k1: | |
transforms.append(Create(vdict2[key])) | |
for key in k1 & k2: | |
transforms.append(Transform(vdict1[key], vdict2[key])) | |
scene.play(*transforms, run_time=run_time) | |
class KargerMinCut(Scene): | |
def construct(self): | |
# Create a random graph | |
S = 6 | |
G = nx.MultiGraph() | |
N = 10 | |
edges = [] | |
for i in range(1, N): | |
for j in range(1, N): | |
if random.random() < 30 / N**2: | |
edges.append((i, j)) | |
G.add_edges_from(edges) | |
def draw_graph(og, layout, color_edge, names): | |
layout = {node: S * np.array([x, y, 0]) for node, (x, y) in layout.items()} | |
edges = [] | |
total = Counter() | |
for u, v, idx in og.edges: | |
i, j = names.find(u), names.find(v) | |
total[min(i, j), max(i, j)] += 1 | |
vdict = VDict() | |
if color_edge is not None: | |
uu, vv = color_edge | |
ii, jj = names.find(uu), names.find(vv) | |
color_edge = (min(ii, jj), max(ii, jj)) | |
col_idx = random.randrange(total[color_edge]) + 1 | |
cnt = Counter() | |
for u, v, idx in og.edges: | |
i, j = names.find(u), names.find(v) | |
# Have to get the start and end of the edge before normalizing (i,j) | |
# since otherwise the edge may "do a flip" in the animation | |
start, end = layout[i], layout[j] | |
edge = (min(i, j), max(i, j)) | |
cnt[edge] += 1 | |
# Bend the edge if it is a multi-edge | |
control1, control2 = start, end | |
if i != j: | |
rad = cnt[edge] // 2 * (-1) ** cnt[edge] * 0.05 | |
if total[edge] % 2 == 0: | |
rad -= 0.025 | |
if i > j: | |
rad *= -1 | |
vec = end - start | |
vec = np.array([[0,1,0],[-1,0,0],[0,0,0]]) @ vec | |
control1 = start + vec * rad | |
control2 = end + vec * rad | |
# Color the edge red | |
color = WHITE | |
stroke_width = 2 | |
if color_edge is not None: | |
if edge == color_edge and cnt[edge] == col_idx: | |
color = RED | |
stroke_width = 8 | |
vdict[u, v, idx] = CubicBezier( | |
start_anchor=start, | |
end_anchor=end, | |
start_handle=control1, | |
end_handle=control2, | |
# start_handle=control1*5/6 + control2/6, | |
# end_handle=control2*5/6 + control1/6, | |
stroke_width=S * stroke_width, | |
color=color, | |
) | |
for node in og.nodes: | |
i = names.find(node) | |
vdict[node] = Dot(point=layout[i], radius=S * 0.08, color=BLUE) | |
return vdict | |
pos = nx.shell_layout(G) | |
names = UF(G.nodes) | |
graph_vgroup = draw_graph(G, pos, None, names) | |
self.add(graph_vgroup) | |
self.play(Create(graph_vgroup)) | |
original_G = G.copy() | |
while len(G.nodes) > 2: | |
while True: | |
u, v, idx = random.choice(list(G.edges)) | |
if u != v: | |
break | |
# Color the edge red | |
new_graph_vgroup = draw_graph(original_G, pos, (u, v), names) | |
transform_vdicts(self, graph_vgroup, new_graph_vgroup, run_time=1) | |
# Contract the edge | |
G = nx.contracted_edge(G, (u, v, idx)) | |
new_pos = nx.shell_layout(G) | |
names.union(u, v) # v is merged into u | |
new_graph_vgroup = draw_graph(original_G, new_pos, (u, v), names) | |
transform_vdicts(self, graph_vgroup, new_graph_vgroup, run_time=1) | |
pos = new_pos | |
self.wait() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment